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Abstract. We present the complete classification of equations of the form u,, = f(u, uz, uy)
and the Klein-Gordon equations v, = F'(v) connected with one another by differential sub-
stitutions v = o(u, us, u,) such that ¢, ., 7# 0 over the ring of complex-valued variables.
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1 Introduction

In this paper, we study the classification problem of equations of the form

Uzy = f (U, Uz, uy) (1.1)

over the ring of complex-valued variables. Such equations have applications in many fields of
mathematics and physics. Liouville [10], Backlund [2], Darboux [4] and other authors [3, 17]
studying the surfaces of constant negative curvature discovered the first examples of integrable
nonlinear hyperbolic equations. In the 1970s, one of the fundamental methods of mathematical
physics, the inverse scattering method, was introduced. After that, since hyperbolic equations
have many applications in physics (continuum mechanics, quantum field theory, theory of fer-
romagnetic materials etc.), many important studies were published.

Existence of higher symmetries is a hallmark of integrability of an equation. Drinfel’d, Sokolov
and Svinolupov [5, 16] showed that symmetries can be effectively used for classification of
evolution equations. Zhiber and Shabat [18] obtained the complete list of the Klein—-Gordon
equations

Vyy = F(v) (1.2)

with higher symmetries. However, the symmetry method for the classification of equations of
form (1.1) faces particular difficulties. Therefore, here we use differential substitutions to solve
the classification problem.

*This paper is a contribution to the Special Issue “Symmetries of Differential Equations: Frames, Invariants
and Applications”. The full collection is available at http://www.emis.de/journals/SIGMA /SDE2012.html
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Before going further, let us give some definitions. Let u be a solution of equation (1.1). All
the mixed derivatives of u

Ug, Uy, Ugg, Uyy, (1.3)

will be expressed through equation (1.1) with differential consequences of this equation. Here u
and variables (1.3) will be regarded as independent.

We begin with an important notion of (infinitesimal) symmetry of equation (1.1). Denote
the operators of total derivatives with respect to « and y by D and D, respectively.

Definition 1. The symmetry of equation (1.1) of order (n,m) is the function g = g(u, uq, ..., up,
Uly .oy Um), Gu, # 0, ga,, # 0, satisfying the equation

(DD — fu,D — fa,D — fu)g = 0.

Here u; = g;‘» and u; = %, 1€ N. If n <1 and m < 1 then the function ¢ is called a classical

symmetry, otherwise we have a higher symmetry.

Assume that g is a symmetry of equation (1.1). It is easy to check that the derivatives g,
and gz, satisfy the so-called characteristic equations D(g,, ) = 0 and D(gg,,) = 0, respectively.

It actually can be shown that g,, depends only on the variables w,ui,...,u,, while gz, is
a function of the variables u, w1, ..., Un,.
Definition 2. The function w(u,uy,us,...,uy), wy, 7# 0, is called an z-integral of order n of

equation (1.1) if D(w) = 0. Similarly, the y-integral of order m is the function w(u, i1, s, . . .
Um), Wa,, 7 0 which satisfies D(w) = 0.

Another important notion is the sequence of the Laplace invariants of equation (1.1).

Definition 3. The main generalized Laplace invariants of equation (1.1) are the functions H
and H; given by the formulae

__p(ory ofrof of __p(9f\ oror of
B = D<6u1>+8u18ﬂ1+8u’ Ho = D< >+8u10m+6u'

Other Laplace invariants can be found recurring in the relation

ouy

DD(InH;) = —H; 1 — H; 1 + 2H;, i €Z.

Sokolov and Zhiber [19] showed that the functions H; and Hp are invariants of equation (1.1)
under the point transformations v — ((z,y,u). Generalized Laplace invariants play a significant
role in the investigation of integrability of equations. Namely, Anderson and Kamran [1], Zhiber,
Sokolov and Startsev [20] proved that an equation has nontrivial - and y-integrals if and only
if the Laplace sequence of invariants terminates on both sides (H, = Hs = 0 for some values r
and s), which is indeed a definition of the (Darboux) integrability of an equation. Equations
satisfying the last condition are called Liouville type equations. Using this definition for linear
equations Vyy + a(z,y)Vy + b(z,y)Vy + c(z,y)V = 0, one can obtain equations with the finite
Laplace sequence studied in detail by Goursat [6].

It should be noted that symmetries of Liouville type equations have two arbitrary functions,
while the equations integrable by the inverse scattering method (for instance, the sine-Gordon
equation) have a countable set of symmetries.

The main notion of the paper is the notion of differential substitutions.
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Definition 4. The relation

Ju 0"u Ou 0Mu
U—@(U,ax,...,axn,ay,...,ay’rn> (14)

is called a differential substitution from equation (1.1) to the equation

Uy = g(’U, Vg, 'Uy) (1'5)
if function (1.4) satisfies equation (1.5) for every solution u(z,y) of equation (1.1).

Before proceeding, let us briefly mention some works related to differential substitutions.
Sokolov [12] showed that substitutions can be used in the study of integrability of nonlinear
differential equations. There exist various different definitions of exact integrable hyperbolic
equations. Sokolov and Zhiber [19] presented one of the most comprehensive reviews of such
equations. As mentioned before, existence of higher symmetries is a hallmark of integrability
of an equation. Meshkov and Sokolov [11] presented the complete list of one-field hyperbolic
equations with generalized integrable z- and y-symmetries of the third order. One can find
many examples of nonlinear equations and differential substitutions in [11, 19]. Startsev [14, 15]
described properties of generalized Laplace invariants of nonlinear equations with differential
substitutions. Backlund transformations and, in particular cases, differential substitutions were
studied by Khabirov [7]. Kuznetsova [8] described coupled equations for which linearizations are
related by Laplace transformations of the first and the second orders. A Backlund transformation
was constructed for such pairs.

Although we know a considerable amount of nonlinear equations which are connected with
one another by differential substitutions, the problem of classifying differential substitutions
and Backlund transformations was solved only for evolution equations.

Recently, Zhiber and Kuznetsova [9] have applied differential substitutions to classify equa-
tions. Namely, all equations of form (1.1) are transformed into equations of form (1.2) by
differential substitutions of the special form v = p(u,u,) were described. All these equations
are contained in the following list:

Uzy :uF'(F_l(ux)), Vgy = F(v), v=F"(u,);

Ugy = Sinuy/1 — u2, Ugy = SIN W, v = u + arcsin ug;

Ugy = expuy/1 + u2, Ugy = €XP, v:u+ln<u$+ 1+u%>;

V/2uy

Upy = (i)’ Vgy = F(v), v =s(uy),
where the functions s and f satisfy s'(u;)F(s(uz)) = 1;

u _ C—uySOu(U;’UJ;B) v :0 U:(p(u U )

Ty (pul (u7 ’U,Z,) Ty 9 s T )y

Uy = Uz (V(u, uy) — uya (u)), Uy = €XP, v =co(u) + Inug,
where 1, + Y1y, — &'uyihy, = exp o;

Ugy = Us (Y (U, uy) — uya! (u)), Ugy = 0, v =o(u) + Inug,
where ¥, + Ythy, — &/ uythy, = 0;

Ugy = U, Vgy = U, V= C1U + CoUyg;

Ugy = 5(“3/)7 Vzy = 1, V= C1U + CoUyg, 5(61 =+ 025/) =1,
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up to the point transformations u — 0(u), v — k(v), * — &x, and y — ny, where & and 7
are arbitrary constants. Here ¢ is an arbitrary constant, ¢; and co are constants satisfying
(c1,¢2) # (0,0), and the function 1 satisfies (vu,¥u,) # (0,0).

Furthermore, all equations of form (1.2) that can be transformed into equations of form (1.1)
by differential substitutions of the form u = (v, v,) are given in the following list:

Vay = F(v), ey = F'(F ' (ux))u,  u=uy
_ T W)y

Vzy = 1, Ugy = w,(d}_l(u)) ) U = ¢(Uy)§
Ugy = 0, Uzy = 0, u = cv+ p(vy);
VUgy = 0, Ugy = —Ugz €XP U, u = Invy —Inwv;
Vgy = U, Ugy = U, U = C1V + CaUy;
Ugy = 1, Upy = 1, U=V + Uy,

up to the point transformations v — 6(u), v — k(v), © — &x, and y — ny, where £ and 7
are arbitrary constants. Here ¢ is an arbitrary constant, ¢; and cy are constants satisfying
(ClaCQ) 7£ (070)'

Based on the above lists, Backlund transformations have been constructed for some pairs of
equations. For instance, the equations

Ugy = F'(F7 (ug))u, Vgy = F(v) (1.6)
are connected by the Béacklund transformation
v=F"(u,), U = vy.

Kuznetsova [8] showed that linearizations of equation (1.6) are related by Laplace transforma-
tions of the first order. For example, we give the equations

Upy = ()\ — Bnb”fl(ugc))u, Ugy = AV — V", n >0,

where A and [ are arbitrary constants, and the function b satisfies the equation Ab(u,) —
Bb"(ug) = uy. The Backlund transformation is given by

U = vy, v = b(uy).

Note that the equation vy, = Av — fv™ is a version of the PHI-four equation [13]. The PHI-four
equation and the corresponding Béacklund transformation are obtained for n = 3.

The purpose of this paper is to describe all equations of form (1.1) that are transformed into
equations of form (1.2) by differential substitutions

v = @(%uxauy)a Pugz Puy 7é 0, (1.7)

over the ring of complex-valued variables.

It should be noted that most of the differential substitutions which connect the well-known
integrable equations (1.1) have the form v = ¢(u,us,uy) (see [11, 19]). Therefore, we are
interested just in this form of substitutions.

This paper is organized as follows. Section 2 presents the complete list of equations (1.1) that
are transformed into the Klein—Gordon equations by differential substitutions of form (1.7). In
Section 3, the main theorem of the paper is proven. Section 4 is devoted to the problem which
is, in a sense, inverse to the original problem. Namely, equations (1.2) are transformed into
equations (1.1) by differential substitutions of the form

u= ¢(Uavyavz)a wvy¢vz # 0, (1~8)

over the ring of complex-valued variables.
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2 Equations transformed into Klein—Gordon equations

In this section, we give all possible cases when equation (1.1) is transformed into equation (1.2)
by a differential substitution of form (1.7). The main result of this paper is the following
theorem.

Theorem 1. Suppose that equation (1.1) is transformed into the Klein—Gordon equation (1.2)
by differential substitution (1.7). Then equations (1.1), (1.2), and substitution (1.7) take one of
the following forms:

Uzy = \/u2 + ayJu + b, Uy = %(expv—abexp(—v)),

vzln{(ux—i- u%—ka)(uy%—w/ug—i-b)}; (2.1)
Ugy = /U Uy, Upy = %v, V= Uy + \/Uy; (2.2)
Uzy = Uz, Vpy = %, V= Uz + Uy; (2.3)
Ugy = 1, Vgy = 0, V= Uy + Uy; (2.4)
1
= — = 17 = y 25
Uzy () Uzy v =ug +v(uy) +u (2.5)
where the function v satisfies 1 — % =/
Ugy = 0, Vgy =0, v = [(ug) + v(uy) + cauy; (2.6)
Uzy = p(U)UZUy, Ugy = 0, v=ciInuy + 2 lnuy + a(u), (2.7
where pi'(c1 + c2) + p2(c1 + c2) + o’ + o/ = 0;
Uzy = p(U)UZUy, Ugy = €XP, v = In(uzuy) + a(u), (2.8)
where 2’ 4+ 2u% + o + o' = exp o;
Ugy = U, Ugy = 0, V= Cluy + Cug + c3u; (2.9)
Uzy = p(0)(Uy + €)tyg, Ugy = €XP, v =1In(uy +c) + Inu, + o(u), (2.10)
where 2u’ 4+ 2u% + o + o' =expa, 2u® + 4 + o'y = exp a;
Uzy = p(w)(Uy + €) g, Ugy = 0, v =caIn(uy+ ¢)+ c1 Inuy+ a(u), (2.11)
where (i + p?)(c1 +c2) + o + o' =0, c1p + p?(e1 + c2) + o' = 0;
Uzy = p(U)Uy, Ugy = 0, v =uy — Inu, + a(u), (2.12)
where o + 1/ =0, p? — ' +o'p = 0;
_ p(w)ug _ _
Ugy = 7 Vgy =0, v=Inu; + /Y(uy) + a(u), (2.13)
V' (uy)
where c3 + 3—,/; + ey =0, " + p' +cap® =0, and czp® + p' + p? + o’p = 0;
. , Uy = €Xp Y, v =Inu; +v(uy) —2In(au +b), (2.14)

Y (au+ )7 (uy)
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where c3 + ;L,/; +cay'uy = —v' expy, c3+1—-3a =0, and c4 +2a®> —a=0;

1
Ugy = —m, Vgy = 0, v = Blug) +v(uy), (2.15)
where % =u.fB +c1, :yy—,” =uy — ;5
u
i vy =epv, v Blu) F(m) +alw),  (216)

= B )y ()

1

U)h@?"@ Uy =+ m = exp(ﬁ), 'LLy =+ % = exp, O/l = expa, and n= (exp a)/al;

v (uy)
()
U , Ugy = €XP U, v = Buz) + v(uy) + a(u), 2.17
xy 5/(Ux)’)//(uy) xy (uz) +( y) (u) ( )
where 2u, + m =exp 3, 2uy + m =expy, &/pu—2u? =expa, and o/?> = 8exp «;
Ugy = s(u)\/1 —u2y /1 —uZ, vz = csinv,
v = arcsin u, + arcsinuy + p(u), (2.18)

where s" — 283 + As =0, p’? = 25" — 25 + \;

Ugy = s(u)b(uz)b(uy), Ugy = €1 €XP U + ¢ exp(—2v),
v=—1In(u; —b(uy)) — 3 In(uy — bluy)) + p(u), (2.19)

where (uy — b(ug))(b(ug) + 2uyz)? =1, (uy — bluy))(b(uy) + 2uy)? =1, s — 2ss’ — 453 =0, and
p'? — 2sp’ — 35’ — 252 =0;

Ug, Ugy = C3€XP U, v =Inu; + q(u, uy), (2.20)

v— v— q v
3 (V - Tunquy a Qw) T o + Vluy = C3€xpg, Quay 7é 0,

Uy Qu,, qu, qu,

up to the point transformations u — 0(u), v — k(v), r — &x, and y — ny, and the substitution
u+Ex+ny — u, where & and n are arbitrary constants. Here c3 and cq4 are arbitrary constants,
a and b are constants satisfying (a,b) # (0,0), and ¢, c1, and cy are nonzero constants; in
cases (2.13) and (2.14) the function v satisfies the condition (7”/’}/’2)/ # 0; in cases (2.15)-

(2.17) the functions B and vy satisfy the conditions (6”/6’2)/ # 0 and (’y”/’y’Q)/ % 0 accordingly,
the function u satisfies ' # 0, and pu # 0 in all cases.

Now, let us analyze some of the above equations in detail. Consider (2.1) with ab # 0. Using
the point transformations v/az — x, vby — y, and v — In(ab)'/? — v, we obtain

Ugy = \Ju2 + 1y /u2 + 1. (2.21)

Equation (2.21) is transformed into the sine-Gordon equation

1
Vpy = i(expv - exp(—v))
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by the differential substitution
v=In [(ua;—l— ug+1)(uy+ u§+1>].
Equation (2.21) is a S-integrable and possesses symmetries of the third order (see [11]). Note

that applying the point transformations v — v, ix — x, iy — ¥, and using the formula
In (\/1 —u2 — zux) = —ijarcsin u, we can also convert the above equations into

_ 2 2 2 — : _ ; ;
Ugy = \/1 —uzl — uy\/l — Uy, Ugy = — SIN U, v = arcsin u; + arcsin uy.

Now, assume that a = 0. Under the transformations v — In2 — v, \/Ey —y,and v —Invb— v
equations (2.1) take the form

uwy:um/uz—l—l, Ugy = €XP U, v:lnum+ln<uy+1/u§+1). (2.22)

Applying the transformation iy — y to the above equations we arrive at

Upy = Ugy /1 — uZ

s Ugy = —1€Xp Y, v = —tarcsinu, + Inu,.

As shown in [11], equation (2.22;) has symmetries of the third order. In [11] the z- and y-
integrals and the general solution of equation (2.22;) were presented.

Note that the equation (2.21) is the Goursat equation. Its symmetries of the third order can
be found, for instance, in [11].

The equation (2.31) has symmetries of the third order [11]. The z- and y-integrals of this
equation are given by

Ugy
T

Consider cases (2.7) and (2.8). The equation uz, = p(u)uzu, possesses the z- and y-integrals
of the first order, w = Inu, — o(u), @ = Inu, — o(u). Here o/ = p.

The equation g, = p(u)(uy + c)u, in cases (2.10) and (2.11) possess the y-integral of the
first order w = In(u, + ¢) — o(u), where ¢’ = p. The z-integral in case (2.10) is

W = Uyyy-

w = Yzzz 3ui, l(lﬂ(u) + 2u(u)a’ (u) + o’ (u) ) u,
Uy 2 u% 2 :

and in case (2.11) we get the z-integral

w = cop(u)u, + cl% + o/ (u)uy.
x
The equation (2.14;) possesses the y-integral of the first order and the z-integral of the third
order

_ Ugzz 3 w2, u2(2a—1)

ury 2 u2  2(au+b)?’

1
W ="y(uy) — o In(au + b),

Now, we consider the equation which appears in (2.16) and (2.17). The equation (2.16;) is
transformed into the equation presented in [19] by a point transformation and has the integrals
of the second order

' (u)
p(w)y (uy)

W= B/(ufp)umx - 'u(uu)gfb()um), w 7/(uy)uyy —
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On the other hand, equation (2.17;) can be transformed into the equation given in [19]

gy = %B(ux)B(uy). (2.23)

Here B(uy)B'(ug) + B(ug) — 2uy = 0, B(uy)B'(uy) + B(uy) — 2u, = 0. The integrals of
equation (2.23) are [19]

s | 2B —us) 5, 22+ B) , Blu,+B)

“T g B3 i uB o ’
gy 2(B-wy) 5 2(2uy+B)  B(u, + B)
W= T "wht T g YT a2

The equation (2.201) possesses the y-integral of the first order @ = ¢(u,uy) — o(u). Here
o' =v. If ¢5 # 0 then we obtain the z-integral of the third order

" 2w + v (u)uZ 5V (u)u

2
z

w =

If c3 = 0 then we have the z-integral of the second order

W= 2Ty v(u)ug.
Uy

Note that equations in (2.18) and (2.19) are well-known equations, which are integrable by
the inverse scattering method (see [19]).

All of the previously mentioned equations possessing x- and y-integrals are contained in the
list of Liouville type equations given in [19].

Now we will show how to obtain a solution of an equation from a solution of another one
by applying differential substitutions. As an example, we consider case (2.8) with specifying
w(u) =1, a(u) =1In2. So we have

Upy = Ugly, v = In(2uzuy), Ugy = €XP V.

The equation gy = uzu, has the z-integral w(x) = exp(—u)u,. Integrating this equation with
respect to = and redenoting [ w(z)dz by w(z) we obtain

exp(—u) = w(@) + &(y).
Hence
u=—In(w(z) +@(y)).

Substituting the function u into the equation v = In(2u,u,) we get the general solution of the
Liouville equation v, = expv as

o(g) = In (mw) |

3 Proof of the main theorem

In this section we prove Theorem 1. In order to do that we determine the functions f, F|,
and ¢ in (1.1), (1.2) and (1.7). By substituting function (1.7) into equation (1.2) and using
equation (1.1) we get

Spuf + Uy (Souuuy + ‘Puuzf + (Puuyuyy) + Uz ((puzuuy + Soug;uzf + @uzuyuyy)



The Klein—Gordon Equation and Differential Substitutions 9

+ Pu, (fuux + fua;u:c:c + fuyf) + Puy (fuuy + fuzf + fuyuyy)
+f (Souyuuy + ‘Puyuxf + Spuyuyuyy) = F((P) (31)

Since the function F'(¢) depends only on u, u,, and u,, the coefficients at uy,, wyy, and uzpuy,
are equal to zero, i.e.

Pugu, =0, Puny Uy + Puguy |+ Puy fu, =0, Py, Uz + ‘Puyfuy + f‘Puyuy =0.

Integration of these equations leads to

¢ = p(u, ug) + q(u, uy), (3.2)
@Uuy + gp?hf = A(u7 Uy)a

The remaining terms in (3.1) give

f(%ou—i— Ug Puu, + SOuzfuy + Pu, Ju, + “y‘»@uuy) + Punlz Uy + (Ux@uz + Uysouy)fu = F(p). (3.5)

Hence, the original classification problem is reduced to the analysis of equations (3.2)—(3.5).
Eliminating the function f from equations (3.3) and (3.4) we obtain the relation

(A - Uy@u)‘)ouy = (B - Ux@u)@ux- (3.6)
Applying the operator ﬁ;uy to equation (3.6) we arrive at the equation

(Uy@uy)uy Puug = (uxSOuz)uz Puny - (3.7)

Relation (3.7) is satisfied if one of the following conditions hold:

O, =0, Puu, = 0, (3.8)

Puu, =0, (Uztpu,), =0, (3.9)

(UyPuy)uy =0, Puu, =0, (3.10)

(uypuy)uy =0, (Uspu,)u, =0, (3.11)

(uyPu, Ju, _ (U Puy Jup = Auw), Au) # 0. (3.12)
Pursy Puuy

First, let us analyze equation (3.12). By substituting the function ¢ given by (3.2) into
equation (3.12) we get

Now we integrate the first equation of (3.13) with respect to u, and the second one with respect
to uy. This gives

Uy G, = AMu)qy + C(u), UgPu, = Mu)py + E(u).
The general solutions of these equations are
q=P1(uys(u)) +e(u),  p=Po(usr(u)) + p(u),

where k(u) = A(u)k'(u), AM(u)€' (u) + C(u) = 0, Mu)p'(u) + E(u) = 0. Therefore, the function ¢
defined by (3.2) takes the form

p = ®(u) + P1(uyr(u)) + P2 (uzk(w)).
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Here ®(u) = €(u) + p(u). Furthermore, if we use the point transformation [ k(u)du — u in the
above formula, we obtain

p = a(u) + Blus) + 7(uy). (3.14)

Clearly, function (3.2) satisfying (3.8) also takes form (3.14).
Assume that condition (3.9) holds. In this case, the substitution of the functions ¢ defined
by (3.2) into (3.9) yields

Puu, =0, (UePuy Ju. =0,
which gives
p = a(u) + clnu,.

Here c is an arbitrary constant. Hence, function (3.2) takes the form ¢ = o(u)+clnu, +q(u, uy).
Replacing a(u) + q(u, uy) by q(u,uy) in this equation we get

o = clnug + q(u, uy). (3.15)

Recall that ¢y, @y, # 0. This property implies ¢ # 0. Clearly, case (3.10) coincides with (3.9)
up to the permutation of x and y.
It remains to consider the case when ¢ satisfies (3.11). Based on (3.2), we rewrite (3.11) as

(uyGuyJuy =0, (UzPuy )u, = 0.
By integrating these equations we get the functions ¢ and p,

q = p(u) Inuy + e(u), p = k(u) Inug + 0(u).
Consequently, the function ¢ defined by formula (3.2) takes the form

o = a(u) + k(u) Inug + p(u) Inwu,. (3.16)
Thus, to solve the original classification problem it is sufficient to consider three cases: (3.14),
(3.15), and (3.16).
3.1 Case ¢ = a(u) + B(uz) + v(uy)
When we substitute (3.14) into equation (3.6), we obtain

(A, y) =y ()7 () = (Blusts) — e () B ().

Since u, and u, are regarded as independent variables, the above equation is equivalent to the
system

(Al uy) = uye (W) () = pl),  (Bluyug) — e0 () B (1) = ().

From this system we find the functions A and B as

A:%—i—uya’, B:%—i—uxa'.
By substituting A and B into equations (3.3) and (3.4) we determine f as follows

f= p(w)

)y (347
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Using (3.17) we transform equation (3.5) into

o' ) A B 1 U:z: Uy
g W\t e ) e G ) =

Applying the operators % and % to equation (3.18) we obtain

5// 2 '7” B” 1 5” ' " ! 5” /
O‘“ﬁxz — W —wﬁ—ky @ +a uy +p@ ?—uyﬁ =F

N
@)‘F

7 I7AN "o n "
r o( (N1 BTy gl
HB/'YIQ_M <(,7/3> 5/_/8/37/2>+a ux—i—,u ( Ug /2

By eliminating F’ from these equations we get

6” ) /8// / 6”
A T I e

i /AN "
g g Y
= _O/IUW — ,uZ <7/3> + Oé”UxB/ — //uxﬂ'w.

Under the action of the operator %, equation (3.19) takes the form

¢ () - () -o

Fla+B+7).

(3.18)

(a+B8+7)08,

(a+B+7)

(3.19)

It can be easily seen that the above equation is true if one of the following conditions is met:

(' (u) =0,
(uz8) =0, (un') =0,

(uz8) =0, <§’2> =0,
(22) =o
AN 6” /
7 ()
(W7X=<W7X¢o

B il
<BQ> (va>

It should be noted that p’/ # 0 in cases (3.21)—(3.25).

(uy’)/), = 07

(3.20)
(3.21)

(3.22)
(3.23)
(3.24)

(3.25)

To analyze cases (3.20)—(3.25) in a unified manner we begin by giving the following lemma.

Lemma 1. By condition (3.20), equations (1.1), (1.2), and substitution (1.7) take one of the

following forms:

Ugy = 0, Ugy = €XP UV, v =

where the function a satisfies o/ = exp «;

Ugy = Ugly, Ugy = €Xp U,

a(u) + In(uzuy),

v = a(u) + In(uzuy),

(3.26)

(3.27)
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where o' + o' +2 = exp a;

Ugpy = —Ugly, VUgy = 0,

v=expu+ (a1 + b1)u + ar Inu, + by Inwuy; (3.28)
2

Ugy = C\/ U2 + a2y /uf/ + bo, Uy = %(expv — agbs exp(—v)),
vzln{(um—i— ug—l—aQ) <uy+\/u§+bg)} ; (3.29)

Uy = c\/1 —u2 /1 —ul, Vgy = —*sinw, v = arcsin ug + arcsin uy; (3.30)
v

Ugy = Cy/Ugly, Uoy = U=\ Ug + \/Uy; (3.31)
2
57

Uzy = C\/Uyg, Vpy = V= Ug + Uy; (3.32)

Ugy = C, Ugy = 0, V= Uy + Uy; (3.33)

Ugy = ClUyy/1 — U2, Uy = —ict expu, v = —iarcsinu, + Inwuy; (3.34)
ap

Ugy = W; Vzy = b1, v = ug + y(uy) +u, (3.35)

11
where a1 — a%;% =b1v/;

Uzy = a(uy + c7)(uy + c9), Ugy =0,
v = aj In(uz + ¢7) + by In(uy + ¢9) + v, (3.36)

where aa; + aby +1 =0;

Ugy = 0, Vgy = 0, v = [(ug) +v(uy) + u, (3.37)

up to the point transformations u — 0(u), v — k(v), x — &z, and y — ny and the substitution
u+ &x +ny — u, where & and n are arbitrary constants. Here o, o/, and 1 are linearly
independent functions, ¢, c1, ¢, ¢7, ¢9, a1 # 0, by # 0, a # 0, ba, and as are arbitrary
constants.

Proof. If condition (3.20) holds then pu(u) = ¢, where ¢ is an arbitrary constant. Rewri-
ting (3.19) we obtain

B" (uz) 2 B" (uz) / o (W B (u
5/2(7190) + (6/3(1%)) + ( ) :E/B( x)

'Y”(uy) 2 ’Y//(uy) ' o (W (u
V2 (uy) + <’Y/3(Uy)> + o (w)uyy (uy).

Since we regard the variables u;, u, as independent, this equation is equivalent to the equations

cal (u)

= ca(u)

ol () gz((z)) + e ( 53((‘;))) o (e B (1) = o(u),
/0ty + (S ) + o 0t ) = o0,

By the same fact that the variables u,, u, are considered as independent we define the func-
tion o as o(u) = A1/ (u) + B1a”(u) + C1. According to this we rewrite the above equations

as
o (cg,2 - A1) +a" (uz8' — B1) = C1 — ¢ <§,3> ;
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1

1 /
Y Y
o (C,ya — Al) +a" (uyfy' — Bl) =0 —c <7,3> ) (3.38)

Here Ay, B1, and (' are constants.
Let us assume that 1, o/, and o are linearly independent functions. Clearly, equations (3.38)

imply

ﬁ” ﬁ// !
cgm = A, uf =B, C1—¢ ) =0
" /AN
v
c% = Ay, uyy = By, Cy —¢c? (’7/3> =0.
From these equations we get
B1 Bl C C2
/ = —, / = —, _— = A y C —_— — O
B " Y Uy By 1 1+ B%

Using the above equations we transform equation (3.18) into the equation

/ 2 2
Uty (CBO% + BC% + o/’> = Fla+8+7). (3.39)

Since 1, o/, and o are linearly independent functions, the left-hand side of equation (3.39) does
not vanish. Then F' # 0. By differentiating (3.39) with respect to u, and using 5’ = Bj/u, we
get the equation 1 = F'(2)By/F(z), where z = a + 3 + 7. Its general solution is given by

F(z) = Crexp(z/By). (3.40)

Substituting function (3.40) into equation (3.39) and using f = By Inu, + Cs, v = By Inuy, + C3
we obtain
col 262 a Oy Cs
B%‘FB%‘{‘OZ”:CleXp( >

Thus, equations (1.1), (1.2), and (1.7) have the following forms

CuzU
Ugy = l% v Uzy = Crexp(v/By), v = a(u) + Bi In(uguy) + Co + Cs,
where
/
a 5 1 y a+Cy+C3
X 92 4o =C artarls),
CB%-F CB%—FO( 1exp< B

We redenote (o + C2 + C3)/B; by a. Under the point transformation v — Bjv the above
equations take the forms

ClUL Uy 1
Uy = , Ugpy = —— €Xp U, v = a(u) + In(uzu,),
w="g" =g (1) +In(us,)
where
o 1
c— +2%— +d' = —expa
B? B} B, P
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The multiplier C1/B; can be eliminated by the shift v — v + In(B;/C1). Finally, redenoting
a —In(B;/C1) by a and ¢/B? by ¢ we get

Upy = ClUzly, Upy = €Xp Y, v = a(u) + In(uzuy),

where o + ca’ + 2¢? = expa. If ¢ = 0 then these equations take the form (3.26). Otherwise,
applying the point transformation u — u/c and redenoting a by a + Inc? we can reduce the
above equations to form (3.27).

Let us assume that 1, o/, and o are linearly dependent functions. It means that

C1a" + Cd + C3 = 0, (C1,C2,C3) # (0,0,0).

If C; = 0 then Cy # 0 and we get o’ = c. Otherwise, @’ = c1a’ + ¢o. Case o/ = ¢ is a subcase of
o' = c1a’ + co. This equation has two families of solutions

1
a = csu® + cqu + s, a = —exp(cu) + cgu + c7.
C1

The constants ¢, ¢7 can be eliminated by 8 + ¢;5 — 3, 8+ ¢7 — [ in equation (3.14). So there
are two possibilities

o = cou® + czu (3.41)
and

a = (exp clu) /c1 + cqu,
which takes the form

a = exp(ciu) + cqu, c1 #0 (3.42)

under the shifts u — v+ (Inc;)/c; and o — o+ c4(Iney) /1.
Now, let us concentrate on case (3.42), taking into account the fact that pu(u) = ¢. Equa-
tion (3.18) can be rewritten as

c(cr exp(cru) + cy) o (B
By o\ " 82

1
W + c% exp(cru)uzuy = Fla+ 8+ 7). (3.43)

Applying 8% to equation (3.43) we obtain

cc? exp(ciu)
ﬁ/,yl

Therefore,

+ czf exp(c1u)ugy = F'(a+ B+ 7)(c1exp(ciu) + c4).

2
ccy

B’y

Next, by applying the differentiation a% to both sides of this equation, we get

+ uguy = (c1 + caexp(—cru))F'(a+ B+ 7).

—cregexp(—ciu) F'(a+ B+ 7) + (c1 + cqexp(—ciu))(c1 exp(ciu) + c4) F"(a+ B+ ) = 0.
It is not difficult to see that the above equation implies

(crexp(ciu) + ca)?’F"(a+ B+7) = creaF'(a + B+ 7).
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Consequently, we have two possibilities

Flla+B+7) =0, (3.44)
F'la+B8+7) c1e4
Flla+B+7)  (crexp(ciu) +cq)?’

(3.45)

Equation (3.44) yields F' = ¢5, where c5 is an arbitrary constant. In this case by using (3.43)
we obtain

ccy 9 B ccy B’ I
Bl + cruguy =0, Bl - ¢ ( + 2 82 ) gyt 5-
According to the fact that u, and u, are considered as independent variables we have
2
/ cc1 / Co N C6 / /
Uy) = Uy) = ——5— cea —c“ | ——— | =c56(u Uy).
Bl = 2 ) =g e (o) e )

Moreover, since 37" # 0 we get ¢ = 0, hence F = 0. Consequently, equations (1.1), (1.2),
and (1.7) take the following forms

ccq Cg
Upy = —C1UzUy, Vgy = 0, v =expciu+ cqu + — Inu, — - Inuy, + cr,
Cg C%

where

2
ccy
-0 S g e 2£0.
Ce C1

Using the point transformations u — u/c1, v — v—cey In(cy) /eg+cg In(c1)/c2+c7, and redenoting
ce1/cg by a1, —cg/c3 by by we get equation (3.28).
Now, suppose that (3.45) is true. Applying % to both sides of equation (3.45) we get

/
(Yo
Recall that 8" # 0, therefore F”/F’ = 0. This equation has two families of solutions. Namely,
F(z) = cgexp sz + ¢7, csc6 # 0, which turns into
F(z) =expcsz + o7, c5s £ 0 (3.46)
by the shift z — z — (Incg) /c5, and
F(z) =csz + 7, cg # 0. (3.47)

Now consider equation (3.46). In this case, equation (3.43) takes the form

c(eq exp(cru) + ¢4) B"
5y -2 L —l— 57 ) 5y + cf exp(c1u)uzuy,

= exp(cs(exp cru + C4u)) exp(esf) exp(csy).

This equation is not satisfied because c5c; # 0.
Let us focus on equation (3.47). Equation (3.43) can be written as

c(cr exp(cru) + cq) B < B”)
5/7/ ¢ + 6,2

+ ¢} exp(cru)uguy,

By
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= cg(exp(ciu) + cau + B+ ) + ¢7.
Applying the operator ., to the above equation gives

cc? exp(ciu)
6/,},/

Collecting the coefficients at exp(ciu) and rewriting the remaining terms we obtain

+ cugu, exp(ciu) = cgler exp cru + cg).

2
ccy

By
Since u, and u, are considered as independent, the first equation is true if and only if ¢ = 0.
In this case, it is clear that we obtain the equations (3.28).

Assume that the function « satisfies equation (3.41). Using (3.41) and u(u) = ¢ we transform
equation (3.18) into

3
+ cluguy = cpeq, cgeq = 0.

c "N\ 1
5/7,(2021; +c3)—c < + §,2> G + 2couguy, = F(cqu? + cau+ B+ 7).

Differentiating this equation with respect to u and denoting cou? + csu + 8 + v by z we obtain

2s B; = F'(2)(2c2u + c3). (3.48)

Now we should analyze equation (3.48). First, we suppose that co = ¢3 = 0. The function «
described by equation (3.41) vanishes. Equations (3.38) can be written as

/! !
2 _ 2
75/3 =ai, Cluy — C

Here a;, b; are arbitrary constants. The above equations imply

B (u) = V-2 ! L () = Ve !

\/clugD — 2a1Uy + 2a9 \/clug — 2bjuy + 2bo

=0.

ClUy — C -3
o

Integrating these equations we obtain distinct formulae which determine the functions 5 and ~.
Uniting these formulae in pairs we arrive at (3.29)—(3.34).

Furthermore, we must consider equation (3.48) if ca # 0, ¢3 = 0, and cac3 # 0. Taking the
logarithm of both sides of equation (3.48) leads to

c
In <202 5’7’) =1In F'(2) + In(2cou + ¢3).

To eliminate 3'(u,) and +'(u,) we differentiate this equation with respect to w,

1/

2¢9
F’ 7t

0= 2cou + ¢3) + (3.49)

2CQU +c3 .

Applying -2 7u to both sides of equation (3.49) we get (£"/F')" = 0, which means that F"'/F' = cy.
By virtue of this, equation (3.49) is written as

ca(2¢2u + ¢3)? + 2¢9 = 0.

Hence ¢o = 0. This contradicts cs # 0.
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It remains to discuss the case if ca = 0, c3 # 0. It is clear that we have F(z) = ¢4 from
equation (3.48). Here ¢4 is an arbitrary constant. Rewriting (3.18) with a = c3u, pu = ¢ we get

o (7" B" .
c3c—c¢ <7,2 + 5,2> =459 (3.50)

The equation

6// /
_CQ (B,Z — c;;ﬁ"’y’,
arises when we apply % to both the sides of equation (3.50).
Suppose that 8”7 = 0. Determining the function § as B(u,) = csus + cg, we transform

equation (3.50) into an ordinary differential equation

1

27 /
C3C — C —5 = C4Cxr7Y .
7/2

Thus, we find equations of forms (1.1), (1.2), and (1.7),
c

—_— v =cC vV = C5U u CcC3U
657,(uy)7 Ty 4, 5 x+7( y)+ 3U,

Upy =
where csc — 24" /4% = cye57/, c5 # 0. We use the transformations z/c5 — =, v/c3 — v. Then
we redenote cqcs by ca, v/cs by . To obtain (3.35) we apply the transformation c3z — = once
again. Finally, we redenote c/c3 by ai, ca/c3 by by.

Let us assume that $” # 0. This assumption enables us to rewrite equation (3.50) in the

form
1 ,B/I(U ))l
2 T !
—cC = ¢4 (Uy)-
7 (75 )
Since ug, u, are regarded as independent variables, the above equation is equivalent to the
system
1 ,8” !
—02@ <»3/2 = ¢5, cay' = cs. (3.51)

If ¢4 = 0 then c5 = 0, which yields ¢ = 0 or 3”/3? = —cg # 0. The last equation implies
1
Blug) = - In(ceuy + 7).

Substituting this function into equation (3.50) and using ¢4 = 0 we can define the function ~ as

1
V(uy) = —In(cguy + c9),
€]
and the following equations result in

Uy = c(CoUg + c7)(c8Uy + C9), Vgy = 0,
1 1
v = —In(ceuy + c7) + — In(cguy + c9) + cau,
Ce C8
where ccg +ccg+c3 = 0, c3 # 0. We use the transformations v/cs — v, x/c¢ — x, and y/cg — y.
Replacing 1/(es3c6) by a1, 1/(cses) by by, and ccges by a, we get (3.36). If ¢ = 0 then ¢5 = ¢4 = 0,
and we obtain (3.37).
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Let us turn back to the system (3.51). Given the assumption ¢4 # 0, this enables us to find
the function ~,

Cs
Y(uy) = —uy + cs.
C4

We also have an ordinary differential equation defining the function 3,

7

_CQW = 056/ + Cr.
Rewriting equation (3.50) by using these equations we get ¢z + ccs3 = 0 and, therefore,
cey cs
Upy = ——, V= —1Uy + O(Ug) + C3U, Vgy = C4,
Ty CSB,(UI) s Y 6( CC) 3 Ty 4

where —c?8"/B"? = c5B' + ¢, ¢y + cc3 = 0, and cqc5 # 0. Clearly, this case coincides with
equation (3.35) up to the permutation of z and y. |

Lemma 2. Assume that (3.21) is satisfied and p'(u) # 0. Then equations (1.1), (1.2), and (1.7)
take one of the following forms:

Uzy = (W) Uz Uy, Ugy = 0, v=ciInuy + 2 Inuy + a(u), (3.52)
where the functions p and o satisfy p'(c1 + c2) + p?(c1 +c2) + o’ +o/pu =0, ' #0;

Uzy = p(U)UZUy, Ugy = €XP, v = In(uzuy) + a(u), (3.53)

where p and o satisfy 2u’ + 2u2 + o’ + o' =expa, up to the point transformations u — 0(u),
v = k(v), x = &x, and y — ny, where & and n are arbitrary constants. Here ¢y and cy are
nonzero constants.

Proof. Condition (3.21) allows us to determine the functions 5 and v as
Bluz) = c1Inuy, Y(uy) = 2 Inuy,.

Using these equations (3.18) can be written in the form

1 1 pr(w)ugu, (11 Ugpl
/ T ally (1 1 " / xUy
1 (w)uguy <02 + Cl) + 1y o + . + o' (u)uguy + o (u),u(fLL)Tlc2

= F(c1Inug + coInuy + afu)). (3.54)

If we apply the operator % to both sides of equation (3.54), we obtain

1 1 wu, (11 u Fleq
' L4 A " ' v o .
o ( +Cl> +E0 (L  L)  ay + o) 2 = £

Comparing the above equation with equation (3.54) we notice that F' = ¢; F’. Similarly, diffe-
rentiating equation (3.54) with respect to u, we deduce that F' = coF’. These equations yield
F'=0or cy =cy.

If F/ =0, equation (3.54) takes the form

11 /11 !
Ug Uy (u’(u) ( + ) + ( + ) a4 28 “) =c.
(&) C1 C1C9 (&) C1 C1C9
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Since u, u,, and u, are regarded as independent variables and the functions p and o are functions
depending on u, we conclude that ¢ = 0. Consequently, we obtain the equations

uwyzw, Vgy = 0, v=c1Inu, + calnuy + a(u),
C1C2
where
(11 w11 v, dp
pl=—+—)+—|=—+—)+a"+—=0.
(&) C1 C1C9 (&) C1 C1C9

Finally, replacing u/cic2 by u we get equation (3.52).
If we replace co with ¢;, we determine F' = c3exp(v/c1). Equation (3.54) turns into

2 ugu,  2pPuzu o pugu
=4 2 + o uguy + ——5—2 = cguguy exp(a(u)/c1).
1 1 il
Thus, the following equations appear
1
Uy = ?M(u)u$uy, Ugy = c3exp(v/cy), v = c1 Inuguy, + ofu),
1
where
20 2p? o
R % +a" + —ZM = cgexp(a/c).
c1 o cf

First, we redenote u1/c? by g and /ey by a.. Second, use the transformation v — ¢;v and then the
shift v — v —Inec. Finally, replace a+1In ¢ by «, ¢3/c by c¢1, and obtain the equations (3.53). W

Lemma 3. Assume that condition (3.24) is satisfied but (3.20) and (3.21) are not. Then
equations (1.1), (1.2), and (1.7) take one of the following forms:

Ugy = U, Vgy = U, V= ClUy + CUy + C3U; (3.55)

Uzy = p(w)(uy + b)ug, Ugy = €XP, v =In(uy +b) +Inu, + a(u), (3.56)
where the functions p and o satisfy 2u’ + 2u® + o’ +o'p = expa, 2u® + ' + o'y = exp a;

Uzy = p(w)(Uy + b) g, Uzy = 0, v =coIn(uy + b) + 1 Inuy + a(u), (3.57)
where p and o satisfy (i’ + p?)(c1 +c2) + o+’ =0, c1p + p2(er + c2) + o' = 0;

Ugy = p(U)Uy, Vgy = 0, v =uy — Inu, + au), (3.58)
where i and o satisfy o +p' =0, p® — ' + o' =0, up to the point transformations u — 0(u),

v — k), T — & and y — ny, where & and n are arbitrary constants. Here c3 is an arbitrary
constant, c1, co, and b are nonzero constants.

Proof. Condition (3.24) implies the following three possibilities for functions 5 and ~

V(uy) = cruy + ez, Buz) = csue + c4, (3.59)
1 1

7(uy) = T In(aruy +b1),  Blug) = 5 In(agu, + ba), (3.60)
1

V(uy) = cruy + ez, B(uz) = —— In(au, + b). (3.61)

C3
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According to (3.59), equation (3.18) can be written as

Nl(u)uy + ' (u)uy T a”(u)umuy + o (u)pu(w)

C3 C1 c1C3

= F(c1uy + cauy + o(u)). (3.62)

Applying the operators % and % to both sides of (3.62) gives

' '
— 4 a"uy = Fles, Z 4 duy =Fle.
C1 C3

Eliminating F’ from the above equations we obtain o”(ciu, — csuy) = 0. Clearly, we have

o’ = 0, hence a = cou + ¢4. Furthermore, by using any of the above equations we obtain

F’" = i/ /ecie3. Consequently,
c

F(z) = éz + c7, Z = Cruy + c3uy + ofu).

The equation

" " /
nu H Uz Cofh /
Y+ + =Fley
€3 1 c1€3

arises after the differentiation of equation (3.62) with respect to u. Substituting F' = y'/cic3
into this equation yields u(u) = csu + cg. Therefore, the equation (3.62) is equivalent to
Co2Cgq C5Cy

_— = + c7.
C1C3 C1C3

Thus, we find that equations (1.1), (1.2), and the substitution (1.7) have the forms

csU + Cg cs
Ugy = ——, VUgy = — VU + C7, V = CllUy + C3Ugz + CoU + C4.
C1C3 C1C3
Using the transformations u + c¢g/c5 — cu, v + cicscr/cs — cv and replacing ¢5/c¢; by c3 we
get (3.55).
Let us discuss the case when the functions v and § are of form (3.60). It turns out that
equation (3.18) takes the form

2 6%02
asuy + ba)(aruy +b1) — p
a1a9

asUy + by c162
—copuy e — 22 ( (a1uy + b1)(agug + be)

az a1a2
, a1y + by

1 /
—Clh Uy——— + O UpUy +
al a

cre
1@22 (agug + b2)(aruy + b1)

1 1
=F <_c In(aiuy +b1) — P In(aguy + b2) + O‘(“)) : (3.63)
1 2

Applying the operator % to both sides of equation (3.63) leads to

2
aiuy + by cyco
7 A1ty 2C1
— K (

c1C
—copuy — P —=2(aruy + by) — c1pu ayuy + by)
a1 ai
C1C9 ’ 1 a9
+ " uy + o/ u——=(aru, +b :F(—>.
Y a ay a1y +b1) c2 ) agug + by

The last equation and equation (3.63) imply
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Similarly, differentiating equation (3.63) with respect to u, we obtain
1 ba b b
P <_> P m et b
a9 al al

To eliminate u, and u, we apply the operators % and % to the two above equations, respec-

tively. We get

F// <_1 _ F/) — 07 F// <_]‘ _ F/> — 07
C2 C1

therefore F”(cy — ¢1) = 0.
Assuming that ¢; = ¢co = ¢ we define I as follows

1
F(z) = — exp(—cz + ¢7) + cs.

Substituting the above function F' into equation (3.63) we get

b 3 b
—pt'uye <uw + 2) — 2 (agug + bo)(aruy + by) — pluge <uy + 1) + " uguy
as a1a9 ai
2 1
+ o/ua - (aguy + b2)(aruy +b1) = —E(agugC + b2)(a1uy + b1) exp(—ca + c7) + cs.
102

Since u, uz, and u, are considered as independent variables, the above equation is equivalent to
the following system

— 2 — 2023 + o + ' puc® = U exp(—ca + ¢7), (3.64a)
3 b b 1
— 25 by — e 4 o et = — = aghy exp(—ca + 1), (3.64Db)
ai ai aj c
b b b 1
— e — 222 4 o p® 2 = ——aiby exp(—ca + c¢7), (3.64c)
ag ag a9 c
bib b1b 1
—22A 2 P = by exp(—ca + c7) + cs. (3.64d)
aipaz ajaz c

Note that (b1,b2) # (0,0). Otherwise, condition (3.21) is true, which contradicts the assumption
of the lemma. If bo = 0, b; # 0 then ¢g = 0 and

u)c? 1
Upy = 'u(a)(aluy + b1)ug, Upy = — exp(—cv + ¢7),
1
1 1
v=——In(auy + b1) — — In(asu,) + o(u), (3.65)
c c

where the functions p and « satisfy the following equations

a1a2

—2cp’ —2u2 + o + o uc? = — exp(—ca + c7),

a1a2

—2pu2c® — ple + o' pc® = — exp(—ca + c7).

Applying the transformation —cv + ¢; — v and redenoting —ca + ¢7 + In(ajaz) by a, uc? by u
and by /a; by b, we transform (3.1) into (3.56). It is not hard to prove that system (3.64) has
no solutions if b1by # 0.
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Let us suppose that F”/ = 0, hence F(z) = cz + p, where ¢ and p are arbitrary constants. In
this case equation (3.63) is represented as

b b b b
—CQ/,L/Uy (ux + 2) — /,L2clc§ (um + 2) <uy + 1> — c1,u’ugIj <uy + 1> + o//uxuy
as as al ai
b b b b
— e (u;c + 2) (uy + 1) + o/ perc (uq; + 2) (uy + 1)
a9 al a9 al

1 1
=c (—c In(aiuy +b1) — P In(aguy + b2) + a(u)) +p
1 2

It is clear that the coefficients at In(aju, + b1) and In(agu, + ba) are equal to zero, i.e. ¢ = 0.
Since u, u;, and u, are regarded as independent variables, the above equation is equivalent to
the system

/ 2 2 / 22 " /
—coptt — piciey — e — picjea + o + o' pcier = 0,

b1 b b
/ 2 92 1 / 1
— — pcjea— + a'pereca— =0,
ay ay a

2 ol
—HTC1C— — C1k
aj 1

192 2 ob2 22 b2 / 2
—Copt — — percy— — picjea— + o' pciea— =0,
as ai a1 a2

2.2 2 2 / by
—pScicy — ptcica + o pcica =Dp.
a1a2

Note that (by,b2) # (0,0). Otherwise, condition (3.21) is satisfied, which contradicts the as-
sumption of the lemma. If by = 0, by # 0 then p = 0 and

C1C2
Upy = ,u(u)a—l(aluy + b1)uyg, Vgy = 0,

1 1
v=——In(a1uy + b1) — — In(agu,) + a(u),
C1 (6]

where the functions p and « satisfy the equations

1 (e1 + e2) + pPerca(er + e2) — o — o' peres = 0,

cip + ,u20102(01 +co) — o' peyes = 0.

We replace cicop by p, —cicoa+coInag +c¢q Inag by a. Using the transformation v — —v/(c1c2)
and redenoting by /a; by b we transform the above equations into (3.57). If b1be # 0 then the
last system has no solutions.

Let us suppose that the functions v and § are given by (3.61). We rewrite equation (3.18)
using (3.61),

2
c c 1 c
——Q,u’uy(aux +b) + —2(aug + b) + —p'uy + o uguy + o' plau, + b) <—2 >
a acq Ccl c1a

=F (cluy — ;ln(auz +b) + a(u)) . (3.66)

Applying the operators % and % to both sides of equation (3.66) we obtain

2
/ C3 2 L, " 2 / 1 a
_ N PNy ) ) 3.67
Coptty + 2 oy — ol ( CQ> P (3.67)
—c—Qu’(aum +b) +"uy = Fley. (3.68)
a
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If F/ =0 then we obviously get F' = ¢3 and
—cop' + o =0, casp? + ' — cod =0, w'b=0.

We analyze equation (3.66) based on these equations and find that cg3 = 0. It allows us to
determine equations (1.1), (1.2), and (1.7) as follows

C2
Ugy = _aﬂ(u)u$7 Vay = 0, U= Gy — g In(aug) + a(u),

where the functions p and « satisfy
" _ / 2 2 / r
o’ =cop, copu” + W —coa' = 0.

Point transformations enable us to represent the above equations in form (3.58).
Assuming that F’ # 0 we can eliminate F” from equations (3.67) and (3.68)

9 faugz +b\ , c% auy +b\ o c2 fauy+bY\ , auz + b ”
c5 Wy — —= - —= W —ca Uy
a cl a cl a a

2 "
c aug + b c «
+ 2a'p ( d ) = ——Q(a% + b)) 4+ —uy.
c1a C1

Recall that variables u, u,, and u, are considered as independent. Hence, the above equation is
equivalent to the system

e’ — e =0, (3.69a)
3 2 "
S P B YV PV Yy (3.69b)
c1 c1 c1 C1 1
2b b
92— ea =0, (3.69¢)
a a
3b 2 b
2220 2y,2 <o, (3.69d)
C1a C1 a

If b = 0, we transform equation (3.66) into

2
c 1 c 1
—cop ugty + ﬁ;ﬁuz + au'ux + " uguy, — C—jo/,uux =F <cluy P In(auy) + a(u)> )

Differentiating this equation with respect to u, we obtain

2
c 1 Co 1 1
72#2 _ CQM/"U«y + *,U«I + o/'uy . 706/” N A
C1 C1 €1 C2  Ug

One can notice that these two equations imply F' + F'/ca = 0 or F(z) = c3exp(—c2z). Conse-
quently, we get

2
c 1 c
—coptuguy + C—Z;ﬂuz + C—,u'uz + " uguy — C—zo/luux = c3 exp(—caciuy)au, exp(a).
1 1 1
This equation is not realized because of the given assumptions cs # 0 and a # 0.
Now, it remains only to consider the case when b # 0. System (3.69) takes the form
cop’ —a” =0, —cg’uz + cgo/p =a’, —cop® + o/ =0.

These equations imply that p/ = 0, which contradicts the given assumptions of the lemma. W
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Lemma 4. Suppose that condition (3.22) holds but (3.20), (3.21), and (3.24) do not. Then
equations (1.1), (1.2), and (1.7) take one of the following forms:

gy = MW S— v = lnug + 7(uy) + a(w), (3.70)

V' (uy)
where c3 + 3—,,; +esYuy =0, o + p' +eap® =0, and czp® + p' + p? + o’ = 0;

B Uy B
Ugy = @07y’ Ugy = €Xp U,
v =Inu; +v(uy) — 2In(au + b) + In(—cs), (3.71)

where cg + %,/; + cay'uy = 57y expy, cs+1—3a =0, and ¢4 + 202 —a = 0, up to the point
transformations u — 0(u), v — k(v), © — &x, and y — ny, where & and n are arbitrary
constants. Here c3, ¢4 are arbitrary constants, cs # 0, and (a,b) # (0,0).

Proof. According to (3.22), the function f is of the form 8 = ¢;Ilnu, + co. Without loss of
generality, we may set 8 = c¢1 Inu,. Substituting 8 into equation (3.18) we obtain

7

/ 2 1
QO Uz Uy lg SR o/’uxuy + 'u/ Uz + Uaztly \ _ Fla+ 8+7). (3.72)
ay ay \"* «a 04 c1

Applying the operator 8i to both sides of (3.72) leads to

Uy

o' o 1 " p( 1y €1

- T W) o (), 3.73
017/ Cl,y/ 7/2 c1 T atuy +p 'Y/ + c1 Uy ( )
From equations (3.72) and (3.73) it follows that F' = F'cy/u,, hence F(z) = capexp(z/c1). By
substituting F' into equation (3.72) we get

o 2 " 1 1 U
Uy < p_ A (7 - ) + o’ uy + 1/ (/ + y)) = coug exp(y/c1) exp(a/cr).

ay  ayY \1? a v a

This equation can be written in the form

,“2 5 "}//,

pep+o'p+ p H G + (&1 + W)Y uy = cac1y exp(y/c1) exp(a/cr).

Having the fixed value of u we can determine v as a solution of the ordinary differential equation

1

-
c3 + +2 +c4y'uy = cre5y exp(v/ca).

Moreover, based on this equation we get
12
O/,U‘i'?+Cl,ul+03,uz+’YUy(ClOl”+M,‘|‘C4M2)
1
— 17 exp(y/c1)(esp® + ez exp(a/cr)) = 0.

Note that if u, = kexp(y/c1) then v = ¢ In(u, /) and (y'uy)" = 0. Since the last equation con-
tradicts the assumption of the lemma, we obtain that u, and exp(y/c;) are linearly independent
and that is why

2
1o+ 4 ey =0, esp® + egexp(a/er) = 0, csp? + e + % +a'p=0.
1
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In order to find equations (1.1), (1.2), and (1.7) we first set ¢5 = 0, hence c2 = 0 and

L))
B (ux)y (uy)

where the functions 8 and ~ are solutions of the ordinary differential equations

Vgy = 0, V= B(Um) + fY(uy) + a(“)?

1
1 Y
B=— a+_g+auy=0
Uy Y
and the functions p and « satisfy the equations
2

1o 4+ 4 ey =0, csp? + ey + 'Z— +a'u=0.
1

We use the transformation v — cjv. Next, we redenote a/c; by a, v/c1 by v, and u/c? by p.
Finally, after replacing csc? by ¢4 and cic3 by c3, (3.70) is obtained.
If ¢5 # 0 then we get

Ugy = 5’(125:’)(%)7 Ugy = c2exp(v/cy), v = B(ug) +v(uy) + au),

where the functions 8 and v are the solutions of the ordinary differential equations

c1 "

g=—, €3+ % + c47'uy = c1e57 exp(y/c1),

€T

and the functions a and p are given by the equations

2 1
a =2cyIn(—2¢1) — 2¢1 In <—1 /—C—Qﬂu + c6> ,
3 Cs c1

C2 —261

n= - 3
2/ +1
Cs —3 _%i <630011 ) u~+ c6
2 (c3c1 +1 2 9 czcr +1
2= -2 === =0.
9 ( a > s\T @ )T

After point transformations we get (3.71). [

Lemma 5. Suppose that condition (3.25) holds but (3.20)—~(3.24) do not. Then equations (1.1),
(1.2), and (1.7) take one of the following forms:

1
Upy = ———F————, VUzy = 0, v = B(uz) + v(uy), 3.74
Y UB,(UI)’Y,(U;L/) Yy ( ) ( y) ( )
where % =uf + 1, 3—,” = uyy —ci;
aly) bay = XDV, 0 = () + () + (), (3.75)

U B )y ()

_1

where u, + Flug) — exp(ﬁ), Uy + % =expr, o = expa, and b = (exp 04)/0/;

Upy = €XP, v = B(uz) +v(uy) + a(u), (3.76)
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where —cuy, + m =expf, —cuy + m =expy, &/pu+2p(c+1) =expa, o = 2c% expa,

o
Il
|
N[
|
N

f(w)

Uzy = B un)y (uy)’ Ugy = €xpv + exp(—v), v = Bluz) +v(uy) + au), (3.77)

where Ayexp B + Brexp(—f) = ug, Asexpy + Boexp(—y) = uy, o = %(7‘3%’1(;? 72"111’4‘2),

Uzy = €xXpv + exp(—2v), v = B(uz) +v(uy) + a(u), (3.78)

A1Ag 2 Bi1B2

where Ay exp B+ By exp(—28) = ug, Az expy+Bzexp(—27) = uy, o/ = 2 (48Xpa 1 eXp(_Qa)),

—2u% + o'y — % (Z’ir;g + exjg(lzgia)) = 0, up to the point transformations u — 0(u), v — K(v),

x — &x, and y — ny, where & and n are arbitrary constants. Here Ay, As, Bi, and By are
nonzero constants.

Proof. Considering that u, and u, are independent variables, equation (3.25) yields

ey )
B// ,}///
=) ()

Integrating these equations we obtain

B// ,y//
5 = cugB' + ci, — = cuyy + co. (3.79)
B gl
According to (3.79), equation (3.18) is rewritten in the form
1 /o 2 c 2 /
7 (f - %(01 + cuyy +c2) + ,u’uy) + Uy <—f;/ +auy + /;/> =F(a+F+7).(3.80)

Having fixed values of u and u, we can define that F(5 + c3) = cqus + ¢5/8’. Without loss of
generality, we redenote 8 + c3 by (5, therefore

F(B) = cquy + % (3.81)

Applying the operator % to both sides of equation (3.81) and using (3.79) we obtain

c4 — C1C5
g

We differentiate this equation with respect to ug,

F'(B) = —ccsuy +

ces + ci(eq — cic5)

B .
The above three equations allow us to establish that the function F' satisfies the ordinary
differential equation

F"(B) = —c(cq — cr1¢5)ug —

F" = c7F' + cgF. (3.82)
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Equation (3.82) possesses two families of solutions
F(v) = Ay exp(o1v) + By exp(o2v), o1 # 02,
and
F(v) = (A2 + Bav) exp(owv).

Setting definite values of the constants A;, B;, where ¢ = 1,2, we obtain that the function F
can take only one of the following forms

F(v) =0, (3.83)
Fv) =1, (3.84)
F(v) =w, (3.85)
F(v) =vexpu, (3.86)
F(v) = expw, (3.87)
F(v) =expv +1, (3.88)
F(v) = expv + exp(ov). (3.89)
From equation (3.80) by setting different values of u and u, we obtain a set of equations
Qg + /ﬁi = F (B(ug) + 7). (3.90)
Here o, B;, and 7; are constants, i = 1,2,...,n. Thus, we will focus on (3.90).

Let us assume that (o, 5;) are linearly dependent vectors. This means that a set of numbers p;
satisfying

(al7/82) :/,Li(al,ﬁl), H1 = 17
exists. Using this equation we rewrite (3.90) as

B
B (uz)

Now, we will deal with equations (3.83)—(3.89).
We begin with (3.83). In this case we have

i (aluz + ) =F(B+ ). (3.91)

11 <a1u1 + 5/@%) =0 (3.92)

from the equation (3.91). Suppose that a; = 1 = 0. In equation (3.80), we find
f —cp® 4+ a"uyy =0, o — p?(cr + co + cuyy') + pluyy = 0. (3.93)

If o’ = 0 then o = eu + §, hence from (3.93) we have

1 € c1+c2
u) = — y — 0
uiw) cu+ K cu+/1+(cu+/<)2
Clearly, the last equation requires ¢ = 0 and ¢ = —c;. Thus, we determine equations (1.1),

(1.2), and (1.7) as follows

Vgy = 0, V= B(ux) + 'V(Uy) + a(“)?
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where

1 /8// ,Y//
u(u) = a(u) =0, @ = cuz8 +c1, W = cuyy — 1.

Ccu+k
We replace 8 by af3, v by avy. Take the constant a so that a’c — 1. Using the transformations
u+ K/c— u, v —3J — av and redenoting ac; — ¢; obtain equation (3.74).
Now, assume that o’ # 0. The equation

2 !
= 2t
arises from (3.93). Since u and u, are regarded as independent variables, the last equation leads
to uyy (uy) = Kk, where £ is a constant. This contradicts the assumption of the lemma.
Consider the case where a1 31 # 0. We have the equation 8'(u;) = —f81/(a1u;) which results
from (3.92), and it contradicts the assumptions of the lemma.
Let us discuss the case where F' is determined by (3.84). Rewriting (3.91) we have

B\
: (0‘1“”” " H(uz)) -

This equation must be true for every ¢ = 1,2, .... This requirement implies that u; = 1, a; = a,
and 3; = 31 for every i. Taking this into account we define 3’ as follows:
/ 51
Up) = ———. 3.94

Rewriting (3.79) by using (3.94) we see that this case is not realized.
Now, we assume that F' is described by (3.85). Equations (3.90), (3.91) are presented in the
forms

pr , A1 _ .
Qg + m = B(u:v) + 71, 123 <041ua: + /B’(ux)) = ﬁ(uw) + Y-

Consequently,
Bluz)(pi — 1) +y1p — i = 0.
It is clear that u; = 1, v; = 1. Hence, a; = a1, B; = 51 for every i. So we have

A1

6 - /B(u;t) — 0 Uy +’Vl.

Trying to simplify (3.80) by using this equation gives a contradiction to the assumption of the
lemma.
Concentrate on the case when F' satisfies (3.86). We can rewrite equations (3.90), (3.91) as

b1
B (uz)

Comparing these equations we conclude that

el

B (uz)

crte + =P = B4y epBA), (alux i ) — (84 ) exp(B + 72).

(Blexpyi — miexpy1) + viexpyi — piv1expyi) exp = 0.

Recall that 5 depends on the variable u,, while the remaining terms of the above equations are
constants. Hence, we have

expyi — piexpy =0, Vi expy; — piv1expyr = 0.
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From these equations we obtain ~; exp7y; — y1 expy; = 0, hence v; = 1 for all i. By (3.90) we
determine that a(u) 4+ v(uy) = 71, where ; is an arbitrary constant. This equation contradicts

Vuy 7 0.
Let the function F' be defined by (3.87). From (3.90) we obtain
QU + A1 =exp(B +71). (3.95)
B (uz)

Note that 31 # 0, otherwise (3'u,)’ = 0. Redenoting 8 + 1 by 8 we rewrite equation (3.95) in
the form

el
= ) 3.96
otie + 0 exp 3 (3.96)
From equations (3.79) and (3.96) we find that ¢ = —a;1/f81, c1 = —1 — ¢. Now, we rewrite

equation (3.80) based on equation (3.96)

op / ) T o
expﬁ<fy,—fy,(c1+cuy'y +02)+Nuy + Uy —74-04 Uy"f'?
ap (ap P

“ - (

5 c1 + cuyy + 02) + u’uy) = exp(a + ) exp .

Since (f'uz)" # 0, exp 8 and u, are linearly independent, the above equation is equivalent to
the system

o 2

~ IM B % 1+ cuyy' + ) + p'uy = exp(a+v)p,

_a <O/'u’ — 'u’—2(01 + cu 7’+62) + p'u ) + <_cu2 + o"uy + Nl) =0
631 oy Y Y ' G

Hence, we get

oy = ﬁ(u"g:)(u) vmy = expr, v = Blua) + () + a(u), (3.97)
where

a1ux+%=eXpﬂ, g,/; = cuy ' + e, a=-1-c cf1 = —ax,

Z,/; = cuyy' + e, Oy - 'LL?(CU@/Y, + e+ e) + pluy = exp(a +7)B,

—aq exp(a+7) + auy + MI;,C'UJZ =0.

Now, consider case (3.88). Equations (3.90) and (3.91) can be rewritten in the forms

B1

B (uz)

b1

5/(1%)
It is not hard to show that

arug + =exp(f+7) +1, i (oqum + > =exp(f+y)+ 1.

exp B (piexpyr —expy;) +pg — 1 =0.

The dependence of 8 only on the variable wu, implies that p; = 1 and v; = ~; for every ¢. This
gives a(u) + y(uy) = 71, where 71 is a constant, which contradicts the assumption 7, # 0.
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It remains to consider the case when F' is given by (3.89) to complete the analysis in the
case when («;, 3;) are linearly dependent vectors. Using (3.89) we transform equations (3.90)
and (3.91) into

g + 5,’?;) = exp(B + 1) +exp(a(B+ 1)),
m(awm+ﬁfi)>zemﬁﬂ+vﬁ+eMWﬂ5+%D-

Consequently, we get

exp 3 (i expy1 — expy;) + exp(o8) (s exp(oy1) — exp(0;)) = 0.

Recall that o # 1. Collecting coefficients at exp 5 and exp(c/3) yields

[ €XP Y1 = €XDP Vi, pi exp(oy1) = exp(oy;).

o—1

The above equations provide p; exp(oy1)(p; ~ — 1) = 0, hence p; = 1. It follows that v; = 71
for every i. By (3.90) we find that a(u) + y(uy) = 1. This equation contradicts ~,, # 0.

Now, we must deal with the case when «y, 5;, i = 1,2, satisfying a8 — S # 0 exist.
Setting definite values of u, u, in (3.80) we obtain the system

5! B2
x =F T ) T =F T .
e gy~ P ), ezt g = L) )
Because of the given assumption (ug8')y, # 0 we get
1
FF(B+m) — kP (B+72) =us,  K3F(B+7) = KaF (B+72) = 7 (3.98)
We use
oy = Ba iy — A s = g s — %!
12— aafh’ a1f2— aafht’ Brag— Baay’ Braz— Baar

Let us analyze equation (3.98) taking into account conditions (3.83)—(3.89).

Consider the case when F' is given by (3.83). It is not hard to show that equation (3.98)
implies u, = 0. Thus, this case is not realized. Next, based on (3.84) we obtain that u, is
a constant. So it is also not possible.

If (3.85) is true then system (3.98) can be written as follows

k1(B+ 1) = K2(B +2) = Ua, "03(5+’Yl)—'€4(5+72):;,.

It is not hard to verify that
B'(k1—r2) =1, Bk — Ka) +71K3 — Y2ka = K1 — K2.

Note that we used the properties kK1 — ko # 0, K1 — ko # 0, which result from oy 82 — Srag # 0.
Further, since k3 — k4 # 0, [ is a constant. This contradicts 3,, # 0.
Let us discuss the case when the function F' is defined by (3.86). Rewriting (3.98) we get

k1(B+m) exp(B + 1) — k2(B + 72) exp(B + 72) = Ua,

k3(B 4+ 1) exp(B + 71) — ka(B + 72) exp(B + 12) = @1”
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Setting A = k1 expy) — kaexpye and B = K171 exXpy1 — Ko7y €Xpy2 we obtain
u, = ABexp 8+ Bexp 5. (3.99)

It is not difficult to determine that equations (3.98), (3.99) lead to

o 2 '_e 2

(A+B) <’y;u — %(Cl‘i‘CUyry/—f—Cz) —+ ,U,/u9> —+ B<O//uy + Mf}//”) — (O[—{—f}/) exp(a —+ ’Y)7
o 2 I _ ¢ 2

A <Py;u, - %(01 + cuyy + ¢2) + pluy + o"uy + Mﬁy,”) = exp(a + 7).

Rewriting (3.79) by using (3.99) we find that ¢ = 1, ¢; = —2. Thus, we obtain the equations

S C)
w B (uz)y (uy) 7

herewith

Upy = VEXp, v =oa(u)+ B(ug) + v(uy), (3.100)

o 2 /2
(A+B) <7,Iu - %(uy'y’ —24c)+ ;/uy> + B(o//uy + My,”) = (a+ ) expla+),

o'p W — p?
A (,y, - 7(%7/ =2+ o) + pluy + "y + )~ exp(a + ),
B// ,y//
uy, = ABexp S+ Bexp 3, W:uxﬁ’—Q,W:uva—cQ.

Note that case (3.87) yields the equations (3.97).
Next, assume that the function F is defined by (3.88). Hence, we write (3.98) as

k1 (exp(B+71) +1) — k2 (exp(B +72) + 1) = ug,

k3 (exp(B+71) + 1) — ke (exp(B+2) +1) = [;L”

Eliminating 3’ from the last equation we get
exp B(k3expy1 — kg expy2 — K1 expy1 + ke exp ) + kg — kg = 0.

It is easy to show from this equation that 3 is a constant. This contradicts 3, # 0.
Assuming that (3.89) holds, we can write (3.98) as

exp B(k1expy1 — ka2 expye) + exp(o3) (k1 exp(oy1) — Kz exp(072)) = s,

1
exp B(k3expy1 — kaexpy2) + exp(of) (ks exp(oy1) — kaexp(oyr)) = 7 (3.101)
And further, from (3.79) based on (3.101) we obtain
(14 c+ c1)(k1expy — ke expy2) exp 3
+ (02 +c+ 010) (/11 exp(o71) — Ka exp(a’yg)) expof3 = 0. (3.102)

From (3.80) using (3.101) again we get

O/ 2
(K1 expy1 — K2 expy2) <7fL - %(Cuyv’ +c1+c)

/ :u, — Cﬂ2 "
+uuy—|—T+a uy | =exp(a+7), (3.103)
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o' /LQ ' /
(K1 exp o1 — kg €Xp o7y2) (a (’y’ — —(cuyy +cr+e2) +u uy>
@’ 7
+———+a uy> =expo(a+ 7). (3.104)

Note that if k1 exp(oy1) — kaexp(oy2) = 0 then equations (3.103) and (3.104) imply that
expo(a + ) = 0. Consequently, the equalities 1 + ¢+ ¢; = 0 and 02 + c10 + ¢ = 0 arise
from equation (3.102). The solution of the last equation is found as o = ¢, where ¢ = —1 — ¢;.
Thus, denoting A = k1 exp~y1 — ke expy2, B = k1 exp(o7y1) — kg exp(o7y2) we obtain

pi(u)

Ugy = = VUgy = €Xp U + exp(ov), v=ca(u)+ B(uz) + v(uy), 3.105

Ty ﬁl(ux)ﬁ’/(uy) xy p p( ) ( ) ﬁ( :Jc) '7( y) ( )

where
B// ,y//
AexpﬁqLBeXp(oﬂ):ux, @:O'uzﬁlf]_—()'7 W:Uuy7/+627
o'y p 1

A <7/ - V(Juy'y' +co—1) + puy + 5 + a"uy | = exp(a+7),

O[/ 2 /
B <a (’yfl — %(auy’y' + ey — a) + u’uy> + % + o/’uy> =expo(a+ 7).

Let us discuss the results obtained. We should analyze the equations and conditions for the
parameters found in cases (3.83)—(3.89) and use the fact that functions (3.14) and (3.17) are
invariant under the permutation of 5(u;) and y(uy).

In case (3.87) we obtained (3.97). By interchanging 3(u,) and y(u,) we get

7
Uy + rﬁ; = exp, b = cuyy + c2, co=—1—c, cfy = —as,
o 2
G gl et o)+ plug = expla+ 5)
I 2
—azexpla+ B) +o’uy + = — 0, (3.106)

6/

We substitute ~ satisfying the conditions for the parameters listed for equation (3.106) in-
to (3.97). At the same time we substitute § satisfying the conditions for the parameters listed
for equation (3.97) into (3.106). As a result, we obtain the system

1
—(expy — aguy) (o/p + 20 (1 + ¢)) + p'uy = exp(a +7) B,

B2

—arexp(a+7) + o"uy + (1 — c,uQ) é(expfy — anuy) = 0,
5208 — ) (@ + 2071+ 6)) + s = expla+ B)a
—azexp(a+ ) + oug + (1 — cu2)ﬁ11(e><p/6’ — aqug) = 0.

Since exp~y and uy, exp S and u, are independent, equations (1.1), (1.2), and (1.7) take the
following forms:

1(w)

Ugy = m, Ugy = €XP UV, v=a(u) + B(ug) + ’Y(uy),
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where a and [ are solutions of the ordinary differential equations

aq a2
— _ =c,

B B2
Uy + — = expf, Uy + ——— = exp 7, —_—— ==
ST P Y (uy) A1 B

B

and the functions p and « satisfy
o p+2u*(c+1) = fifeexpa,  chifaexpa+p —cep? =0, o' +c(y —cp?) =0,

Analyzing the last system we obtain cases (3.75), (3.76). It is easy to verify that case (3.86) is
not possible.
Based on (3.89) we get (3.105). Interchanging ((u,) and ~y(uy) implies

7

Asexpy + Baexp oy = uy, W = ouyy + ca, cg=—-1—c¢

A

2o (e — 1) + 1) + Aguy (—op® + i + ") = exp(a + B), (3.107)
/8/

Bo

i (o(e/p—pP(ca — 0)) + 1) +ueBs (o(—op® + 1) + ) = expo(a + B).

Similarly, we substitute (3 satisfying the conditions for the parameters listed for equation (3.105)
into (3.107) and obtain
(Aexp B + Boexpof)As(a'u+ p?(2 + o) + 1)
+ (Aexp B+ Bexpof)As(i — op?® 4 ") = exp(a + ),
(Aexp B+ Boexp(08)) Bz (o(o/p+ p*(1 4 20) + 41'))
+ (Aexp B+ BexpoB) By (o(p — op?) + ) = expo(a + B).
Taking into account the fact that exp 3, exp o are independent, we get
AAy (p+ p*(2+0) + 20 —op® + ") = expa,
oo p+o(oc+ )+ (e + 1) +a”" =0,
BB, (0% i+ 20" + 201 + o) = exp(oa).

Solving the above system we obtain cases (3.77) and (3.78). [

3.2 Case ¢ =clnu, + q(u, uy)
We have the following statement in this case.

Lemma 6. Suppose that (3.15) is satisfied. Then equations (1.1), (1.2), and (1.7) take the
following forms

ey = p(u) — QU(U,Uy)ux’ ey = C2expU, v = Inug + q(u,uy), (3.108)

Qu,, (ua uy)

where

S (N B %quyuy -2 UUy) + La— +/~Lluy = C2€Xpyg, Quuy # 0,

qu, Uy qu, qu, qu,

up to the point transformations uw — 0(u), v — k(v), * — &z, and y — ny, where £ and n are
arbitrary constants.
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Proof. Substituting function (3.15) into equation (3.6) we obtain

C
A(u, Uy)quy (u, Uy) — qu(u, Uy)quy (u, uy)uy + cqu(u, uy) = B(u,uy)—.
T

Recall that u,, u, are considered as independent variables. Hence, the above equation is equiv-
alent to the system

Bc_

” ().

Aqu, — Qulu,ty + cqu = p(u),

From these equations we find the functions A and B,

B— KUy A= ©+ Quu, Uy — CQu‘
c’ Qu,

By using these equations in each of equations (3.3), (3.4) we determine the function f of equa-
tion (1.1) as

leuchU
CQu,

€T

Substituting the functions (3.15) and f into (3.7) we have

—c —c ! "u
Uy HZCu (£ K 5 ququyuy—chuuy y T BTy = F(clnu, + q).
Clu, c Qu, Qu,, Qu, Qu, c

It is not difficult to prove by differentiating this equation with respect to wu, that cF’ = F.
Consequently, F'(z) = c2 exp(z/c). Here cg is an arbitrary constant. Thus, equations (1.1), (1.2),
and (1.7) are of the forms

w(u) — cqy(u, u

where

—c —c ! "u
u B _ H 3 Qu Quyuy _ QCq’UXLLy + L _ Cun + u = Cy exp(q/c)
Cqu,, c Qu, Qu, Qu, Qu, c

Finally, the transformations v — cv, ¢ — ¢q, pp — ¢, and ca/c — c3 transform these equations
into (3.108). [ |

3.3 Case ¢ = a(u) + k(u) Inu, + p(u) Inu,
By substituting (3.16) into (3.6) we obtain

MW%%%Mwm%+wwm%+dwmw%?
) £

= (B(u,uy) — (k'(u) Inuy + g/ (w) Inuy + o' (v))ug -

Y

which can be written as

B(u,uyz)k(u)

Uy

+ (K (u) Inug + o' () (p(w) — £(u))



The Klein—Gordon Equation and Differential Substitutions 35

_ ‘W — () Iy (u(u) — k(u)).

Since u, and u, are regarded as independent variables, the above equation is equivalent to the
system
B(u, ug)k(u)
Uy
A(U, Uy)ﬂ(“)

Uy

+ (K'(u) Inug + o/ (u)) (p(u) — £(u) = A(u),

— ) Iy (ja(ar) — () = Au).

The formulae
B— A= (= k) (K Inug + o)) uy s A+ (p — k) Inuy) uy
K 7

thereby immediately follow. Substituting A and B into equations (3.3) and (3.4) we find f,

A — kg Inuy — pk g — pa!
fo ATy K:f” 2l TP ey, (3.109)

We apply the operator % to both sides of equation (3.5) and use the equations obtained. So

we get F'k = F, while applying % implies F'y = F. This requires pu(u) = k(u) = ¢. Thus ¢
takes the form ¢ = a(u)+cln(ugzu,), and case (3.16) is reduced to case (3.14) considered earlier.
Theorem 1 follows from Lemmas 1-6.

4 Differential substitutions of the form u = ¥ (v, vz, vy)

In this section we consider the problem which is, in a sense, inverse to the original problem. The
aim is to describe equations of form (1.2) which are transformed into equations of form (1.1) by
differential substitutions (1.8).

Theorem 2. Suppose that equation (1.2) is transformed into equation (1.1) by differential sub-
stitution (1.8). Then equations (1.2), (1.1) and substitution (1.8) take one of the following
forms:

Uy =V, Ugy = U, U = ClUg + CoUy + C3U;
Vgy = 0, Ugy = 0, u = [(vg) + v(vy) + c3v;
/
p'(v)vy
Vgy = 0, Ugy = exp(u)uy, u=1In <—> ,
xy zy Y p(vy) + p(v)

where p'(v) = exp(cv);

Ugy = 1, Uzy = C1(Uyp — C2), u = exp(c1vg) + Cavy;

Ugy = €XP, Ugy = Ully, u = vy + f1(vy) eXp o,
where 2’ = p?;

Ugy = 0, Uzy = €XP U, u = In(vgvy) + d(v),
where 8" (v) = exp d(v);

Vgy = 1, Ugy = ClUgz + CoUy — C1C2U, u = exp(c1vz) + exp(cavy)

up to the point transformations u — 0(u), v — k(v), * — &z, and y — ny and the substitution
u+Ex+ny — u, where & and n are arbitrary constants. Here c is an arbitrary constant, c¢; and co
are nonzero constants.
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Note that symmetries, z- and y-integrals, and the general solutions of the equations wu;, = uu,
and u,y = exp(u)u, were given in [11]. The transformation connecting the Liouville equation
to the wave equation is well known (see [19)]).

Here we just give the outline of the proof.

Scheme of the proof. Substituting the function 1 given by (1.8) into equation (1.1) and
using (1.2) we obtain

Yo' + %x F/Uac + wva/'Uy + Vg (wvvvy + vaxF + djvvy Uyy)
+ Vgg (%xvvy + wwxvxF + wvxvyvyy) + (wvyvvy + wvyvxF + q/vavyvyy)F
= f(¢7 YyUg + Py, Uz + ¢vaa Yyvy + Py, B+ 77/)111“,'Uyy)- (4.1)

Denote the arguments of the function f by a, b, and c. Recall that we have vy, # 0. The
equality f;; = flr. = 0 thereby immediately follows from equation (4.1). Hence, equation (1.1)
takes the form

Uzy = o(u) + B(u)ug + y(uw)uy + €(u)uguy.
After the point transformation u — A(u) with A” —eA’? = 0 the above equation takes the form
Uy = [ = au) + B(u)uy + v(u)uy.

Next, taking into account the last equality which defines the function f we can rewrite equa-
tion (4.1) as follows

Yo B+ 1y, Flvg + wva/Uy + Vg (¢vvvy + Yo, F' + ¢vvy Uyy)
+ Vo (wvzvvy + wvzsz + wvzvyv’yy) + (d’vyvvy + ¢vysz + ¢vyvyvyy)F
= 04(1/)) + ﬁ(ib) (wvvx + ¢vzvxx + ¢va) + ’Y(’l,b) (¢va + wsz + wvyvyy).

Since vz, and vy, are independent variables, this equation is equivalent to the system

Yogw, =0,
VupoVy + Voo, F = BW) Yy,
YooV + Foyu, = 7(0)by,
Yo' + Yo, F'vg + by, F'vy + Youvaty + 0suu, F + vythus, F + F21y, 0,
= a(¥) + B) (Yovy + Y, Ve + Do, F) + () (V0vy + o, F + P, vyy).-

Consequently, we have
P = A(U’ UI) + B(v’ Uy)a
Ay, vy + Ay, F = B(A+ B)A,,,
vayvx + vava =y(A+ B)va,
(Ay + By)F + Ay, F'vy + By, F'vy + (Apy + Buw)v20y + Vg Ay, F 4 vy By, F
= a(A+ B) + B(A+ B)(vs(Ay + By) + FBy,) +7(A+ B)(vy(Ay + By) + Ay, F).

By using the above equations we prove Theorem 2. |
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