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1 Introduction

This work follows those of G. Dito [3] (motivated by quantum field theory [4, 5, 8, 27]), of
R. Léandre [14, 15, 16] and G. Dito, R. Léandre [6]. [3] deals with the deformation quantization
of Moyal on a Hilbert space: the condition of equivalence of the Moyal deformations is that
the chosen perturbation operator is a Hilbert–Schmidt operator but in this case, Moyal and
normal products are not equivalents. [15] choose Hida weighted Fock spaces which are very
small spaces. This gives spaces of continuous functionals on the path space. The inequivalences
of [3] become equivalences. In [6], the Malliavin test algebra is used for the Moyal quantization.
A very important remark in [3] and [6] is that the matrix of the associated Poisson structure is
still bounded.

Our motivation comes from the fact we deal with deformation quantization on an algebra
constituted of Stratonovich chaos. The Connes spaces where our work was possible present some
differences with the Hida spaces of [15]. Indeed, Connes spaces are involved with tensor products
of Banach spaces and Hida spaces are involved with tensor products of Hilbert spaces [11, 17, 23].
In infinite dimension analysis, there are two basic objects [21]:

• an algebraic model;

• a mapping space and a map Ψ defined from algebraic model into the space of functionals
on this mapping space.

Let us recall what is the main difference between the point of view of [6] and the point of view
of [15, 16] and this paper:

• The tools of Malliavin calculus on the Wiener space are used in [6]. The Malliavin test
algebra is constituted of functionals almost surely defined, because there is no Sobolev
imbedding in infinite dimension [19, 20, 22, 25].

• The tools of white noise analysis are used in [15, 16] and in this present work. The
differential operations and the topological structures are seen at the level of the algebraic
model and after they are transported through the map Ψ on a set of functionals which
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are continuous on the Wiener space. [15] and [16] work on the level of the algebraic
model. They use a different normalization of annihilation operators which fit with the
map Stratonovitch chaos and not with the map Wiener chaos. In the present paper, we
transport the algebraic operations of [15, 16] on a functional space by using the map Ψ
Stratonovitch chaos which was not defined in [15] and [16].

Note that E. Getzler [10] was the first to consider another map than the map Wiener chaos.
He used as algebraic space a Connes space and as map Ψ the map of Chen iterated integrals
(see [13] for developments).

After this quick presentation, we shall define in the second part our Connes functional space
on which the multiple Stratonovich integrals or Stratonovich chaos are well defined. We shall
finish this second part by a study of the annihilation operator on our functions space. In the
third part, the deformation quatization of the Poisson bracket by a Moyal product is defined on
the Connes space. The last part is about equivalences of deformations on the Connes space.

2 Gaussian space

In this section we show the existence of a Gaussian measure on a space of continuous loops
which will be our reference measure throughout this work on the algebraic space. We also
define Stratonovich chaos and differentiation operators we use in the next section.

2.1 Gaussian measure

Let us consider the Hilbert spaceH := H(S1,Rd) such that γ ∈ H verifies: ||γ||2 =
∫ 1
0 |γ(s)|2ds+∫ 1

0 |γ̇(s)|2ds. We consider B = {B(t) = (Bi(t)), t ∈ S1} the Wiener process associated to this
Hilbert space. We note (·, t) 7→ G(·, t) the symmetric Green kernel. Let h be a continuous
function from S1 with values in R such that

h(1) =

∫ 1

0
〈h(s), G(s, 1)〉ds+

∫ 1

0
〈ḣ(s),

d

ds
G(s, 1)〉ds.

G is solution of a second-class linear differential equation and the Green kernel of that equation
verifies d2

ds2
G(s, 1) − G(s, 1) = 0 but also d

dsG(1, 1) − d
dsG(0, 1) = 1. We obtain that G(s, 1) =

αe−s+βes where α and β are constants of integration with respect to s. With the conditions in
the limits, we find that α = −1

2(1−e−1)
and β = 1

2(1−e) . Moreover, we know that E[Bi(s)Bj(t)] =

δi,jG(s, t) where δi,j denotes the classical Kronecker symbol. There is µ > 0 such that |G(t, t) +
G(s, s)−2G(s, t)| ≤ µ|t− s|. By standard result on Gaussian measures, for all p > 1, there exist
µp > 0 such that

E
[
|B(t)−B(s)|2p

]
≤ µp|t− s|p.

By the Kolmogorov’s criterion of continuity, we deduct that B is Hoelderian.

2.2 Connes space

Let us consider the Hilbert space H above and a map γ defined from the circle into Rd such
that ∫ 1

0
|γ(s)|2ds+

∫ 1

0
|γ̇(s)|2ds = ||γ||2.
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We consider a symmetric tensor product Fn

Fn =
1

n!

∑
σ∈Gn

Fσ(1) ⊗ · · · ⊗ Fσ(n), (1)

where σ is a permutation of the symmetric group of degree n. Fi are elements of H and ⊗
denotes the standard tensor product on this Hilbert space.
Fn can be seen as a function from (S1)n into (Rd)⊗n. We consider the symmetric Fock space

constituted of F =
∑
Fn∑

(||Fn||⊗̂n)2 <∞, (2)

where we consider the Hilbert norm on the symmetric tensor product H⊗̂n. We can define the
Wiener chaos

〈Fn, B(·)⊗ · · · ⊗B(·)〉W .

It is well defined for the symmetric function Fn ∈ H⊗̂n and the Gaussian process B. The map
Wiener chaos realizes as classical an isomorphism between the symmetric Fock space and the L2

of the Wiener space. The goal of this work is to replace Wiener chaos by Stratonovitch chaos.
Let {ei}1≤i≤d be a canonical basis of Rd. We get by Fourier expansion an orthonormal basis

of the Hilbert space for some λ > 0

γi,k(s) =
cos(2kπs)√
λk2 + 1

ei (3)

if k ≥ 0 and if k < 0

γi,k(s) =
sin(2kπs)√
λk2 + 1

ei. (4)

Consider that (γi)i≥1 is an orthonormal basis of H, then an orthonormal basis of H⊗̂n takes
the form

γN (s) =
1

N !

∑
σ∈SN

γσ(j1)(sσ(1))⊗ · · · ⊗ γσ(jN )(sσ(N)). (5)

⊗ denotes the tensor product on Rd. σ is a permutation of the symmetric group SN of degree N .
For all l = 1, . . . , N

jl ∈ J =
m⋃
p=1

Jnp

and Jnp = {(ip, kp), . . . , (ip, kp)} such that |Jnp | = np and Jni ∩ Jnj = ∅ if i 6= j and we note by

|J| = N =
m∑
p=1

np for np ≤ n.

Remark 1. We shall use the orthonormal basis of the symmetric space H⊗̂n given by (5) to
avoid redundancies in the calculations throughout this work.

Let us consider the space COk,C of function F given by∑
Fn = F,
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where Fn ∈ H⊗̂n is a C∞ function of n parameters such that for all k,C > 0

||F ||k,C =
∑

Cn
∑

Jα∩Jβ=∅
J1∪···∪Jl={1,...,n}

∥∥D(n1)
SJ1
· · ·D(nl)

SJl
Fn
∥∥
∞ :=

∑
Cn||Fn||k <∞,

where Jα = {l1, . . . , lα} with J1∪· · ·∪Jl = {1, . . . , n} and SJα = {sl1 , . . . , slα}. For α ∈ {1, . . . , l}
such that nα ≤ k, we write

D
(nα)
SJα

=
∂
∑
nα

∂snαl1 · · · ∂s
nα
lα

.

Definition 1. We call Connes space the set CO∞− given by

CO∞− =
⋂
k,C

COk,C

for all k,C > 0.

Remark 2. A sequence Fk of CO∞− converges to F in CO∞− if it converges in all COk,C .

Remark 3. Let us compare with the Hida Fock space. We consider the positive selfadjoint
Laplacian ∆ on H and we consider the kth order Sobolev space Hk associated with ∆ + 1. It is

a Hilbert space. We consider the symmetric tensor product H⊗̂nk endowed with its Hilbert

norm ‖ · ‖n̂k . Let us consider a sequence Fn of H⊗̂nk . F =
∑
Fn belongs to W.Nk,C if∑

Cn(‖F‖⊗̂nk )2 is finite. The Hida Fock space W.N∞− is the intersection of all W.Nk,C . By
Cauchy–Schwarz inequality and the Sobolev imbedding theorem we see that the Connes space
is densely continuously imbedded in the Hida Fock space if we consider the standard Hilbert
norm ‖ · ‖⊗nk on the symmetric tensor product of H in the definition of the Hida Fock space.

Definition 2. Let F =
∑
Fn and G =

∑
Gm be two functions of CO∞−. We define Wick

product of F and G by

: F.G : =
∑
m,n

Fn⊗̂Gm. (6)

Fn⊗̂Gm is the symmetric tensor product of the functions Fn and Gm given by

Fn⊗̂Gm =
1

(m+ n)!

∑
σ∈Sn+m

Fn ⊗σ Gm (7)

with Fn and Gm verifying both (1) and (2) and where σ is a permutation of the symmetric
group Sn+m of the space H⊗(m+n).

Theorem 1. The Connes space CO∞− is a topological commutative algebra for the Wick pro-
duct.

Proof. For the algebraic properties of the Wick product on CO∞−, see Theorem 2 and Propo-
sition 2. Let us consider

F =
∑

Fn, G =
∑

Gm.

By (6) and (7) we have

: F.G : =
∑
m,n

1

(m+ n)!

∑
σ∈{1,...,n+m}

Fn ⊗σ Gm.
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Clearly, for all k > 0, there exist k0 > 0 such that

||Fn ⊗σ Gm||k ≤ ||Fn||k0 ||Gm||k0 .

For C > 0, there exist C0 > 0 such that

|| : F.G : ||k,C ≤
∑
n,m

Cm0 C
n
0 ||Fn||k0 ||Gm||k0 .

We deduce

|| : F.G : ||k,C ≤ K||F ||k0,C0 ||G||k0,C0 .

The theorem is proved. �

2.3 Multiple Stratonovich integrals

The theory of Stratonovich chaos was initiated in [12, 24] but no convenient functional space

was defined. Let us consider γN = γ⊗n1
i1,ki1

⊗ · · · ⊗ γ⊗nmim,kim
such that γ

⊗nj
ij ,kij

is the nj-th tensor

product of γij ,kij ∈ H. The associated Stratonovitch chaos takes the form

ISm(γN ) =
∏

1≤j≤m
〈γ⊗njij ,kij

, B(·)⊗ · · · ⊗B(·)〉S , (8)

ISm(γN ) =
∏

1≤j≤m
〈γij ,kij , B(·)〉nj . (9)

We consider multiple Stratonovitch integrals. In Stratonovitch calculus, the Itô formula
reduces to the classical one. So (8) gives (9), because in such a case the Stratonovitch–Itô
formula is nothing else than the ordinary Fubini theorem. We have

ISm(γN ) =
∏

1≤j≤m

(∫
S1

〈γij ,kij (sj), B(sj)〉dsj +

∫
S1

〈γ̇ij ,kij (sj), ◦dB(sj)〉
)nj

,

where we consider a Stratonovitch differential ◦dB(sj). With the integration by parts formula∫
S1

〈γ̇(sj), dB(sj)〉 = −
∫
S1

〈 ∂
2

∂s2j
γ(sj), B(sj)〉dsj ,

we get

ISm(γN ) =
∏

1≤j≤m

(∫
S1

〈γij ,kij (sj), B(sj)〉dsj −
∫
S1

〈 ∂
2

∂s2j
γij ,kij (sj), B(sj)〉dsj

)nj
.

Then

ISm(γN ) =

∫
(S1)N

n1∏
l1=1

· · ·
nm∏

lnm=nm−1+1

(
〈γi1,ki1 (sl1), B(sl1)〉

− 〈 ∂
2

∂s2l1
γi1,ki1 (s11), B(sl1)〉

)
· · ·
(
〈γinm ,kinm (slnm ), B(slnm )〉

− 〈 ∂2

∂s2lnm
γinm ,kinm (slnm ), B(slnm )〉

)
dsl1 · · · dsN ,
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and finally

ISm(γN ) =
∑

J⊂{1,...,N}

∫
(S1)N

(−1)N−|J |
∏
j∈J
l/∈J

〈γij ,kij (sj), B(sj)〉〈
∂2

∂s2l
γil,kil (sl), B(sl)〉dsjdsl.

These considerations, which take care of the difference of behaviour between Stratonovitch
chaos and Wiener chaos into the passage from (8) to (9) allow us to give the next definition and
to generalize by linearity ISm(γN ) in the functions F :=

∑
Fn which are not products. We get

Definition 3. The multiple Stratonovich integrals or Stratonovich chaos takes the form

ISm(F ) =
∑
n

∑
J⊂{1,...,n}

∫
(S1)n

(−1)n−|J |〈D(2)
SJ
Fn(s1, . . . , sn), B(s1)⊗ · · · ⊗B(sn)〉ds1 · · · dsn,

and we put

ISm(F ) :=
∑
n

〈Fn, B ⊗ · · · ⊗B〉S .

Remark 4. For arbitrary small µ > 0, we can choose nµ > 0(nµ depending only on µ) such

that for all n > nµ, we have sups |D
(2)
SJ
Fn(s)| ≤ µn and for all M > 0 such that ||B||∞ :=

sup({|B(s)|, s ∈ S1}) ≤M, we get

sup
{
|〈D(2)

SJ
Fn(s1, . . . , sn), B(s1)⊗ · · · ⊗B(sn)〉 | s1, . . . , sn ∈ S1

}
≤Mnµn.

Then, there is Cµ > 0 such that∑
m≥1
||ISm(F )||∞ ≤

∑
n>nµ

2nµnMn + Cµ <∞,

where we define ||ISm(F )||∞ := sup({|ISm(F )|, ||B||∞ ≤ M}). Then ISm(F ) converges normally.
Clearly the map B 7→ ISm(F ) is continuous.

Theorem 2. The multiple Stratonovich integrals of the Wick product of two functions of CO∞−
is equal to the product of their multiple Stratonovich integrals for all F,G ∈ CO∞−

ISm(: F.G :) = ISm(F ).ISm(G).

Proof. We consider F =
∑
Fn1 and G =

∑
Gn2 two functions of CO∞−. Since

: F.G : =
1

(n1 + n2)!

∑
σ∈Sn1+n2

Fn1 ⊗σ Gn2 ,

we have

ISm(: F.G :) =
∑
n1,n2

ISm

 1

(n1 + n2)!

∑
σ∈Sn1+n2

Fn1 ⊗σ Gn2


=
∑
n1,n2

∑
σ∈Sn1+n2

1

(n1 + n2)!
〈Fn1 ⊗σ Gn2 , B ⊗ · · · ⊗B〉S .

But, by permutating indexes, we have clearly

〈Fn1 ⊗σ Gn2 , B ⊗ · · · ⊗B〉 = 〈Fn1 ⊗Gn2 , B ⊗ · · · ⊗B〉S
× 〈Fn1 , B ⊗ · · · ⊗B〉S〈Gn2 , B ⊗ · · · ⊗B〉S .
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By using Fubini’s theorem, we get

ISm(: F.G :) =
∑
n1,n2

〈Fn1 , B ⊗ · · · ⊗B〉S〈Gn2 , B ⊗ · · · ⊗B〉S

=

(∑
n1

〈Fn1 , B ⊗ · · · ⊗B〉S

)(∑
n2

〈Gn2 , B ⊗ · · · ⊗B〉S

)
= ISm(F ).ISm(G).

The theorem is proved. �

2.4 Differentiation operators

Differentiation operators are annihilation and creation operators. In the case of Hida test
algebra (7), these operators are adjoint operators and then their study is simplified. In our case,
using Banach spaces to define the Connes space makes that it is difficult to give a definition of
an adjoint operator. Then, we just give a description of annihilation operator.

Definition 4. We define annihilation operator on CO∞−, for all h ∈ H and F =
∑
Fn ∈ CO∞−

by

ahF :=
∑∫

S1

[
〈Fn(s1, . . . , s̄i, . . . , sn−1), h(s̄i)〉+ 〈 d

ds̄i
Fn(s1, . . . , s̄i, . . . , sn−1), ḣ(s̄i)〉

]
ds̄i,

where s̄i means that we make a concatenation at this term.

We have

Proposition 1. The Gâteaux derivative of a multiple Stratonovich integrals of a function F ∈
CO∞− is equal to the multiple Stratonovich integral of the annihilation operator of that function.
For all F ∈ CO∞−

DhI
S
m(F ) = ISm(ahF ). (10)

Proof. We have

DhI
S
m(F ) =

∑
n

∑
i

∑
J⊂{1,...,n}

∫
(S1)n

(−1)n−|J |
∑
〈D(2)

SJ
Fn(s1, . . . , si−1, s̄i, si+1, . . . , sn−1),

B(s1)⊗ · · · ⊗ h(s̄i)⊗ · · · ⊗B(sn)〉ds1 · · · dsn

=
∑
n

∑
J⊂{1,...,n−1}

∫
(S1)n−1

(−1)n−|J |−1〈D(2)
SJ
ahF

n(s1, . . . , sn−1),

B(s1)⊗ · · · ⊗B(sn−1)〉ds1 · · · dsn−1.

The result holds. �

Remark 5. Let be h ∈ H. There is C1 > C such that for for all F =
∑
Fn ∈ CO∞−

||ahF ||k,C ≤
∑

Cn1 ||h||||Fn+1||k <∞.

The annihilation operator is continuous on CO∞−.

Proposition 2. The annihilation operator is a derivation for the Wick product on CO∞−. For
all F,G ∈ CO∞−

ah(: F.G :) =: (ahF ).G : + : F.(ahG) : .
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Proof. We have just to show that the map F 7→ ISm(F ) is injective. Indeed, considering (10)
and the fact that ah is a derivation on the algebraic space , it is clear that if F 7→ ISm(F ) is
injective, the proposition is proved.

We suppose that for F ∈ CO∞−, we have ISm(F ) = 0 and for z ∈ C, we put φ(z) = ISm(z.F ).
We get the following power series

φ(z) =
∑
n

∑
J⊂{1,...,n}

∫
(S1)n

(−1)n−|J |〈D(2)
SJ
Fn(s1, . . . , sn), z.B(s1)⊗ · · · ⊗ z.B(sn)〉ds1 · · · dsn

=
∑
n

zn
∑

J⊂{1,...,n}

∫
(S1)n

(−1)n−|J |〈D(2)
SJ
Fn(s1, . . . , sn), B(s1)⊗ · · · ⊗B(sn)〉ds1 · · · dsn.

Since ISm(F ) = 0, we have φ(z) = 0. We deduce that for all n ≥ 0

∑
J⊂{1,...,n}

∫
(S1)n

(−1)n−|J |〈D(2)
SJ
Fn(s1, . . . , sn), B(s1)⊗ · · · ⊗B(sn)〉ds1 · · · dsn = 0

for all h ∈ H. It can be written that∑
J⊂{1,...,n}

∫
(S1)n

(−1)n−|J |〈D(2)
SJ
Fn(s1, . . . , sn), h(s1)⊗ · · · ⊗ h(sn)〉ds1 · · · dsn = 0.

We use Meyer’s isomorphism from C∞(S1,Rd) into C∞([0, 1],Rd) given by

γ :=
∑
i,k

ai,kγi,k 7→
∑
i

∑
k<0

ai,kαkγi,k +
∑
i

ai,oγ̃i,0 +
∑
i

∑
k≥0

ai,k+1α̃kγi,k.

The coefficients ai,k are for fast diminution, γ̃i,0(s) = s.ei with |αk| <∞ for k > 0 and |α̃k| <∞
for k < 0. For all γ we have

∫ 1
0 |γ(s)|2ds <∞ with γ(0) = 0. We deduce∫

0<s1<···<sn<1
F (s1, . . . , sn)h(s1) · · ·h(sn)ds1 · · · dsn = 0

for all h ∈ C∞(S1,Rd), where F is smooth symmetric. F is a smooth symmetric function

F (s1, . . . , sn) =
∑

i1,...,id≥1
F i1···id(s1, . . . , sn)ei1 ⊗ · · · ⊗ eid .

Let us suppose that F 6= 0. Without restriction we can suppose that there exists an ε > 0, there

exist s
(ε)
1 < · · · < s

(ε)
d and i1, . . . , id such that

F i1···id
(
s
(ε)
1 , . . . , s

(ε)
d

)
> ε.

Since F is smooth, there is very small η > 0 such that

F i1···id
(
s
(ε)
1 , . . . , s(ε)n

)
>
ε

2

on the product [s
(ε)
1 − η, s

(ε)
1 ] × · · · × [s

(ε)
d − η, s

(ε)
d ] =

∏
Ik. Then we take set h =

∑
1Ikeik

which give a contradiction. This shows if ISm(F ) = 0, we have necessary F = 0. Thus, the map
F 7→ ISm(F ) is injective and the proposition is proved. �



Deformation Quantization by Moyal Star-Product and Stratonovich Chaos 9

3 Poisson space

The theory of deformation quantization was initiated in [1, 2]. See [7, 18, 26] for reviews and [9]
for basical background. This section gives some properties of the Poisson structure of the Connes
space CO∞−. We make also the quantization deformation of that Poisson structure in Moyal
star-product. We note by K = R or C.

Definition 5. A Poisson structure on CO∞− is given by a K-bilinear map {·, ·} from CO∞− ×
CO∞− into CO∞− such that:

1. {·, ·} is antisymmetric, satisfies the Jacobi identity and verifies the Leibniz rule for the
Wick product of CO∞−.

2. For all k,C, there exists K, k1, C1 such that for all F1, F2 ∈ CO∞− we get

||{F1, F2}||k,C ≤ K||F1||k1,C1 ||F2||k1,C1 .

We note by CO∞−[[~]] the set of formal series with coefficients in the Connes space CO∞−.

Definition 6. A star-product on CO∞−[[~]] is a K[[h]]-bilinear map ?~ on CO∞−[[~]]×CO∞−[[~]]
valued in CO∞−[[~]]. For all F1, F2 ∈ CO∞− we have

F1 ?~ F2 =
∑
r≥0

~r

r!
P r(F1, F2).

For all r ≥ 0, P r is a bilinear map on CO∞− satisfying:

1. P 0(F1, F2) =: F1.F2 : .

2. P 1(F1, F2)− P 1(F2, F1) = 2{F1, F2}.
3. For all r > 0, for all k,C > 0 there are K, k1, C1 > 0 such that for all F1, F2 ∈ CO∞−, we

get

||P r(F1, F2)||k,C ≤ K||F1||k1,C1 ||F2||k1,C1 .

4. For all F1, F2, F3 ∈ CO∞−, we have: F1 ?~ (F2 ?~ F3) = (F1 ?~ F2) ?~ F3.

We call ?~ a deformation of the Poisson bracket on CO∞−.

Definition 7. Two deformation quantizations ?1~ and ?2~ of the same Poisson bracket are said
equivalent if there exists a K[[~]]-linear map T : CO∞−[[~]]→ CO∞−[[~]] expressed as a formal
T = I +

∑
r≥1 ~rTr satisfying:

1. For all r ≥ 1, Tr : CO∞− → CO∞− is a continuous operators and T0 is the identity
operator of CO∞−.

2. For all F,G ∈ CO∞−, we have T (F ?1~ G) = T (F ) ?2~ T (G).

Let us consider ω = (ωij)i,j≥1 a non-degenerate bilinear and antisymmetric form in Rd ⊕Rd.
We define the bilinear and antisymmetric form Ω on H(S1,Rd). For all γ1, γ2 ∈ H

Ω(γ1, γ2) =

∫
S1

ω(γ1(s), γ2(s))ds.

We recall that γi,k are given by (3) and (4). We have

Ω(γi,ki , γj,kj ) =
ωij

Ck2 + 1
δkikj ,
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where δkikj is the Kronecker delta. We note by ωij = (ωij)−1. The Poisson matrix of Ω is
given by

{γi,ki , γj,kj} =
(
Ck2 + 1

)
.ωij .δkikj .

Let us note by aγi,k the annihilation operator associated to γi,k. Then, for all F,G ∈ CO∞−
we have

{F,G} =
∑
m,n

∑
i,j,k

(
Ck2 + 1

)
ωij× : aγi,kF

n.aγj,kG
m : . (11)

Proposition 3. {·, ·} defines a Poisson structure on CO∞− in the sense of Definition 5.

Proof. Since the Wick product is continuous, for all k,C > 0, there are k2, C2 > 0 such that

||{F,G}||k,C ≤
∑
m,n,k

(
Ck2 + 1

)
||aγi,kF

n||k2,C2 ||aγj,kG
m||k2,C2 .

Using integration by parts, there are k3, C3 > 0 large enough such that

||{F,G}||k,C ≤
∑
m,n,k

(
Ck2 + 1

)−1||Fn||k3,C3 ||Gm||k3,C3 .

Then

||{F,G}||k,C ≤
(∑

||Fn||k3,C3

)(∑
||Gn||k3,C3

)(∑ 1

(Ck2 + 1)

)
.

Finally

||{F,G}||k,C ≤ K||F ||k3,C3 ||G||k3,C3 <∞. �

Remark 6. Integration by parts allows us to change the factor (Ck2 + 1) into (Ck2 + 1)−1 in
the proof and give a bounded form of the Poisson bracket. Thus, Ω acts continuously on the
space CO∞−.

Using the Wick product, we can define the powers of the Poisson bracket as following: for
all r ≥ 0 and F,G ∈ CO∞−

P r(F,G) =
∑
n,m

∑
i1,...,ir≥1
j1,...,jr≥1
k1,...,kr≥1

r∏
j=1

(
Ck2j + 1

)
ωi1j1 · · ·ωirjr : aγi1,k1 · · · aγir,krF

n.aγj1,k1 · · · aγjr,krG
m.

Then we have

Definition 8. The Moyal star-product on CO∞− is given by

F ?~ G =: F.G : +
∑
r≥1

~r

r!
P r(F,G). (12)

The Moyal star-product endowed with the symplectic structure of Ω is well defined on CO∞−
in the sense of Definition 6. Then, we have

Theorem 3. The formula (12) defines a deformation quantization of {·, ·} on CO∞− in the
framework of Definition 6.
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Proof. Since the Wick product is continuous, for all k,C > 0 there are k′1, C
′
1 > 0 such that

||P r(F,G)||k,C ≤
∑
m,n,k

∏
j

(Ck2j + 1)||aγi1,k1 · · · aγir,krF
n||k′1,C′1 ||aγj1,k1 · · · aγjr,krG

m||k′1,C′1 .

Using integration by parts, there are k′2, C
′
2 > 0 large enough such that

||P r(F,G)||k,C ≤
∑ r∏

j

(Ck2j + 1)−1||Fn||k′2,C′2 ||G
m||k′2,C′2 .

Without loss of generality, we get

||P r(F,G)||k,C ≤
(∑

||Fn||k′2,C′2
)(∑

||Gm||k′2,C′2
)∑ r∏

j

1

(Ck2j + 1)

 .

Then

||P r(F,G)||k,C ≤ K ′||F ||k′2,C′2 ||G||k′2,C′2 <∞.

It remains to check the algebraic properties. It is enough to prove them if we consider finite
sum of γN because P r apply the product of this space on itself and because by Stone–Weierstrass
theorem the set of finite sum of γN is dense in C0∞−. But in [15], these algebraic properties
were proved where a completion of Hida type of the set of finite sum (by using an Hida Fock
space) was chosen.

The result holds. �

Remark 7. Since the map F 7→ ISm(F ) is injective, we can use the dictionary between the
multiple Stratonovich integrals and the algebraic model CO∞−. Then, the formula (12) becomes

ISm(F ) ?~ I
S
m(G) = ISm(F ).ISm(G) +

∑
r≥1

~r

r!
P r(ISm(F ), ISm(G)).

On ISmF we choose the Banach norm of F .

4 Equivalence of deformation quantization

Using the model of [3],we show that there are many similarities between the Connes space we
use here and the Hida test algebra of [15]. Let us consider the Hilbert space H = H(S1,Rd) of
functions γ defined from the circle into Rd such that

||γ||2 =

∫ 1

0
|γ(s)|2ds+

∫ 1

0

∣∣∣∣ ddsγ(s)

∣∣∣∣2 ds <∞.
Let (ei)1≤i≤d be the canonical basis of Rd. Considering the Fourier basis of H defined

by (3) and (4), we can define on the Hilbert space H⊕H∗ a Poisson structure by Ω(Γ1,Γ2) =∫ 1
0 ω(Γ1(s),Γ2(s))ds +

∫ 1
0 ω( ddsΓ1(s),

d
dsΓ2(s))ds, where ω = (ωij)i,j≥1 is a non-degenerated bi-

linear and antisymmetric form of Rd ⊕ Rd such that for all i 6= j

ωij = 0, ωii∗ = 1, ωi∗j∗ = 0, ωi∗i = −1,

and note Γj∈{1,2} = γj ⊕ γ∗j ∈ H⊕H∗. We get that Ω acts continuously on CO∞−×CO∞− and
its Poisson matrix is bounded. Then, the model of [3] holds for the rest of the section.
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Definition 9. For all γ ⊕ γ∗ ∈ H ⊕H∗, we call Wick exponentials, the maps Φγ,γ∗ defined by

h⊕ h∗ ∈ H ⊕H∗ 7→ Φγ,γ∗(h, h
∗) := exp(〈h, γ〉+ 〈h∗, γ∗〉).

We get a classical result for Hida calculus given by

Proposition 4. The Wick exponentials are dense in CO∞−.

Proof. We shall note by COW
k,C the adherence of Wick exponentials in COk,C and by COn

k,C the
space of the product of n homogeneous polynomials of COk,C . We are going to use recurrence
on the holomorphic function

F (λ) = exp

[
λ

(∫
S1

〈Γ(s), T (s)〉ds+

∫
S1

〈 d
ds

Γ(s), dT (s)〉
)]

,

where Γ = γ ⊕ γ∗ and T = B ⊕B∗. Then, F (λ) can be written under the form

F (λ) =
∑
n≥0

λn

n!

(∫
S1

〈Γ(s), T (s)〉ds+

∫
S1

〈 d
ds

Γ(s), dT (s)〉
)n

,

and obviously F (λ) ∈ COW
k,C . With Cauchy’s differentiation formula

F (n)(λ) =
n!

2iπ

∫
S1

F (z)

(z − λ)n+1
dz.

It is clear that for all n ≥ 0(∫
S1

〈Γ(s), T (s)〉ds+

∫
S1

〈 d
ds

Γ(s), dT (s)〉
)n
∈ COW

k,C .

Now, it remains just to prove that all products of n homogeneous polynomials are in the adher-
ence. We consider for |z| < 1 the holomorphic function

Fn+1(z) =

∫
S1

〈Γ(s) + z.Γ1(s), T (s)〉ds+

∫
S1

(
〈 d
ds

Γ(s) + z.
d

ds
Γ1(s), dT (s)〉

)n+1

.

Fn+1 is clearly in COW
k,C and by Cauchy’s differentiation formula

F ′n+1(z) =
1

2iπ

∫
S1

F (u)

(u− z)2
du.

Then F ′n+1 is also a function of COW
k,C . By computation, we get

F ′n+1(z)=(n+ 1)

(∫
S1

〈Γ1(s), T (s)〉ds+

∫
S1

d

ds
〈Γ1(s), dT (s)〉

)
.Fn(z).

Then

F ′n+1(0) = (n+ 1)

(∫
S1

〈Γ1(s), T (s)〉ds+

∫
S1

d

ds
〈Γ1(s), dT (s)〉

)
×
(∫

S1

〈Γ(s), T (s)〉ds+

∫
S1

〈 d
ds

Γ(s), dT (s)〉
)n

.

Thus, we proved the recurrence relation in the order (n+ 1). We have

∑ n∏
i=1

∫
S1

〈Γi(s), T (s)〉ds+

∫
S1

〈 d
ds

Γi(s), dT 〉 ∈ COW
k,C .
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By the theorem of Stone–Weierstrass, for all k,C > 0 we get that

ISm(F ) ∈ COW
k,C ,

because F is a limit of elements of COn
k,C . We conclude that⋂

k,C

COW
k,C = COW

∞− = CO∞−.

The proposition is proved. �

According to [15], we choose the operator A : γi,k 7→ αkγi,k such that |αk| ≤ K|k|µ for some
µ > 0. We put

EA
(
ISm(F ), ISm(G)

)
=
∑
i,k≥1

[
αkDγi,kI

S
m(F )Dγ∗i,k

ISm(G) + αkDγi,kI
S
m(G)Dγ∗i,k

ISm(F )
]
,

where Dγi,k(resp. Dγ∗i,k
) is the Gâteaux derivative at γi,k (resp. γ∗i,k) in the direction H (resp.

H∗ ∼ H).

Theorem 4. EA is continuous from CO∞− × CO∞− into CO∞−.

Proof. For all k,C > 0, integrating by parts we can find k2, C2 > 0 large enough such that∥∥EA(ISm(F ), ISm(G)
)∥∥
k,C
≤
∑(

Ck2 + 1
)−1∥∥ISm(F )

∥∥
k2,C2

∥∥ISm(G)
∥∥
k2,C2

<∞.

This proves the theorem. �

We put

CA1
(
ISm(F ), ISm(G)

)
=
{
ISm(F ), ISm(G)

}
+ EA

(
ISm(F ), ISm(G)

)
.

Using (11), we get

CA1 (ISm(F ), ISm(G)) =
∑
i,k≥1

[
(αk + 1)Dγi,kI

S
m(F )Dγ∗i,k

ISm(G)

+ (αk − 1)Dγi,kI
S
m(G)Dγ∗i,k

ISm(F )
]
.

Then, we put in the sense of differential operators

CAr
(
ISm(F ), ISm(G)

)
=
(
CA1
)r(

ISm(F ), ISm(G)
)
.

We get

CAr
(
ISm(F ), ISm(G)

)
=

∑
i1,...,ir≥1
k1,...,kr≥1

r∏
l=1

(αkl + 1)D
γ]i1,k1

· · ·D
γ]ir,kr

ISm(F )

× (αkl − 1)D
γ]i1,k1

· · ·D
γ]ir,kr

ISm(G).

We note by γ]i,k = γi,k or γ∗i,k to avoid additional terms due to the symmetry. Clearly, CAr is
continuous from CO∞− ×CO∞− into CO∞−. We can find k0, C0 > 0 large enough and K > 0,
by referring to the proof of Theorem 4, such that∥∥CAr (ISm(F ), ISm(G)

)∥∥
k,C
≤ K

∥∥ISm(F )
∥∥
k0,C0

∥∥ISm(G)
∥∥
k0,C0

<∞.
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Definition 10. We put

ISm(F ) ?A~ I
S
m(G) = ISm(F ).ISm(G) +

∑
r≥1

~r

r!
CAr
(
ISm(F ), ISm(G)

)
. (13)

(13) defines a deformation quantization of {·, ·} in the sense of Definition 6.

Finally, we have

Proposition 5. ?A~ and ?~ are equivalent on the Connes space CO∞−.

Proof. We put as in [3], for all ISm(F ) ∈ CO∞−

T1I
S
m(F ) = −

∑
i,k≥1

αkDγi,kDγ∗i,k
ISm(F ).

Then, integrating by parts ∀ k,C > 0, there exist k1 > 0 and C1 > 0 large enough such that∥∥T1ISm(F )
∥∥
k,C
≤
∑

(Ck2 + 1)−1
∥∥ISm(F )

∥∥
k1,C1

<∞.

So T1 is continuous on CO∞−. We put T := exp(~T1). T is the formal series of operators

TISm(F ) =
∑
r≥0

(−~)r

r!

∑
i1,...,ir≥1
k1,...,kr≥1

r∏
l=1

αklDγi1,k1
· · ·Dγir,kr

Dγ∗i1,k1
· · ·Dγ∗ir,kr

ISm(F ),

where we have seen that

T r(ISm(F )) :=
∑

i1,...,ir≥1
k1,...,kr≥1

r∏
l=1

αklDγi1,k1
· · ·Dγir,kr

Dγ∗i1,k1
· · ·Dγ∗ir,kr

ISm(F ).

Since T r = T1 ◦ · · · ◦ T1︸ ︷︷ ︸
r-times

, we get that T r is continuous and as a result T is continuous.

We note by 〈·, ·〉c : H ×H∗ → R the canonical pairing between H and H∗. Then, according
to [3], we have the formula

Φγ1,γ∗1
?A~ Φγ2,γ∗2

= exp
[
~
(
〈(A+ I)γ1, γ

∗
2〉c + 〈(A− I)γ2, γ

∗
1〉c
)]

Φγ1+γ2,γ∗1+γ
∗
2
.

Then as in [3], we get

T
(
Φγ1,γ∗1

?A~ Φγ2,γ∗2

)
= T (Φγ1,γ∗1

) ?~ T (Φγ2,γ∗2
).

This proves the proposition since the Wick exponentials are dense in the Connes space
CO∞−. �

Remark 8. In the Connes space CO∞− endowed with Stratonovich chaos, unlike in [3], Moyal
star-product and normal star-product(A = I) are obviously equivalent. We can suppose that
equivalences of [15] with the Hida test functional space remain true because the Connes spa-
ce CO∞− is very small.
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[13] Léandre R., Connes–Hida calculus in index theory, in XIVth International Congress on Mathematical
Physics, World Sci. Publ., Hackensack, NJ, 2005, 493–497.
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