Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 8 (2012), 082, 10 pages      arXiv:1210.7416      https://doi.org/10.3842/SIGMA.2012.082
Contribution to the Special Issue “Superintegrability, Exact Solvability, and Special Functions”

Solutions of the Dirac Equation in a Magnetic Field and Intertwining Operators

Alonso Contreras-Astorga a, David J. Fernández C. a and Javier Negro b
a) Departamento de Física, Cinvestav, AP 14-740, 07000 México DF, Mexico
b) Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47071 Valladolid, Spain

Received July 31, 2012, in final form October 17, 2012; Published online October 28, 2012

Abstract
The intertwining technique has been widely used to study the Schrödinger equation and to generate new Hamiltonians with known spectra. This technique can be adapted to find the bound states of certain Dirac Hamiltonians. In this paper the system to be solved is a relativistic particle placed in a magnetic field with cylindrical symmetry whose intensity decreases as the distance to the symmetry axis grows and its field lines are parallel to the xy plane. It will be shown that the Hamiltonian under study turns out to be shape invariant.

Key words: intertwining technique; supersymmetric quantum mechanics; Dirac equation.

pdf (468 kb)   tex (170 kb)

References

  1. Bagrov V.G., Samsonov B.F., Darboux transformation and elementary exact solutions of the Schrödinger equation, Pramana J. Phys. 49 (1997), 563-580.
  2. Castaños O., Frank A., López R., Urrutia L.F., Soluble extensions of the Dirac oscillator with exact and broken supersymmetry, Phys. Rev. D 43 (1991), 544-547.
  3. Contreras-Astorga A., Fernández C. D.J., Supersymmetric partners of the trigonometric Pöschl-Teller potentials, J. Phys. A: Math. Theor. 41 (2008), 475303, 18 pages, arXiv:0809.2760.
  4. Cooper F., Khare A., Sukhatme U., Supersymmetry and quantum mechanics, Phys. Rep. 251 (1995), 267-385, hep-th/9405029.
  5. de Lima Rodrigues R., Generalized ladder operators for the Dirac-Coulomb problem via SUSY QM, Phys. Lett. A 326 (2004), 42-46, hep-th/0311091.
  6. Debergh N., Pecheritsin A.A., Samsonov B.F., Van den Bossche B., Darboux transformations of the one-dimensional stationary Dirac equation, J. Phys. A: Math. Gen. 35 (2002), 3279-3287, quant-ph/0111163.
  7. Fernández C. D.J., New hydrogen-like potentials, Lett. Math. Phys. 8 (1984), 337-343.
  8. Fernández C. D.J., Fernández-García N., Higher-order supersymmetric quantum mechanics, AIP Conf. Proc. 744 (2005), 236-273, quant-ph/0502098.
  9. Griffiths D.J., Introduction to electrodynamics, 3rd ed., Addison-Wesley, 1999.
  10. Ioffe M.V., Kuru S., Negro J., Nieto L.M., SUSY approach to Pauli Hamiltonians with an axial symmetry, J. Phys. A: Math. Gen. 39 (2006), 6987-7001, hep-th/0603005.
  11. Jakubsky V., Nieto L.M., Plyushchay M.S., Klein tunneling in carbon nanostructures: a free-particle dynamics in disguise, Phys. Rev. D 83 (2011), 047702, 4 pages, arXiv:1010.0569.
  12. Jakubsky V., Plyushchay M.S., Supersymmetric twisting of carbon nanotubes, Phys. Rev. D 85 (2012), 045035, 10 pages, arXiv:1111.3776.
  13. Junker G., Roy P., Conditionally exactly solvable potentials: a supersymmetric construction method, Ann. Physics 270 (1998), 155-177, quant-ph/9803024.
  14. Khare A., Supersymmetry in quantum mechanics, AIP Conf. Proc. 744 (2005), 133-165, math-ph/0409003.
  15. Mielnik B., Factorization method and new potentials with the oscillator spectrum, J. Math. Phys. 25 (1984), 3387-3389.
  16. Nieto L.M., Pecheritsin A.A., Samsonov B.F., Intertwining technique for the one-dimensional stationary Dirac equation, Ann. Physics 305 (2003), 151-189, quant-ph/0307152.
  17. Pozdeeva E., Schulze-Halberg A., Darboux transformations for a generalized Dirac equation in two dimensions, J. Math. Phys. 51 (2010), 113501, 15 pages, arXiv:0904.0992.
  18. Rosas-Ortiz J.O., New families of isospectral hydrogen-like potentials, J. Phys. A: Math. Gen. 31 (1998), L507-L513, quant-ph/9803029.
  19. Sadiku M.N.O., Elements of electromagnetics, 5th ed., The Oxford Series in Electrical and Computer Engineering, Oxford University Press, New York, 2009.
  20. Sukumar C.V., Supersymmetry and the Dirac equation for a central Coulomb field, J. Phys. A: Math. Gen. 18 (1985), L697-L701.
  21. Sukumar C.V., Supersymmetry, factorisation of the Schrödinger equation and a Hamiltonian hierarchy, J. Phys. A: Math. Gen. 18 (1985), L57-L61.

Previous article  Next article   Contents of Volume 8 (2012)