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Abstract. We consider the recursion operator approach to the soliton equations related to
the generalized Zakharov–Shabat system on the algebra sl(n,C) in pole gauge both in the
general position and in the presence of reductions. We present the recursion operators and
discuss their geometric meaning as conjugate to Nijenhuis tensors for a Poisson–Nijenhuis
structure defined on the manifold of potentials.
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1 Introduction

The theory of nonlinear evolution equations (NLEEs) of soliton type (soliton equations or com-
pletely integrable equations) has developed considerably in recent decades. Interest in it is still
big and there is a wide variety of approaches to these equations. However, some properties are
fundamental to all approaches and one is that these equations admit the so called Lax repre-
sentation, namely [L,A] = 0. In the last expression L and A are linear operators on ∂x, ∂t
depending also on some functions qα(x, t), 1 ≤ α ≤ s (called ‘potentials’) and a spectral para-
meter λ. Since the Lax equation [L,A] = 0 must be satisfied identically in λ, it is equivalent to
a system (in the case when A depends linearly on ∂t) of the type

(qα)t = Fα(q, qx, . . . ), where q = (qα)1≤α≤s. (1)

In most of the approaches the linear problem Lψ = 0 (auxiliary linear problem) remains fixed
and the evolution equations (of a certain form) that can be obtained by changing the opera-
tor A are considered. The hierarchies of equations we obtain by fixing L are called the nonlinear
evolution equations (NLEEs), or soliton equations, associated with (or related to) L (or with the
linear system Lψ = 0). The hierarchies usually are named for some of the remarkable equations
contained in them. The schemes according to which one can calculate the solutions to the soliton
equations may be very different, but the essential fact is that the Lax representation permits
one to pass from the original evolution defined by the system of equations (1) to the evolution
of some spectral data related to the problem Lψ = 0. Since finding the spectral data evolution
usually is not a problem, the principal difficulty is to recover the potentials from the spectral
data. This process is called the inverse scattering method, which is described in detail in the
monographs [4, 10].
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The generalized Zakharov–Shabat system (GZS system) we see below is one of the best known
auxiliary linear problems. It can be written as follows

Lψ = (i∂x + q(x)− λJ)ψ = 0. (2)

Here q(x) and J belong to a fixed simple Lie algebra g in some finite-dimensional irreducible
representation. The element J is regular, that is the kernel of adJ (adJ(X) ≡ [J,X], X ∈ g) is
a Cartan subalgebra h ⊂ g. The potential q(x) belongs to the orthogonal complement h⊥ of h
with respect to the Killing form

〈X,Y 〉 = tr(adX adY ), X, Y ∈ g, (3)

and therefore q(x) =
∑
α∈∆

qαEα where Eα are the root vectors; ∆ is the root system of g. The

scalar functions qα(x) (the ‘potentials’) are defined on R, are complex valued, smooth and tend
to zero as x → ±∞. We can assume that they are Schwartz-type functions. The classical
Zakharov–Shabat system is obtained for g = sl(2,C), J = diag(1,−1).

Remark 1. We assume that the basic properties of the semisimple Lie algebras (real and
complex) are known and we do not give definitions of all the concepts related to them. All our
definitions and normalizations coincide with those in [15].

Remark 2. When generalized Zakharov–Shabat systems on different algebras are involved we
say that we have a generalized Zakharov–Shabat g-system (or generalized Zakharov–Shabat
on g) to underline the fact that it is on the algebra g. When we work on a fixed algebra its
symbol is usually omitted.

Here we may mention also that, in case when the element J is complex, the problem (2) is
referred as a Caudrey–Beals–Coifman system [2] and only in the case when J is real it is called
a generalized Zakharov–Shabat system. The reason for the name change is that the spectral
theory of L is of primary importance for the development of the inverse scattering techniques
for L and the cases when J is real or complex are quite different from the spectral viewpoint,
see for example [5, 11] in which the completeness of the so-called adjoint solutions of L when L
is considered in an arbitrary faithful representation of the algebra g is proved. Referring for
the details to the above work we simply remind the reader that the adjoint solutions of L are
functions of the type w = mXm−1 where X is a constant element from g and m is a fundamental
solution of Lm = 0. Let us denote the orthogonal projector (with respect to the Killing form (3))
on h⊥ by π0. Then, of course, the orthogonal projector on h will be equal to id−π0. Further, let
us put wa = π0w and wd = (id−π0)w. One of the most important facts from the theory of GZS
systems is that if a suitable set of adjoint solutions (wi(x, λ)) is taken, then, roughly speaking,
for λ on the spectrum of L the functions (wa

i (x, λ)) form a complete set in the space of potentials.
If one expands the potential over the subset of the adjoint solutions the coefficients are one of the
possible minimal scattering data sets for L. Thus, passing from the potentials to the scattering
data can be considered as a sort of Fourier transform, called a generalized Fourier transform.
For it wa

i (x, λ) play the role the exponents play in the usual Fourier transform. They are called
generalized exponents or by abuse of language also adjoint solutions. Those familiar with the
theory in sl(2;C) know that originally they were called ‘squares’ of the solutions of Lψ = 0.
This interpretation of the inverse scattering transform was given for the first time in [1] and
after that has been developed in a number of works, see, for example, the monographs [10, 17]
for complete study of sl(2,C)-case and for comprehensive bibliographies, and [2, 11] for more
general situations.

However, since in this article we shall not deal with the spectral properties of L, we shall call
it a generalized Zakharov–Shabat system in all cases.
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The recursion operators (generating operators, Λ-operators) are the operators for which the
functions wa

i (x, λ) are eigenfunctions and therefore for the generalized Fourier transform they
play the same role as the differentiation operator in the usual Fourier transform method. For that
reason recursion operators play central role in the theory of soliton equations – it is a theoretical
tool which, apart from explicit solutions, can give most of the information about the NLEEs
[10, 36]. The theory of these operators is an interesting and developing area. Through them one
may obtain:

i) the hierarchies of the nonlinear evolution equations solvable through L;

ii) the conservation laws for these NLEEs;

iii) the hierarchies of Hamiltonian structures for these NLEEs.

It is not hard to find that the recursion operators related to L have the form, see [11] or the
book [10] and the numerous references therein,

Λ±(X(x)) = ad−1
J

(
i∂xX + π0[q,X] + i adq

∫ x

±∞
(id−π0)[q(y), X(y)]dy

)
. (4)

Here, of course, adq(X) = [q,X] and X is a smooth, rapidly decaying function with values in h⊥.

The name ‘recursion operators’ has the following origin. Suppose we are looking for the
NLEEs that have Lax representation [L,A] = 0 with L given in (2) and A of the form

A = i∂t +
n∑
k=0

λkAk, An ∈ h, An = const, An−1 ∈ h⊥.

Then from the condition [L,A] = 0 we first obtain An−1 = ad−1
J [q,An] and for 0 < k < n − 1

the recursion relations

π0Ak−1 = Λ±(π0Ak), (id−π0)Ak = i(id−π0)

∫ x

±∞
[q, π0Ak](y)dy,

where Λ± are as in (4). This leads to the fact that the NLEEs related to L can be written in
one of the following equivalent forms:

a) i ad−1
J qt + Λn+

(
ad−1

J [An, q]
)

= 0, (5)

b) i ad−1
J qt + Λn−

(
ad−1

J [An, q]
)

= 0.

Remark 3. Strictly speaking, this is not the most general form of the equations solvable
through L. Considering the right-hand side of the equations of the type ad−1

J qt = Fn(q) as
vector fields, in order to obtain the general form of the NLEEs associated with L one must take
an arbitrary finite linear combination F of the vector fields Fn with constant coefficients and
write ad−1

J qt = F (q). We refer to (5) as the general form of the equations solvable through L
for the sake of brevity.

There is another important trend in the theory of the GZS system and consequently for the
recursion operators related to it. It turns out that this system is closely related to another one,
called the GZS system in pole gauge (then the system L we introduced is called GZS system in
canonical gauge). In order to introduce it, denote the group that corresponds to the algebra g
by G. Then the system we are talking about is the following

L̃ψ̃ = i∂xψ̃ − Sψ̃ = 0, S ∈ OJ (6)
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(with appropriate conditions on S(x) when x 7→ ±∞), where OJ is the orbit of the adjoint
action of the group G, passing through the element J ∈ g. A gauge transformation of the type
ψ 7→ ψ−1

0 ψ = ψ̃ where ψ0 is a fundamental solution to the GZS system corresponding to λ = 0
takes the system L into the system L̃ if we denote S = ψ−1

0 Jψo. One can choose different
fundamental solutions ψ0 and one will obtain different limiting values for S when x 7→ ±∞ but
usually for ψ0 is taken the Jost soliton that satisfies lim

x→−∞
ψ0 = 1. The GZS system in pole

gauge is used as the auxiliary linear problem to solve the equations that are classical analogues
of equations describing waves in magnetic chains. For example, in the case of g = sl(2,C)
(spin 1/2), one of the NLEEs related to L̃ is the Heisenberg ferromagnet equation

St =
1

2i
[S, Sxx], S ∈ i su(2). (7)

In the case of sl(3,C) the linear problem L̃ is related to a classical analog of equations describing
the dynamics of spin 1 particle chains [3, 31].

The theory of NLEEs related to the GZS auxiliary system in canonical gauge (L) is in
direct connection with the theory of the NLEEs related with the GZS auxiliary system in pole
gauge (L̃). The NLEEs for both systems are in one-to-one correspondence and are called gauge-
equivalent equations. This beautiful construction was used for the first time in the famous work
of Zakharov and Takhtadjan [37], in which the gauge-equivalence of two famous equations – the
Heisenberg ferromagnet equation (7) and the nonlinear Schrödinger equation was proved.

In fact the constructions for the system L and its gauge equivalent L̃ are in complete analogy.
Instead of the fixed Cartan subalgebra h = ker adJ , we have a ‘moving’ Cartan subalgebra hS =
ker adS(x); a ‘moving’ orthogonal (with respect to the Killing form) complementary space h⊥S
to hS etc. We have the corresponding adjoint solutions m̃ = ψ̃Xψ̃−1, where ψ̃ is a fundamental
solution of L̃ψ̃ = 0 and X is a constant element in g. If we denote by m̃a and m̃d the projections
of m̃ on h⊥S and hS respectively, then the corresponding recursion operators are constructed
using the fact that the functions m̃a must be eigenfunctions for them. The evolution equations
associated with the system (6) and gauge-equivalent to the equations (5) have the form

−i ad−1
S St + (Λ̃±)nΛ̃±πSAn = 0, (8)

where Λ̃± are the recursion operators for L̃ and πS is the orthogonal projector on h⊥S . One can
see that

Λ̃± = Ad
(
ψ−1

0

)
◦ Λ± ◦Ad(ψ0), πS = Ad

(
ψ−1

0

)
◦ π0 ◦Ad(ψ0),

where Ad is denotes the adjoint action of the simply connected Lie group G having g as algebra.

Remark 4. In order to understand why in the hierarchy (8) appears πSAn one must mention
that one can prove that for any constant H ∈ h

Ad
(
ψ−1

0

)(
ad−1

J [q,H]
)

= πSH.

So for the GZS system in pole gauge everything could be reformulated and the only difficulty
is to calculate all the quantities that are expressed through q and its derivatives through S and
its derivatives. Though in each particular case the details may be different there is a clear
procedure to achieving that goal. The procedure was developed in the PhD thesis [30], outlined
in [12, 14] for the sl(2,C) case, and for more general cases in [13]. In the case sl(3,C) the
procedure has been carried out in detail in [31]. The theory of the recursion operator for the
GZS system in canonical gauge in the presence of the Mikhailov type reductions has been also
considered, see for example [6] for a treatment from the spectral theory viewpoint, or [33] for
geometric treatment.
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The theory for the system in pole gauge in presence of Mikhailov type reductions has been
also the subject of recent research. In [7, 8] the case sl(3,C) in the presence of Z2×Z2 reduction
was considered (Gerdjikov–Mikhailov–Valchev system or GMV system). In [34] it was shown
that the operators found in [8] using classical technique and the technique developed in [16],
are restrictions of the general position recursion operators for sl(3,C), on certain subspaces of
functions. In [35] the geometric theory behind the recursion operators for the GMV system was
presented. In the present article we shall generalize the theory developed in [33, 34, 35] for the
algebra sl(3,C) to the algebra sl(n,C). Another new feature is that we discuss here in more
depth the fundamental fields of the Poisson–Nijenhuis structure (P-N structure) related to the
GMV system and its generalizations.

2 Recursion operators for the GZS sl(n,C)-system in pole gauge

2.1 Preliminary results

Let us consider the GZS system in canonical gauge in the case g = sl(n,C) – the algebra of
all traceless n× n complex matrices. The Cartan subalgebra h consists of all traceless diagonal
matrices and the space h⊥ of all off-diagonal matrices. The Killing form can be expressed
through the trace form, we have 〈X,Y 〉 = 2n trXY for any X,Y ∈ sl(n,C), see [15]. Since the

element J belongs to h it has the form J = diag(λ1, λ2, . . . , λn), where
n∑
k=1

λk = 0. Next, J is

regular, which means that for any i 6= j we have λi 6= λj . In that case J ‘generates’ the Cartan
subalgebra h in the following sense. Consider the matrices

J = J1, J2 = J2 − tr J2

n
1, . . . , Jn−1 = Jn−1 − tr Jn−1

n
1.

Since tr Jk = 0 for k = 1, 2, . . . , n these matrices belong to h. One can easily show that these
matrices are linearly independent and hence generate the Cartan subalgebra. The same can also
be deduced if one calculates the determinant of the Gram matrix

G =


〈J1, J1〉 〈J1, J2〉 . . . 〈J1, Jn−1〉
〈J2, J1〉 〈J2, J2〉 . . . 〈J2, Jn−1〉

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
〈Jn−1, J1〉 〈Jn−1, J2〉 . . . 〈Jn−1, Jn−1〉

 . (9)

Using that 〈X,Y 〉 = 2n trXY we obtain

detG = 2n−1nn−2
∏
i<j

(λi − λj)2 = 2n−1nn−2D2.

The determinant of the Gram matrix (9) enters into the explicit calculation of the recursion
operators (because we need the inverse of G) and as we see it is proportional to the square of
the Vandermonde determinant D constructed from the values λ1, λ2, . . . , λn. This observation
has been made for the case of the algebra sl(3,C), see (18). We see now that it is a general
result for sl(n,C).

Since the Killing form for a given simple Lie algebra is invariant under the adjoint action of
the corresponding group, we get that the Gram matrix (〈Si, Sj〉)1≤i,j≤n−1 where

S = S1 = Ad
(
ψ−1

0

)
J1, S2 = Ad

(
ψ−1

0

)
J2, . . . , Sn−1 = Ad

(
ψ−1

0

)
Jn−1

coincides with G. Consequently its determinant is different from zero.
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Another observation that we want to make is that J and S satisfy the equation

n∏
i=1

(X − λi1) = 0.

(Since λi are the eigenfunctions of J and S the above is just the Cayley–Hamilton theorem.)
This equation can be written in the form

Xn − a1X
n−1 + a2X

n−2 + · · ·+ (−1)nan1 = 0,

where the coefficients as are homogeneous polynomials of degree s in λ1, λ2, . . . , λn. If necessary,
one can express them in terms the symmetric polynomials 〈Js, Js〉, i.e., polynomials in λi,
1 ≤ i ≤ n, using the Newton formulae but it is not needed for our purposes. We only note that
a1 = tr J = 0.

At the end of our preparations let us denote Ss;x = ∂xSs. Then we have:

Proposition 1. The matrices S1;x, S2;x, . . . , Sn−1;x belong to h⊥S .

Proof. We need to prove that for all 1 ≤ k, l ≤ n − 1 we have 〈Sk, Sl;x〉 = 0. Since Sk =
Sk − (tr Jk/n)1 we must prove that tr(Sk(Sl)x) = 0. Using the properties of the trace we see
that this is equivalent to tr(Sk+l−1Sx) = 0. On the other hand, for any integer m > 0 we have
trSm = trJm = const. Therefore, ∂x trSm = m trSm−1Sx = 0 and our result follows. �

2.2 Calculation of the recursion operators

Now we pass to the calculation of the recursion operator(s) Λ̃± for the GZS system in pole gauge
on sl(n,C). We shall use the equation

i
∂w̃

∂x
− λ[S, w̃] = 0,

which is satisfied by every function of the type w̃ = ψ̃A(ψ̃)−1, where A is a constant matrix
and ψ̃ is a fundamental solution of (6). We have

w̃ = w̃h + w̃a, w̃h ∈ hS , w̃a ∈ h⊥S .

(Note that ker adS = hS , the space h⊥S is its orthogonal space with respect to the Killing form
and by upper indices ‘h’ and ‘a’ we denote projections onto these spaces.) We have seen that
the matrices {Si}n−1

i=1 (where S1 = S) span hS . Therefore

w̃h =
n−1∑
i=1

ak(x)Sk,

where ak(x) are coefficient functions. We have

i∂x

[
w̃a +

n−1∑
k=1

akSk

]
− λ[S, w̃a] = 0,

or in other words,

i∂xw̃
a + i

n−1∑
k=1

(ak)xSk + i

n−1∑
k=1

akSk;x − λ[S, w̃a] = 0. (10)
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In order to find the coefficients ak we calculate the inner product of the left hand side of (10)
with Sj . Then, taking into account Proposition 1, we arrive at the following system

n−1∑
k=1

Gjk(ak)x = −〈w̃a
x, Sj〉 = 〈w̃a, Sj;x〉,

where Gik = 〈Si, Sk〉 = 〈Ji, Jk〉 are the entries of the matrix G introduced earlier. Equivalently,

akx = (ak)x =
n−1∑
k=1

(
G−1

)
ks
〈w̃a, Ss;x〉.

Assuming that for the eigenfunctions of Λ̃+ we have lim
x→+∞

as = 0 and for the eigenfunctions

of Λ̃− we have lim
x→−∞

as = 0 we find that

ak =
n−1∑
k=1

(
G−1

)
ks
∂−1
x 〈w̃a, Ss;x〉,

where ∂−1
x stands for one of the two operators∫ x

+∞
·dy,

∫ x

−∞
· dy.

Consequently, inserting the functions ak into (10), we obtain Λ̃±(w̃a) = λw̃a where

Λ̃±(Z̃) = i ad−1
S πS

∂xZ̃ +

n−1∑
k,s=1

(
G−1

)
ks
∂−1
x 〈Z̃, Ss;x〉Sk;x

 , (11)

or equivalently,

Λ̃±(Z̃) = i ad−1
S πS

∂xZ̃ −
n−1∑
k,s=1

(
G−1

)
ks
∂−1
x 〈Z̃x, Ss〉Sk;x

 . (12)

The above operators act on functions Z̃(x) that are smooth, rapidly decaying and such that
Z̃(x) ∈ h⊥S(x). The formulae (11), (12) give us the recursion operators but they can be written
in more concise form if we introduce:

• The row vectors

S = (S1, S2, . . . , Sn−1), Sx = (S1;x, S2;x, . . . , Sn−1;x).

• The column vectors

〈Z̃,Sx〉 =
(
〈Z̃, S1;x〉, 〈Z̃, S2;x〉, . . . , 〈Z̃, Sn−1;x〉

)t
,

〈Z̃x,S〉 =
(
〈Z̃x, S1〉, 〈Z̃x, S2〉, . . . , 〈Z̃x, Sn−1〉

)t
.

Then the recursion operators acquire the form

Λ̃±(Z̃) = i ad−1
S πS

{
∂xZ̃ + SxG

−1∂−1
x 〈Z̃,Sx〉

}
(13)
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or

Λ̃±(Z̃) = i ad−1
S πS

{
∂xZ̃ − SxG

−1∂−1
x 〈Z̃x,S〉

}
. (14)

It is easy to check now that the recursion operators for the GZS systems on the algebras
sl(2,C), sl(3,C) (see [12, 31, 32]) are obtained from the general expressions (13), (14) as partic-
ular cases.

The last thing that remains to be done is to express the operator ad−1
S through S. For this

note that, if all the eigenvalues of J are different, the operators adJ and ad−1
J considered on h⊥

(adS and ad−1
S considered on h⊥S respectively) are simple and have common eigenvectors. Then

we can apply the following proposition which is actually the spectral decomposition theorem for
a given simple matrix A, see [18].

Proposition 2. Let A be a simple matrix with eigenvalues λ1, λ2, . . . , λm over R or C. Let
µ1, µ2, . . . , µm be arbitrary numbers. Let us define the polynomial

f(λ) =

m∑
k=1

µklk(λ),

where lk are the Lagrange interpolation polynomials

lk(λ) =
∏
i;i 6=k

(λ− λi)
(λk − λi)

.

Then the matrix f(A) has as eigenvalues µ1, µ2, . . . , µm and the same eigenvectors as A and the
polynomial f(λ) is the polynomial of minimal degree having that property.

Remark 5. It is not difficult to see that lk(A) is the projector onto the subspace corresponding
to the eigenvalue λk in the splitting of the space into eigenspaces of the matrix A.

Remark 6. In case the matrix A is not simple one again can produce a polynomial f(λ) of
minimal degree having the property stated in the Proposition 2 though its construction is more
complicated, see [18]. In case just ad−1

J is needed, one can also use the following procedure:

1. The minimal polynomial m(λ) of adJ (on the whole algebra) is a product m(λ) = λm1(λ)
and λ and m1(λ) are co-prime.

2. The algebra splits into direct sum of invariant subspaces ker adJ and im adJ (because adJ
is skew-symmetric) and the minimal polynomials of adJ on these spaces are λ and m1(λ)
respectively.

3. On im adJ the operator adJ is invertible and one can find ad−1
J as polynomial in adJ

multiplying the equation m1(adJ) = 0 by ad−1
J .

Note that the polynomial g(λ) such that ad−1
J = g(adJ) will have now degree deg(m1)− 1.

In the case of an arbitrary semisimple Lie algebra, assuming that all the values α(J), α ∈ ∆
are different, the operators adJ and ad−1

J have eigenvalues α(J) and 1/α(J), α ∈ ∆ respectively
and eigenvectors Eα, α ∈ ∆. Then ad−1

J is equal to l(adJ), where l(λ) is the polynomial

l(λ) =
∑
α∈∆+

λrα(λ)

α(J)2
, rα(λ) =

∏
β∈∆+, β 6=α

λ2 − β2(J)

α(J)2 − β(J)2
. (15)

In our case the roots are αij = εi − εj , i 6= j where on diagonal matrices A with diagonal
elements ai we have εi(A) = ai. So αij(J) = λi − λj and the expression for ad−1

S can be
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written easily, we shall do it a little further. What we obtained already allows us to make
an important observation. As the polynomial l(λ) from (15) is of the form λl0(λ), where l0 is
another polynomial, then we have l(adJ) = l0(adJ) adJ . Therefore we have l(adJ)π0 = l(adJ).
In the same way

l(adS) = ad−1
S , l(adS)πS = l(adS), πS = ad−1

J adS . (16)

Therefore, if one assumes that ad−1
S is given by a polynomial in adS , writing the projector πS

in the expression for the recursion operators (13), (14) is redundant.
Continuing our discussion about ad−1

S , as we already remarked, in the case when we need
only to express ad−1

S through adS , instead of Proposition 2 we can use the minimal polynomial
for adS (restricted to h⊥ of course). Indeed, in the case of an arbitrary semisimple Lie algebra g
and regular J let us assume that all the values α(J) are different. Then the minimal polynomial
for adJ on h⊥ has the form

m(λ) =
∏
α∈∆+

(
λ2 − α(J)2

)
=

p∑
k=0

akλ
2k, ap = 1.

Here p = 1
2 dim(h⊥) = 1

2(dim g− dim h) and, because J is regular,

a0 = (−1)p
∏
α∈∆+

α(J)2 6= 0.

Since m(adS) = 0 we obtain

ad−1
S = adS R(adS), πS = ad−1

S adS = adS R(adS) adS , (17)

where R(λ) is the polynomial

R(λ) = − 1

a0

(
a1λ

2 + a2λ
4 + · · ·+ apλ

2p
)
.

Both expressions (16) and (17) for ad−1
S give the same result in the case where all α(J) are

different. Indeed, both polynomials λl(λ) and λR(λ) are monic and when λ = α(J), α ∈ ∆
give 1/α(J). Since they are of degree 2p − 1 these polynomials coincide. In particular, in the
case of the algebra sl(n,C) we get

R(λ) =
(−1)n(n+1)

λ2D2

∏
i<j

[
λ2 − (λi − λj)2

]
− (−1)n(n+1)D2

 .

Unfortunately, the expressions for ad−1
S become very complicated for big n, hampering the

possible applications. A simplification can be obtained for some particular choices of J , for
which the minimal polynomial of adJ on h⊥ has smaller degree than in the case of general J .
Here are the expressions for ad−1

S used up to now in the literature:

1. Classical Zakharov–Shabat system, g = sl(2,C), J = diag(1,−1) [12, 14]

ad−1
S =

1

4
adS .

2. GZS system on g = sl(3,C) in general position, J = diag(λ1, λ2, λ3), λi 6= 0. The last
condition ensures that all α(J)’s are different [31, 32]

ad−1
S = l(adS), l(λ) =

λ

D2

(
λ2 − 3

2
C2

)2

, (18)

where

C2 = λ2
1 + λ2

2 + λ2
3, D = (λ1 − λ2)(λ2 − λ3)(λ1 − λ3).
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3. GZS type system on g = sl(3,C) with Z2×Z2 reduction (GMV system), J = diag(−1, 0, 1)
[8, 32]

ad−1
S = l(adS), l(λ) = −1

4

(
λ3 − 5λ

)
.

In this case the fact that some of the eigenvalues of adJ on h⊥ (and consequently of adS
on h⊥S ) are not simple leads to a decrease in the degree of the polynomial l(λ).

3 Geometric interpretation

Fixing the element J for the GZS g-system in pole gauge, the smooth function S(x) with
domain R, see (6), is not subject to any restrictions except that S(x) ∈ OJ and S(x) tends fast
enough to some constant values when x 7→ ±∞. First let us consider the even more general case
when S(x) is smooth, takes values in g and when x→ ±∞ tends fast enough to constant values.
The functions of this type form an infinite-dimensional manifold which we shall denote by M.
Then it is reasonable to assume that the tangent space TS(M) at S consists of all the smooth
functions X : R 7→ g that tend to zero fast enough when x 7→ ±∞. We denote that space
by F(g). We shall also assume that the ‘dual space’ T ∗S(M) is equal to F(g) and if α ∈ T ∗S(M),
X ∈ TS(M) then

α(X) = 〈〈α,X〉〉 ≡
∫ +∞

−∞
〈α(x), X(x)〉dx,

where 〈 , 〉 is the Killing form of g.

Remark 7. In other words, we identify T ∗S(M) and TS(M) using the bi-linear form 〈〈 , 〉〉. We
do not want to make the definitions more precise, since we speak rather about geometric picture
than about precise results. Such results could be obtained after a profound study of the spectral
theory of L and L̃. In particular, we have put the dual space in quotation marks because it is
clearly not equal to the space of continuous linear functionals on F(g). We also emphasize that
when we speak about ‘allowed’ functionals H on M we mean that δH

δS ∈ T
∗
S(M) ∼ F(g).

Now we want to introduce some facts. The first fact is that since we identify T ∗S(M) and
TS(M) the operators

α 7→ P (X) = i∂xα, α 7→ Q(α) = adS(α), S ∈M, α ∈ T ∗S(M) (19)

can be interpreted as Poisson tensors on the manifold M. This is well known, see for exam-
ple [10], where the issue has been discussed in detail and the relevant references are given. One
can also verify directly that if H1, H2 are two functions (allowed functionals) on the manifold
of potentials M then

{H1, H2}P =

〈〈
δH1

δS
, ∂x

δH2

δS

〉〉
, {H1, H2}Q =

〈〈
δH1

δS
,

[
S,
δH2

δS

]〉〉
are Poisson brackets. It is also known from the general theory that these Poisson tensors are
compatible [10, Chapter 15]. In other words P + Q is also a Poisson tensor. Note that the
tensor Q is the canonical Kirillov tensor which acquires this form because the algebra is simple
and consequently the coadjoint and adjoint representations are equivalent.

Now let OJ be the orbit of the adjoint action of G passing through J . Let us consider
the set of smooth functions f : R 7→ OJ such that when x → ±∞ they tend fast enough to
constant values. The set of these functions is denoted by N and clearly can be considered as
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a submanifold of M. If S ∈ N the tangent space TS(N ) consists of all smooth functions X
that vanish fast enough when x 7→ ±∞ and are such that X(x) ∈ TS(x)(OJ). (Recall that OJ
is a smooth manifold in the classical sense). We again assume that T ∗S(N ) ∼ TS(N ) and that
these spaces are identified via 〈〈 , 〉〉.

We can try now to restrict the Poisson tensors P and Q from the manifold M to the mani-
fold N . The problem how to restrict a Poisson tensor on a submanifold has been solved in
principle [24], see also [27, 28]. We shall use a simplified version of these results (see [22, 23])
and we shall call it the first restriction theorem:

Theorem 1. Let M be a Poisson manifold with Poisson tensor P and M̄ ⊂M be a submani-
fold. Let us denote by j the inclusion map of M̄ into M, by X ∗P (M̄)m the subspace of covectors
α ∈ T ∗m(M) such that

Pm(α) ∈ djm(Tm(M̄)) = im(djm), m ∈ M̄

(where im denotes the image), and by T⊥(M̄)m the set of all covectors at m ∈ M vanishing
on the subspace im(djm), m ∈ M̄ (also called the annihilator of im(djm) in T ∗m(M)). Let the
following relations hold:

X ∗P (M̄)m + T⊥(M̄)m = T ∗m(M), m ∈ M̄,

X ∗P (M̄)m ∩ T⊥(M̄)m ⊂ ker(Pm), m ∈ M̄.

Then there exists unique Poisson tensor P̄ on M̄, j-related with P , that is

Pm = djm ◦ P̄m ◦ (djm)∗, m ∈ M̄.

The proof of the theorem is constructive. One takes β ∈ T ∗m(M̄), then represents (j∗β)m
as α1 + α2 where α1 ∈ X ∗P (M̄)m, α2 ∈ T⊥(M̄)m and puts P̄m(β) = Pm(α1) (we identify m
and j(m) here).

The restriction we present below has been carried out in various works in the simplest case
g = sl(2,C), see for example [23]. We do it now in the case g = sl(n,C). Restricting the Poisson
tensor Q is easy, one readily gets that the restriction Q̄ is given by the same formula as before

α 7→ Q̄(α) = adS(α), S ∈ N , α ∈ T ∗S(N ). (20)

The tensor P is a little harder to restrict. Let us introduce some notation and facts first. Since J
is a regular element from the Cartan subalgebra h, each element S from the orbit OJ is regular.
Therefore hS ≡ ker adS is a Cartan subalgebra of sl(n,C) and we have

sl(n,C) = hS(x)⊕ h⊥S (x).

If X ∈ TS(N ) then X(x) ∈ h⊥S (x) and X vanishes rapidly when x 7→ ±∞. We shall denote the
set of these functions by F(h⊥S ) so X ∈ F(h⊥S ) (this means a little more than simply X ∈ h⊥S ).
Using the same logic, for X ∈ F(h⊥S ) we write adS(X) ∈ F(h⊥S ) which means that the function
adS(x)X(x) belongs to F(h⊥S ). Now we are in a position to perform the restriction of P on N .
For S ∈ N we have

X ∗P (N )S = {α : i∂xα ∈ F(h⊥S )}, T⊥(N )S = {α : 〈〈α,X〉〉 = 0, X ∈ F(h⊥S )}.

We see that T⊥(N )S is the set of smooth functions α such that α ∈ hS and such that they
vanish fast enough when x 7→ ±∞. We shall denote this space by F(hS). We introduce also
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the space of functions X ∈ hS which tend rapidly to some constant values when x 7→ ±∞ and
denote this space by F(hS)0. Clearly, since Sk, k = 1, 2, . . . , n− 1 span hS , we have

F(hS)0 =

{
X : X =

n−1∑
k=1

ak(x)Sk(x), ak(x) smooth, ak(x) tend to const as x 7→ ±∞

}
,

F(hS) =

{
X : X =

n−1∑
k=1

ak(x)Sk(x), ak(x) smooth, lim
x→±∞

ak(x) = 0

}
.

In what follows we shall adopt matrix notation and shall denote by A(x) the column with
components ak(x). Then X ∗P (N )S ∩ T⊥(N )S consists of the elements

α =
n−1∑
k=1

ak(x)Sk(x) = SA,

with ak(x) vanishing at infinity and such that i∂xα ∈ F(h⊥S ). But

i∂xα = iSxA+ iSAx,

so we must have Ax = 0 and as(x) are constants. But as(x) must also vanish at infinity so we
see that as = 0. Consequently X ∗P (N )S ∩ T⊥(N )S = {0} ⊂ kerPS .

Let us take now arbitrary α ∈ T ∗(N )S . We want to represent it as α1 + α2, α1 ∈ X ∗(N )S ,
α2 ∈ T⊥(N )S . First of all, α2 = SB(x) where B(x) a column with components bs(x) – scalar
functions that vanish at infinity. This means that

i∂xα = i∂xα1 + iSxB + iSBx,

where i∂xα1 ∈ F(h⊥S ). But then we have

〈∂xα,S(x)〉 = GBx,

where G is the Gram matrix we introduced earlier. Therefore

B = G−1∂−1
x 〈∂xα(x),S(x)〉.

Remark 8. In the theory of recursion operators when one calculates the hierarchies of NLEEs
or the conservation laws the expressions on which the operator ∂−1

x acts are total derivatives.
Thus the same results will be obtained choosing for ∂−1

x any of the following operators∫ x

−∞
·dy,

∫ x

+∞
·dy, 1

2

(∫ x

−∞
·dy +

∫ x

+∞
·dy
)
.

However, more frequently one uses the third expression when one writes the corresponding
Poisson tensors in order to make them explicitly skew-symmetric.

Returning to our task, let us put

α = α1 + α2, α1 = α− α2, α2 = SG−1∂−1
x 〈∂xα(x),S(x)〉,

where α1 and α2 lie in the spaces X ∗(N )S and T⊥(N )S = F(hS) respectively. We note also that
dj∗Sβ = πS(β). Thus the conditions of the first restriction theorem are fulfilled and if β ∈ T ∗S(N )
the restriction P̄ of P on N has the form

P̄ (β) = iπS∂xβ − iSx∂
−1
x 〈∂xβ(x),S(x)〉.
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The tensor Q̄ is invertible on N , so one can construct a Nijenhuis tensor N = P̄ ◦ ad−1
S

N(X) = iπS∂x(ad−1
S X)− iSxG

−1∂−1
x 〈∂x(ad−1

S X),S(x)〉, X ∈ F(h⊥S ). (21)

Taking into account that 〈ad−1
S (X),S〉 = 0, the above can be cast into the equivalent form

N(X) = iπS∂x(ad−1
S X) + iSxG

−1∂−1
x 〈ad−1

S X,Sx〉, X ∈ F(h⊥S ). (22)

From the general theory of compatible Poisson tensors it now follows that

Theorem 2. The Poisson tensor field Q̄ (20) and the Nijenhuis tensor field N given by (21), (22)
endow the manifold N with a P-N structure.

The final step is to calculate the dual of the tensor N with respect to the pairing 〈〈 , 〉〉.
A quick calculation, taking into account that adS is skew-symmetric with respect to the Killing
form, gives

N∗(α) = i ad−1
S

[
πS∂xα+ SxG

−1〈α,Sx〉
]
, α ∈ F(h⊥S ),

or equivalently,

N∗(α) = i ad−1
S

[
πS∂xα− SxG

−1∂−1
x 〈αx,S〉

]
, α ∈ F(h⊥S ).

But these are the recursion operators Λ̃± for the GZS system in pole gauge from (13), (14) and
our results confirm the general fact that the recursion operators and the Nijenhuis tensors are
dual objects.

Now, according to the general theory of recursion operators, see [10], the NLEEs related to
the system L̃ have the form

−i ad−1
S

∂S

∂t
+ (Λ̃±)nΛ̃±πSH = 0, (23)

where H is an element of the Cartan subalgebra of sl(n,C). As discussed earlier, πS can be
expressed as a polynomial in adS . Then (23) gives the hierarchies of NLEEs related to the
GZS system in pole gauge as hierarchies of equations gauge-equivalent to hierarchies related
to the GZS system in canonical gauge. If, however, one is not interested in finding the pairs
of gauge-equivalent equations, but wants just to find the NLEEs, one can proceed as follows.
Recall that recursion operators also produce the hierarchy of Lax pairs. In fact, if a NLEE has
Lax representation [L̃, Ã] = 0 with L̃ in general position and Ã has the form

Ã = i∂t +

n∑
k=0

λkÃk, Ãk ∈ hS ,

then i∂xAk ∈ h⊥S , A0 = const. Using a gauge transformation depending only on t one can ensure
that A0 = 0 and then the coefficients Ãk for k = 1, 2, . . . , n− 1 may be calculated with the help
of the recursion operator in the following way

Ãa
k−1 = Λ̃±Ã

a
k, Ãd

k = iSG−1∂−1
x 〈Ãa

k,Sx〉, Ãd
s = (id−πS)Ãs, Ãa

s = πSÃs.

For the coefficient Ãn−1 one has that i∂xÃn = [S, Ãn−1] and, since Ãn ∈ hS , there are n − 1
scalar functions ak(x) forming a column vector a(x) such that An = S(x)a(x). This gives

iSxa(x) + iSax(x) ∈ h⊥S ,

and therefore ax = 0 so ak(x) are constants. Thus Ãn−1 = i ad−1
S (Sa) and the hierarchy of the

NLEEs related to L̃ is

− ad−1
S

∂S

∂t
+ (Λ̃±)n

(
ad−1

S (Sxa)
)

= 0, a = (a1, a2, . . . , an−1)t.
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4 Reductions

4.1 Algebraic aspects

As a matter of fact the situation most interesting for applications is when we do not have
the GZS system in pole gauge in the general case, but when additional restrictions are made.
For example, in the Heisenberg ferromagnet equation we require that S = S† (where † stands
for Hermitian conjugation). Similarly, for systems describing spin chain dynamics that we
mentioned in the case of sl(3,C), we also require S† = S. All this means that we require for
n = 2, 3 that S belongs to i su(n). The algebra su(n) is a real form of sl(n,C) with respect to
complex conjugation σ(X) = −X† and

sl(n,C) = su(n)⊕ i su(n), [su(n), su(n)] ⊂ su(n),

[su(n), i su(n)] ⊂ i su(n), [i su(n), i su(n)] ⊂ su(n).

The space i su(n) is the space of n×n Hermitian matrices. Of course, it is not a real Lie algebra
since, if X,Y ∈ i su(n), then [X,Y ] ∈ su(n) and hence i[X,Y ] ∈ i su(n).

Next, since the Cartan subalgebra h is invariant under σ, it also splits

h = (h ∩ su(n))⊕ (h ∩ i su(n)).

The first space consists of diagonal matrices with purely imaginary entries, while the second
consists of diagonal matrices with real entries. If we want S to be Hermitian, then it is natural
to assume that J is real. In fact the reduction one obtains in this way is most effectively treated
by the notion of Mikhailov’s reduction group, see [19, 25, 26]. According to that concept, in
order to perform a reduction we must have a group G0 acting on the fundamental solutions of
the linear problems L and A in the Lax representation. Assume we have the GZS system in pole
gauge and we take the group generated by one element g1, acting on the fundamental solutions
as

g1(ψ̃(x;λ)) = [ψ̃−1(x;λ∗)]†, (24)

where ∗ stands for complex conjugation. Since g2
1 = id, the group generated by g1 is isomorphic

to Z2 and we have Z2-reduction. The invariance of the set of fundamental solutions under the
action (24) means that σ(S) = −S (that is S ∈ i su(n)) and that S belongs to the orbit of SU(n)
passing through J ∈ i su(n). Let us denote this orbit by OJ(SU(n)). Thus J must be real.
Moreover, if the operator A has the form

A = i∂t +
N∑
k=0

Akλ
k,

then, if the set of fundamental common solutions ψ̃ of (6) and Aψ̃ = 0 is G0-invariant, one must
have also σ(Ak) = Ak where σ is the complex conjugation introduced earlier, that is Ak ∈ i su(n).
One may note that the generating operators are the same as before simply we may assume that
all matrices are in i su(n).

One can have also another complex conjugation of sl(n,C). Denote it by τ . Then one can
construct another Z2 reduction. One can, for example, take τ(X) = X∗ and g acting as

g(ψ̃(x;λ)) = (ψ̃(x;λ∗)∗.

Then one obtains that S∗ = −S, A∗k = −A∗k, so introducing S0 = iS and A0
k = iAk one sees that

(after canceling i) the L, A pair is real, with matrices belonging to sl(n,R).
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It is possible to have restrictions defined by two complex conjugations. This can be achieved
in the following way. Suppose τ is another complex conjugation, commuting with σ. Then as it
is well known h = στ = τσ is an involutive automorphism of the algebra sl(n,C). In fact doing
the things the other way round is easier – to find an involutive automorphism h commuting
with σ and then put τ = hσ = σh. One can take, for example, h(X) = JKXJK , where JK is
a diagonal matrix

diag(1, 1, . . . , 1︸ ︷︷ ︸
K times

,−1,−1, . . . ,−1︸ ︷︷ ︸
n−K times

),

and one can put τ = hσ = σh. Then one can consider the group G0 with generating elements g1

(as in (24)) and g2, where

g2(ψ̃(x;λ)) = h(ψ̃(x;−λ)) = JK(ψ̃(x;−λ))JK . (25)

Since g1g2 = g2g1, g2
1 = g2

2 = id the reduction group G0 is isomorphic to Z2 × Z2 so the
invariance of the fundamental solutions with respect to the actions (24) and (25) defines Z2×Z2

reduction. In [8, 9] the above reduction has been applied in the case of the algebra sl(3,C)
with J1 = diag(1,−1,−1) (here K = 1). A similar reduction group but this time related to the
algebra so(5) has been considered recently in [29].

Returning to the general case, note that instead of the generators g1, g2 we could use g1, g1g2

and

g1g2(ψ̃(x;λ)) = JK
[
ψ̃−1(x;−λ∗))

]†
JK .

The invariance with respect to the group generated by g1, g2 means that

σ(S) = −S, h(S) = −S, σ(As) = −As, h(A2k) = A2k, h(A2k−1) = −A2k−1,

or equivalently

σ(S) = −S, τ(S) = S, σ(As) = −As, τ(A2k) = −A2k, τ(A2k−1) = A2k−1.

The complex conjugation τ also splits the algebra sl(n,C)

sl(n,C) = s⊕ is, [s, s] ⊂ s, [s, is] ⊂ is, [is, is] ⊂ s.

(On s the map τ is equal to id, on is to − id.) We prefer to work with the involutive automor-
phism h instead of τ . Then the algebra splits into two invariant subspaces for h and these spaces
are orthogonal with respect to the Killing form. We have

fε = {X : h(X) = (−1)εX}, ε = 0, 1, sl(n,C) = f0 ⊕ f1.

A calculation shows that the subalgebra f0 consists of matrices U0 having block form

U0 =

(
A 0
0 B

)
, where trA+ trB = 0,

and the diagonal blocks A and B have dimensions K ×K and (n−K)× (n−K) respectively.
In terms of the same type of block matrices the space f1 consists of matrices of the type

U1 =

(
0 C
D 0

)
.
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Since σ and h commute the spaces of the real and purely imaginary elements for σ – namely
su(n) and i su(n), are split by h into two subspaces

su(n) = (f0 ∩ su(n))⊕ (f1 ∩ su(n)), i su(n) = (f0)⊕ (f1).

As we shall see S(x) ∈ f1 so the space f1 is of particular interest to us. As is easily seen, this
space consists of matrices of the form

R1 =

(
0 C
C† 0

)
,

while f0 ∩ i su(n) consists of matrices of the form

R0 =

(
A 0
0 B

)
, A† = A, B† = B, trA+ trB = 0.

Therefore the real vector space f1∩ i su(n) can be considered as isomorphic to the quotient space
su(n)/(s(u(K)× u(n−K))).

Below, since all the matrices Sk, Sk;x belong to i su(n) (that is, they are Hermitian), we shall
not write explicitly that they belong to i su(n) and shall concern ourselves only with whether
they belong to f0, f1, hS and h⊥S . This makes the formulas simpler and is possible due to the
facts that restricting to i su(n) does not change the form of the recursion operators and the
restriction of the Killing form to i su(n) is again nondegenerate.

Now, since h(S) = −S we have adS ◦h = −h ◦ adS and the Cartan subalgebra hS = ker adS
also splits into two subspaces orthogonal to each other

hS = 0hS ⊕ 1hS , h0
S = hS ∩ f0,

1hS = hS ∩ f1.

Since orthogonality with respect to the Killing form is preserved by h, the space h⊥S is also
invariant under h and

h⊥S = 0h⊥S ⊕ 1h⊥S ,
0h
⊥
S = h⊥S ∩ f0,

1h⊥S = h⊥S ∩ f1.

Consider now S = S1, S2, . . . , Sn−1, the basis of hS we introduced earlier. From the above it
follows that

S1 ∈ 1hS , S2 ∈ 0hS , S3 ∈ 1hS , . . . ,

and one can write

Sk ∈ 0hS , k even, Sk ∈ 1hS , k odd.

Consequently,

Sk;x ∈ 0h⊥S , k even, Sk;x ∈ 1h⊥S , k odd.

In addition, since f0 and f1 are orthogonal with respect to the Killing form, we have that

〈S2s, S2k−1〉 = 0.

Finally, one immediately sees that

adS(0h⊥S ) = 1h⊥S , adS(1h⊥S ) = 0h⊥S , ad−1
S (0h⊥S ) = 1h⊥S , ad−1

S (1h⊥S ) = 0h⊥S . (26)

Let us introduce the following spaces:
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1. F(0h⊥S ) consists of all smooth, rapidly decaying functions X(x) on the line such that
X(x) ∈ 0h⊥S(x) (we write simply X ∈ 0h⊥S ).

2. F(1h⊥S ) consists of all smooth, rapidly decaying functions X(x) on the line such that
X(x) ∈ 1h⊥S(x) (we write simply X ∈ 1h⊥S ).

Naturally,

F(h⊥S ) = F(0h⊥S )⊕ F(1h⊥S ),

where the spaces are orthogonal with respect to the form 〈〈 · 〉〉.

Remark 9. Note that all our matrices are also elements from i su(n) so strictly speaking Sk are
elements from h0

S ∩ i su(n) or h1
S ∩ i su(n) and Sk;x are elements from 0h⊥S ∩ i su(n) or 1h⊥S ∩ i su(n)

but we agreed not to write i su(n) as this will make the notation even more complicated.

After these preliminaries, assuming that all the quantities are as above we have

Proposition 3. The recursion operators Λ̃± interchange the spaces F(0hS) and F(1hS) in the
sense that

Λ̃±F(0h⊥S ) ⊂ F(1h⊥S ), Λ̃±F(1h⊥S ) ⊂ F(0h⊥S ).

Proof. In order to make the calculation easier, let us introduce the rows of elements:

S1 = (S1, S3, . . . , S2k−1), S1;x = (S1;x, S3;x, . . . , S2k−1;x),

where 2k − 1 is the largest odd number less then or equal to n and

S0 = (S2, S4, . . . , S2s), S0;x = (S2;x, S4;x, . . . , S2s;x),

where 2s is the largest even number less then or equal to n. Let us also introduce the Gram
matrices

0G =


〈S2, S2〉 〈S2, S4〉 . . . 〈S2, S2s〉
〈S4, S2〉 〈S4, S4〉 . . . 〈S4, S2s〉
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
〈S2s, S2〉 〈S2s, S4〉 . . . 〈S2s, S2s〉

 , (27)

1G =


〈S1, S1〉 〈S1, S3〉 . . . 〈S1, S2k−1〉
〈S3, S1〉 〈S3, S3〉 . . . 〈S2, S2k−1〉

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
〈S2k−1, S1〉 〈S2k−1, S3〉 . . . 〈S2k−1, S2k−1〉

 . (28)

Since 〈Jm, Jn〉 = 〈Sm, Sn〉 these matrices have constant entries. With the help of the matri-
ces (27), (28) the recursion operators can be written into the form

Λ̃±(Z̃) = i ad−1
S πS{∂xZ̃ − S0;x(0G)−1∂−1

x 〈Z̃x,S0〉 − S1;x(1G)−1∂−1
x 〈Z̃x,S1〉}

or

Λ̃±(Z̃) = i ad−1
S πS{∂xZ̃ + S0;x(0G)−1∂−1

x 〈Z̃,S0;x〉+ S1;x(1G)−1∂−1
x 〈Z̃,S1;x〉}.

Assume that Z̃ ∈ F(0h⊥S ). Then since 〈Z̃,S0〉 = 〈Z̃,S1〉 = 0 and 〈Z̃,S1;x〉 = 0 we get that

Λ̃±(Z̃) = i ad−1
S πS{∂xZ̃ − S0;x(0G)−1∂−1

x 〈Z̃x,S0〉} ≡ Λ̃0
±(Z̃), (29)

Λ̃±(Z̃) = i ad−1
S πS{∂xZ̃ + S0;x(0G)−1∂−1

x 〈Z̃,S0;x〉} ≡ Λ̃0
±(Z̃). (30)
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Recalling (26) we get that Λ̃±(Z̃) ∈ F(1h⊥S ). The above also means that trough the expres-
sions (29), (30) we define operators Λ̃0

± – the restrictions of Λ̃± on F(0h⊥S ). Similarly, if

Z̃ ∈ F(1h⊥S ) we have

Λ̃±(Z̃) = i ad−1
S πS{∂xZ̃ − S1;x(1G)−1∂−1

x 〈Z̃x,S1〉} ≡ Λ̃1
±(Z̃), (31)

Λ̃±(Z̃) = i ad−1
S πS{∂xZ̃ + S1;x(1G)−1∂−1

x 〈Z̃,S1;x〉} ≡ Λ̃1
±(Z̃), (32)

and we get that Λ̃±(Z̃) ∈ F(0h⊥S ). In the same way as above (31), (32) define operators Λ̃1
± –

the restrictions of Λ̃± on F(1h⊥S ). In other words we have

Λ̃±(F(0h⊥S )) ∈ F(1h⊥S ), Λ̃±(F(1h⊥S )) ∈ F(0h⊥S ). �

In similar situations (when we have Z2 reductions) the operators Λ̃0
±, Λ̃1

± are considered

as factorizing the recursion operator. In some sense this is true, since if one considers (Λ̃±)2

acting on F(0h⊥S ) we can write it as Λ̃1
±Λ̃0
±. On the other hand (Λ̃±)2 acting on F(1h⊥S ) can be

written as Λ̃0
±Λ̃1
±. We think that is more accurate to treat the operators Λ̃0

±, Λ̃1
± as restrictions

of the operators Λ̃±. The geometric picture we are going to produce below also supports this
viewpoint.

4.2 Geometric aspects

The geometric situation in the presence of reductions is also interesting. The point is that the
canonical Poisson structure Q̄S = adS simply trivializes, apparently destroying the geometric
interpretation given in the case of the GZS pole gauge system in general position. Indeed, under
the restrictions considered in this section we first note that the space on which the ‘point’ S(x)
takes its values is iOJ(SU(n)) where J is real (and regular). As remarked already this simply
makes all the matrices Hermitian and everything remains as it was. However, imposing the
second Z2 reduction (the one defined by the automorphism h) means that S(x) belongs to the
space of matrices taking values in f1 and such that they converge rapidly to some constant values
when x 7→ ±∞. So for the manifold of potentials Q we have:

Q =
{
S : S(x) ∈ (iOJ(SU(n))) ∩ f1, lim

x→±∞
S = S(±∞), fast enough

}
. (33)

Then the tangent space TS(Q) to the manifold (33) at the point S is the space F(1h⊥S ) (for the
sake of brevity we again ‘forget’ to mention that the tangent vectors must be also elements of
i su(n)). But because adS interchanges F(1h⊥S ) and F(0h⊥S ) and they are orthogonal with respect
to 〈〈 , 〉〉 for Z̃1, Z̃2 ∈ TS(Q) we have that 〈〈Z̃1, [S, Z̃2]〉〉 = 0, so indeed the tensor Q̄ becomes
trivial. Let us see what happens with the Nijenhuis tensor. Writing everything with the notation
we introduced in this section we have

N(X) = iπS∂x(ad−1
S X)− iS0;x(0G)−1∂−1

x 〈∂x(ad−1
S X),S0(x)〉

= iπS∂x(ad−1
S X) + iS0;x(0G)−1∂−1

x 〈ad−1
S X,S0;x〉 = N0(X) for X ∈ F(0h⊥S ),

N(X) = iπS∂x(ad−1
S X)− iS1;x(1G)−1∂−1

x 〈∂x(ad−1
S X),S1(x)〉

= iπS∂x(ad−1
S X) + iS1;x(1G)−1∂−1

x 〈ad−1
S X,S1;x〉 = N1(X) for X ∈ F(1h⊥S ).

Again we can assume that the right-hand sides of the above equations define the operatorsN1,N2

and

N0(F(0h⊥S )) ∈ F(1h⊥S ), N1(F(1h⊥S )) ∈ F(0h⊥S ),

N2
∣∣∣F(1h⊥S ) = N0N1, N2

∣∣∣F(0h⊥S ) = N1N0.
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An immediate calculation shows that for the conjugates of the operators N0, N1 with respect to
〈〈 , 〉〉 we have

N∗0 = Λ̃0
±, N∗1 = Λ̃1

±.

Remark 10. One should bear in mind that ∂−1
x that enters in the expressions for N0, N1 is

treated either as

∫ x

−∞
· dy or as

∫ x

+∞
· dy.

One can easily see that N(TS(Q)) does not belong to TS(Q), so the restriction of N on Q
cannot be a Nijenhuis tensor on Q. However, N2(F(1h⊥S )) ⊂ F(1h⊥S ), that is

N2(TS(Q)) ⊂ TS(Q),

so N2 becomes a natural candidate. Indeed, let us recall the following facts from the theory of
P-N manifolds, see [10, 20, 21, 22]:

Theorem 3. IfM is a P-N manifold endowed with Poisson structure P and Nijenhuis tensor N ,
then for k = 1, 2, . . . each pair (NkP = P (N∗)k, N s) also endows M with a P-N structure.

Theorem 4. LetM be a P-N manifold endowed with Poisson tensor P and Nijenhuis tensor N .
Let M̄ ⊂M be a submanifold of M and suppose that we have:

i) P allows a restriction P̄ on M̄ such that if j : M̄ 7→ M is the inclusion map then P̄ is
j-related with P , that is Pm = djm ◦ P̄m ◦ (djm)∗, m ∈ M̄.

ii) The tangent spaces of M̄, considered as subspaces of the tangent spaces ofM are invariant
under N , so that N allows a natural restriction N̄ to M̄, that is N̄ is j-related with N .

Then (P̄ , N̄) endow M̄ with a P-N structure.

We call the above theorem the second restriction theorem.
In view of what we have already, we need only find the restriction P̄ ′ of P̄ on Q and then P̄ ′

and the restriction of N2 will endow Q with a P-N structure. Thus we have the following
candidates for restriction – the Poisson tensor P̄ = N ◦ adS = adS ◦N∗ and the Nijenhuis
tensor N2 (or N−2). Let us take P̄ and try to restrict it.

We want to apply the first restriction theorem. X ∗(P̄ )S consists of smooth functions β, going
rapidly to zero when |x| → ∞ such that β(x) ∈ h⊥S (x) and P̄ (β) ∈ TS(Q). The last means that

iπS∂xβ − iSxG
−1∂−1

x 〈∂xβ(x),S(x)〉 ∈ f1S(x),

that is, for arbitrary smooth function X(x) such that X ∈ f0S and going rapidly to zero when
|x| → ∞ we have

〈iπS∂xβ − iSxG
−1∂−1

x 〈∂xβ(x), X(x)〉 = 0. (34)

The space T⊥(Q)S consists of smooth β(x) such that β ∈ h⊥S , going rapidly to zero when |x| → ∞
and satisfying

〈〈iπS∂xβ − iSxG
−1∂−1

x 〈∂xβ(x),S(x)〉, Y (x)〉〉 = 0

for each smooth function Y (x), Y ∈ f1S(x) going rapidly to zero when |x| → ∞. Arguments
similar those used to prove Haar’s lemma in the variational calculus show that for each x

〈iπS∂xβ − iSxG
−1∂−1

x 〈∂xβ(x),S(x)〉, Y (x)〉 = 0, (35)

where Y (x) is as above. Then, if β ∈ X ∗(P̄ )S ∩ T⊥(Q)S , we shall have simultaneously (34)
and (35) so β ∈ ker P̄S . Thus the first condition of the first restriction theorem is fulfilled. In
order to see that the second condition also holds, we introduce
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Lemma 1. The operator P̄ has the properties

P̄S(F(f0S)) ⊂ F(f0S), P̄S(F(f1S)) ⊂ F(f1S).

The proof of the lemma is obtained easily since the spaces f0S and f1S are invariant with respect
to πS .

Using the lemma, suppose β ∈ h⊥S is a smooth function going rapidly to zero when |x| → ∞.
Clearly, we can write it uniquely into the form

β = β0 + β1, β0 ∈ F(f0S), β1 ∈ F(f1S).

Then P̄S(β0) ∈ F(f0S), P̄S(β1) ∈ F(f1S) and we see that P̄Sβ0 ∈ X ∗(P̄ )S , P̄Sβ1 ∈ T⊥(Q)S . So the
second requirement of the first restriction theorem is also satisfied and P̄ allows restriction. If γ
is a 1-form on Q, that is γ ∈ F(f1S), the restriction P̄ ′ is given by

P̄ ′(γ) = iπS∂xγ − iS1;x(1G)−1∂−1
x 〈∂xγ(x),S1(x)〉. (36)

We summarize these facts into the following

Theorem 5. The manifold of potentials Q is endowed with a P-N structure, defined by the
Poisson tensor P̄ ′ (36) and the restriction of the Nijenhuis tensor N2. Explicitly, the restriction
of N2 is given by N0N1 where:

N0(X) = iπS∂x(ad−1
S X)− iS1;x(1G)−1∂−1

x 〈∂x(ad−1
S X),S1(x)〉,

X ∈ F(f0S), N0(X) ∈ F(f1S),

N1(X) = iπS∂x(ad−1
S X)− iSx∂

−1
x 〈∂x(ad−1

S X),S0(x)〉,
X ∈ F(f1S), N0(X) ∈ F(f0S).

Since (N0)∗ = Λ0
±, (N1)∗ = Λ1

± the above theorem gives a geometric interpretation of the

operators Λ0,1
± .

Finally, let us calculate the Poisson bracket for the Poisson structure P̄ ′. If H1, H2 are two
allowed functionals and we introduce the row 〈S1;x,

δH2
δS 〉

t(x) with elements 〈Sr;x, δH2
δS 〉(x), r ≤ n,

r = 1, 3, 5, . . . , we shall obtain

{H1, H2} = i

〈〈
∂x

(
δH1

δS

)
,
δH2

δS

〉〉
+

i

2

∫ +∞

−∞

[〈
S1;x,

δH2

δS

〉t
(x)(1G)−1

(∫ x

−∞
+

∫ x

+∞

)〈
S1;y,

δH1

δS

〉
(y)dy

]
dx.

4.3 The hierarchies of integrable equations

The geometric theory is incomplete without giving (at least partially) the hierarchies of equations
(vector fields) that correspond to the P-N structure described in the above theorem, that is the
fields that are fundamental for the P-N structure. In order to discuss this issue let us start with
the fundamental fields for the P-N structure in the general case (without reductions). As it is
known, see [10], the fields of the type XH(S) = [H,S], H ∈ h are fundamental for the P-N
structure. This is because the original tensors P , Q (see (19)) are covariant with respect to the
one-parametric group of transformations

ϕHt (S) = Ad(exp tH)S, H ∈ h, t ∈ R,

and the submanifold N is invariant with respect to ϕHt . The one-parametric group ϕHt corre-
sponds to the vector fields XH which are tangent to N . According to the theory of the P-N
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manifolds, if X is a fundamental field then all the fields NpX, p = 1, 2, . . . are also fundamental
and commute, that is they have zero Lie brackets. Thus to each H ∈ h corresponds a hierarchy of
fundamental fields Nk[H,S] and we obtain n−1 independent families of fundamental fields. For
different p and different H ∈ h the fields from these families also commute. As a matter of fact
this is commonly referred to as ‘the geometry’ behind the properties of the hierarchies (8). We
can cast these hierarchies in a different form. Using the expression (21) and taking into account
that ad−1

S adS H = πS(H) after some simple transformations in which we use the properties of
the Killing form and Proposition 1 we get

N(XH)(S) = iπS∂x(πS(H))− iSxG
−1∂−1

x 〈∂x(πS(X)),S(x)〉
= −iSxG

−1〈H,S(±∞)〉 = −SxG−1〈H, iS(±∞)〉. (37)

The last expression shows that N(XH)(S) is a linear combination of the fields S1;x = Sx, S2;x =
(S2)x, . . . , Sn−1;x = (Sn−1)x. Since the evolution equations corresponding to the fields XH are
linear one can say that the hierarchies of the fundamental fields that correspond to nonlinear
equations are generated by the above vector fields. Now, let us assume that one has reductions
as in the above and let us first consider what happens when we restrict to i su(n). In that case
we must take H ∈ su(n), that is, iH must be a diagonal, traceless real matrix. Now we can see
that the coefficients in front of the fields Sk;x are real since su(n) is a compact real form of sl(n)
and on it the Killing form is real so both G and 〈H, iS(±∞)〉 are real.

When we have the additional restriction defined by the automorphism h the situation is
more complicated. Since h(S) = −S and h(H) = H for any H ∈ h we have h(XH) = −XH so
XH ∈ F(1h⊥S ). Thus N(XH) ∈ F(0h⊥S ) and more generally for p = 0, 1, 2, . . .

N2pXH = (N0N1)pXH ∈ F(1h⊥S ), N2p+1XH = (N1N0)pN1XH ∈ F(0h⊥S ). (38)

Remark 11. The fact that N(XH) ∈ F(0h⊥S ) can also be seen easily from (37). Indeed, because
H is an element of the Cartan subalgebra it is orthogonal to all elements of f1 and in (37) we
have a linear combination of the elements Sm with odd index m, that is −SxG−1〈H, iS(±∞)〉 =
−S1;x

1G−1〈H, iS1(±∞)〉.

Thus when we have a reduction defined by the automorphism h the first of the series in (38)
consists of vector fields tangent to the manifold Q while the vector fields from the second series
are not tangent to Q.

Naturally, the vector fields from the first series are the candidates for being fundamental
fields of the P-N structure on Q and, discarding the first fields in the hierarchies, we see that
we have fields of the type

N2pS2j−1;x = (N0N1)pS2j−1;x.

These are not, however, all the fundamental fields that we can produce. The fields of the
type NS2j;x are fundamental for N and hence are fundamental for N2 also. Besides, since
S2j;x ∈ F(0h⊥S ) we have NS2j;x ∈ F(1h⊥S ). As easily checked, the fields NS2j;x are tangent to Q.

Thus, finally, the hierarchies of the the fundamental fields of the P-N structure when we
restrict to Q are generated by the fields

N2pS2j−1;x = (N0N1)pS2j−1;x, N2p+1S2l;x = (N0N1)pN0S2l;x,

1 ≤ j ≤ k, 1 ≤ l ≤ s, p = 0, 1, 2, . . . ,

where k and s are such that 2k − 1 is the largest odd number less than n and 2s is the largest
even number less than n. These numbers define the sizes of the Gram matrices 0G and 1G. For
example, in the case of the algebra sl(3,C), we have the fields

N2pSx = (N0N1)pSx, N2p+1(S2)x = (N0N1)pN0(S2)x, p = 0, 1, 2 . . . . (39)
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These fundamental fields give rise to hierarchies of integrable equations of the type St = F (S)
where F (S) is a finite linear combination of the fundamental fields (39), see [7].

5 Conclusions

We have been able to show that the geometric interpretation known for the the recursion opera-
tors related to the generalized Zakharov–Shabat system on the algebra sl(n,C) in pole gauge
holds also in the presence of Z2×Z2 reductions of certain classes and we have explicitly calculated
the recursion operators. It is an interesting question whether analogous results could be obtained
for Zakharov–Shabat type systems on the other classical Lie algebras.
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