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Abstract. This paper deals with the Lagrangian analogue of symplectic or point reduc-
tion by stages. We develop Routh reduction as a reduction technique that preserves the
Lagrangian nature of the dynamics. To do so we heavily rely on the relation between Routh
reduction and cotangent symplectic reduction. The main results in this paper are: (i) we
develop a class of so called magnetic Lagrangian systems and this class has the property
that it is closed under Routh reduction; (ii) we construct a transformation relating the mag-
netic Lagrangian system obtained after two subsequent Routh reductions and the magnetic
Lagrangian system obtained after Routh reduction w.r.t. to the full symmetry group.
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1 Introduction

It is not a surprise that the bigger part of the recent literature on the geometric description of
mechanical systems deals in some way or another with symmetry. The benefits of exploiting
symmetry are indeed self-evident: The equations of motion of a mechanical system which exhibits
a symmetry can be reduced to a new set of equations with fewer unknowns, possibly easier to
solve. In particular, the Hamiltonian description of such systems has attracted most of the
attention in the literature, and the important role played by Poisson manifolds and symplectic
structures has been strongly emphasized (see e.g. [12] and references therein). Less well-known is
the process of symmetry reduction for Lagrangian systems. Much like on the Hamiltonian side,
there are in fact two different paths that lead to two different Lagrangian reduction theories.
Roughly speaking, the invariance of the Lagrangian leads via Noether’s theorem to a set of
conserved quantities (the momenta). Whether or not one takes these conserved quantities into
account in the reduction process leads to either the Routh or the Lagrange–Poincaré reduction
method (see e.g. [4, 5, 6, 10, 14, 15]).

In this paper we deal with Routh’s reduction procedure. In a way, one restricts the attention
to only those solutions of the system with a prescribed value of momentum. The price one
has to pay is that the new symmetry group (after restriction) is in general only a subgroup of
the symmetry group of the original Lagrangian system. In [10] it was pointed out that Routh
reduction can be interpreted as a special case of symplectic reduction, which moreover preserves
the Lagrangian nature of the system.

In the current paper we will investigate those aspects of the theory that are related to re-
duction in multiple stages. In case the symmetry group of the system has a normal subgroup,
one can indeed first perform a Routh reduction by means of this subgroup. It is then natural
to ask whether the reduced system is invariant under some residual, as yet to be determined
group, and whether a subsequent second Routh reduction leads to results which are equivalent
to direct reduction by the full group. The answer to the same question, but for the above
mentioned Lagrange–Poincaré reduction theory, is by now well-known [4]. It can be understood
in the following sense: After each reduction step one remains in the category of so-called ‘La-
grangian systems on Lie algebroids’ and symmetry reduction can be phrased in terms of Lie
algebroid morphisms (see e.g. [5] and the references therein). Equivalently, one may use a con-
nection to decompose the Lie algebroid structure at each stage. The corresponding category
is then the so-called category of ‘Lagrange–Poincaré bundles’ from [4], while the corresponding
‘Lagrange–Poincaré morphisms’ do the reduction.

It is natural to ask whether or not such a category of systems exists also for Routh reduction
(it is mentioned as an open problem in [12]). The candidate we propose (in Section 3) is the class
of what we call ‘magnetic Lagrangian systems’. We show in Sections 4 and 5 that this class has
the property that it is closed under Routh reduction, i.e. that after each step of a reduction in
stages the reduced system remains in the class of magnetic Lagrangian systems. As in [10], we
heavily rely on a generalized version of cotangent symplectic reduction. In Section 6 we apply
the framework of magnetic Lagrangian systems to reduction in several stages, where the first
stage consists of Routh reduction by a normal subgroup of the overall symmetry group. We end
the paper with some illustrative examples in the final section.

2 Preliminaries on Routh reduction

Definition 1. A Lagrangian system is a pair (Q,L) with Q a manifold and L a function on TQ.
The manifold Q is the configuration space and L is called the Lagrangian. The dimension of Q
is called the number of degrees of freedom of the Lagrangian system. A Lagrangian system is



Routh Reduction by Stages 3

of mechanical type if for arbitrary vq ∈ TqQ, the Lagrangian can be written as

L(vq) =
1

2
〈〈vq, vq〉〉Q − V (q),

with 〈〈·, ·〉〉Q a Riemannian metric on Q and V a function on Q, called the potential energy of

the Lagrangian. The function 1
2 〈〈vq, vq〉〉Q is called the kinetic energy.

We are interested in the Euler–Lagrange equations associated to a Lagrangian system. These
equations are necessary conditions for a curve q(t) : I ⊂ R→ Q to extremize the action integral∫
I L(q(t), q̇(t))dt. In a local coordinate chart (qi) on Q the Lagrangian L is a function of (qi, vi)

and the Euler–Lagrange equations are

d

dt

(
∂L

∂vi

)
− ∂L

∂qi
= 0, q̇i = vi, i = 1, . . . , n = dimQ.

Routh reduction is a reduction technique for Lagrangian systems that are invariant under the
action of a symmetry group. In classical textbooks, it is a step-by-step procedure that describes
the construction of a new Lagrangian function with fewer degrees of freedom.

Before we can formulate Routh reduction, we fix notations for the action of a Lie group on
an arbitrary manifold M and related concepts.

Actions of Lie groups and principal bundles. When a Lie group G is given, g denotes
the Lie algebra of G and exp the exponential map from g to G. The adjoint action of G on g is
denoted by Ad and the coadjoint action of G on g∗ by Ad∗.

Definition 2.

1. A right action of a group G on a manifold M is denoted by ΨM : G×M →M ; (g,m) 7→
ΨM
g (m) = mg. Throughout this paper we only consider free and proper actions of Lie

groups on manifolds.

2. The infinitesimal action is given by ψMm : g→ TmM ; ξ 7→ d/dε|0(m exp εξ).

3. For any element ξ ∈ g one can consider the fundamental vector field ξM , defined pointwise
as ξM (m) = ψMm (ξ).

4. The map defined pointwise as the dual to ψMm is denoted by (ψM )∗ : T ∗M → g∗.

5. The lifted action ΨTM on TM of ΨM is given by ΨTM : G × TM → TM ; (g, vm) 7→
TΨM

g (vm).

6. The lifted action ΨT ∗M on T ∗M is given by ΨT ∗M : G × T ∗M → T ∗M ; (g, αm) 7→
T ∗ΨM

g−1(αm).

With these notations, ξTM denotes a fundamental vector field on TM determined by the
lifted action. It follows that ξTM is the complete lift of ξM .

Every right action ΨM gives rise to a left action ΦM : ΦM
g (m) = ΨM

g−1(m). We only consider
right actions. This is not a true restriction since one may reformulate the main results for left
actions if needed.

The orbit space M/G of a free and proper action is a manifold and π : M → M/G carries
the structure of a principal G-bundle. Throughout the paper [m]G denotes a point in the orbit
space M/G, i.e. it is the orbit through m ∈ M . Every tangent vector in the kernel of Tπ is of
the form ξM (m) for some ξ ∈ g. These vectors are called vertical and form a distribution which
we call the vertical distribution V π = kerTπ.

Definition 3. A principal connection on a principal G-bundle is a g-valued 1-form A satisfying
two conditions:



4 B. Langerock, T. Mestdag and J. Vankerschaver

1) it is equivariant, i.e. Ψ∗gA = Adg−1 · A for any g ∈ G, and

2) for ξ ∈ g arbitrary, A(ξM ) = ξ.

The kernel of A determines a right invariant distribution on M which is a complement of
the vertical distribution. It is therefore called the horizontal distribution of A and is typically
denoted by HA ⊂ TM . On the other hand, any right invariant distribution H satisfying
H ⊕ V π = TQ determines a principal connection, see [8].

We denote by 〈f,A〉, where f is a g∗-valued function on M , the 1-form on M pointwise
defined by

vm 7→ 〈f(m),A(m)(vm)〉 ∈ R.

The cotangent vector 〈f,A〉(m) ∈ T ∗mM is often denoted by 〈f(m),A(m)〉. In particular, if
f = µ ∈ g∗ is constant, then 〈µ,A〉 is a 1-form on M .

Routh reduction.

Definition 4. Let (Q,L) denote a Lagrangian system and assume that the configuration space
is equipped with an action ΨQ. The Lagrangian system (Q,L) is G-invariant if L is invariant
under the lifted action ΨTQ, i.e. L(ΨTQ

g (vq)) = L(vq) for arbitrary vq ∈ TQ and g ∈ G.

If a mechanical Lagrangian system is G-invariant then the kinetic energy metric 〈〈·, ·〉〉Q and

the potential energy V are both invariant under the pull-back of ΨQ
g , for arbitrary g.

Definition 5.

1. For a Lagrangian system (Q,L), the Legendre transform FL : TQ → T ∗Q is the fibre
derivative of L, i.e. for arbitrary vq, wq ∈ TQ

〈FL(vq), wq〉 =
d

du

∣∣∣∣
u=0

L(vq + uwq).

The Lagrangian is hyperregular if FL is a diffeomorphism.

2. For a G-invariant Lagrangian system (Q,L), the momentum map JL : TQ → g∗ is the
map (ψQ)∗ ◦ FL, i.e. for arbitrary vq ∈ TQ and ξ ∈ g

〈JL(vq), ξ〉 = 〈FL(vq), ξQ(q)〉.

3. Given a G-invariant mechanical Lagrangian system (Q,L), and a point q in Q. The inertia
tensor Iq is a metric on g defined by Iq(ξ, η) = 〈〈ξQ(q), ηQ(q)〉〉Q.

The momentum map associated to a G-invariant Lagrangian system satisfies the following
two important properties:

1. It is conserved along the solutions of the Euler–Lagrange equations, i.e. if q(t) is a solution
to the Euler–Lagrange equations, then d

dt (JL(q̇(t))) = 0.

2. It is equivariant w.r.t. the action ΨTQ and the coadjoint action Ad∗ on g∗, i.e.

JL(ΨTQ
g (vq)) = Ad∗g(JL(vq))

for arbitrary g ∈ G and vq ∈ TQ.

Definition 6. Given a G-invariant Lagrangian system (Q,L) and an arbitrary vector vq ∈ TQ.

1. The map JL|vq : g→ g∗ is the map ξ 7→ JL(vq + ξQ(q)).

2. The Lagrangian system (Q,L) is G-regular if JL|vq is a diffeomorphism for every vq ∈ TQ.
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Every G-invariant mechanical Lagrangian system is G-regular. To show this, remark that for
a mechanical Lagrangian system

〈JL|vq(ξ), η〉 = 〈〈vq, ηQ(q)〉〉Q + 〈〈ξQ(q), ηQ(q)〉〉Q .

Hence JL|vq(ξ) = JL|vq(0)+Iq(ξ) is an affine map, whose linear part is determined by the inertia
metric on g.

Proposition 1. Consider a G-invariant and G-regular Lagrangian system (Q,L) and fix a re-
gular value µ ∈ g∗ of the momentum map JL. Let Gµ denote the isotropy subgroup of µ w.r.t.
the coadjoint action of G on g∗, i.e. g ∈ Gµ iff Ad∗gµ = µ.

1. The submanifold iµ : J−1
L (µ) → TQ is Gµ-invariant and the restricted action of Gµ

on J−1
L (µ) is free and proper.

2. The quotient manifold J−1
L (µ)/Gµ is diffeomorphic to the fibred product T (Q/G) ×Q/G

Q/Gµ over Q/G.

The first statement is a direct consequence of the equivariance of JL. We postpone a proof
of the second statement (Proposition 7, page 15).

We are now ready to describe a preliminary version of Routh reduction where the symmetry
group G is Abelian and the bundle Q → Q/G is trivial, so that we can choose a connection A
with vanishing curvature. Since G is Abelian, we have that the isotropy subgroup Gν for every
ν ∈ g∗ is the entire group G, and in particular T (Q/G)×Q/G Q/Gν is nothing but T (Q/G).

Theorem 1 (Routh reduction – Abelian version). Let G be Abelian and let A be a connection
on Q with vanishing curvature. The Routh reduction procedure of a G-invariant and G-regular
Lagrangian system (Q,L) consists of the following steps.

1. Fix a regular value µ of the momentum map JL and consider the submanifold J−1
L (µ).

2. Compute the restriction of the G-invariant function L−〈µ,A〉 to the level set J−1
L (µ). Let

L̃ denote its projection to the quotient manifold T (Q/G) ∼= J−1
L (µ)/G.

Every solution of the Euler–Lagrange equations of the Lagrangian system (Q/G, L̃) is the pro-
jection of a solution of the Euler–Lagrange equations of the original system (Q,L) with mo-
mentum µ. Conversely, every solution of the Euler–Lagrange equations of the Lagrangian sys-
tem (Q,L) with momentum µ projects to a solution of the Euler–Lagrange equations of the
system (Q/G, L̃).

One may also find a description of global Abelian Routh reduction in [3].
Example: the spring pendulum. The system consists of a point particle with mass m

moving in a horizontal plane, and attached to the origin by means of a spring with spring
constant k. We choose polar coordinates (r, θ) for this system, so that the mechanical Lagrangian
is given by L = 1

2m(ṙ2 + r2θ̇2)− 1
2kr

2. This system is clearly invariant under translations in the

θ-direction, given by Ψa(r, θ) = (r, θ + a). The momentum map for this action is JL = mr2θ̇
and the Euler–Lagrange equations are

mr̈ −mrθ̇2 + kr = 0,

d

dt
(mr2θ̇) = 0.

Let us fix a regular value 0 6= µ = mr2θ̇ for the momentum map and let A = dθ be the standard
connection with vanishing curvature. The Routhian is obtained from

L̃(r, ṙ) = (L− µθ̇)|mr2θ̇=µ =
1

2
mṙ2 − 1

2
kr2 − 1

2

µ2

mr2
.
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The Euler–Lagrange equation for L̃ is mr̈ = −kr + µ2

mr3
and solutions of this equations are in

correspondence to solutions of the Euler–Lagrange equations for L with momentum µ.
Routh reduction can be extended to more general contexts, including non-Abelian group

actions [14], Lagrangians of non-mechanical type [2, 6], Lagrangians invariant up to a total time
derivative [10] and Lagrangians that are not G-regular [11]. Additional complications arise in
these cases: for instance, if the bundle Q→ Q/G is not trivial, the reduced system is typically
subjected to an additional force term associated to the curvature of the chosen connection. On
the other hand, if the symmetry group is not Abelian, the quotient space J−1

L (µ)/Gµ no longer
has the structure of a tangent bundle; instead it is diffeomorphic to T (Q/G)×Q/G Q/Gµ. The
interpretation of the reduced system as a Lagrangian system then requires additional definitions,
which are postponed to the following section.

Our main interest in this paper is Routh reduction by stages, where the assumption is that the
Lagrangian system obtained after applying a first Routh reduction carries additional symmetry,
so that we can reapply Routh reduction. The system obtained after one Routh reduction is
formulated on a fibred product of the type T (Q/G)×Q/G Q/Gµ. This is the fibred product of
a bundle Q/Gµ → Q/G with the tangent bundle to the base space. This observation is our main
motivation to extend Routh reduction to Lagrangian systems defined on such fibred products:
in order to develop Routh reduction by stages, we have to be able to reduce Lagrangian systems
obtained after a first reduction.

Routh reduction is closely related to symplectic reduction on the associated cotangent bundles
(see [10, 14]). In the next section we will introduce the concept of a “magnetic Lagrangian
system” and we will emphasize its symplectic formulation. The concept of magnetic Lagrangian
systems is the analogue of Hamiltonian systems one encounters in magnetic cotangent bundle
reduction [12].

3 Magnetic Lagrangian systems

A magnetic Lagrangian system is a Lagrangian system with configuration space the total space
of a bundle ε : P → Q and where the Lagrangian is independent of the velocities tangent to the
fibres of ε. Additionally the system is subjected to a force term that is of magnetic type. It might
help to keep in mind that in the case of a Routh reduced Lagrangian system, P corresponds
to Q/Gµ and the fibration ε is given by the projection Q/Gµ → Q/G.

Definition 7. A magnetic Lagrangian system is a triple (ε : P → Q,L,B) where ε : P → Q is
a fibre bundle, L is a smooth function on the fibred product TQ×Q P and B is a closed 2-form
on P . We say that P is the configuration manifold of the system and that L is the Lagrangian.

A coordinate chart (qi, pa), i = 1, . . . , n = dimQ, a = 1, . . . , k = dimP − dimQ, adapted
to the fibration ε : P → Q determines a coordinate chart (qi, vi, pa) on TQ ×Q P , and the
Lagrangian L is then a function depending on (qi, vi, pa). By definition, L is independent of
the velocities in the fibre coordinates pa and therefore it determines a singular Lagrangian
when interpreted as a function on TP . Locally, the Euler–Lagrange equations for this singular
Lagrangian are

d

dt

(
∂L

∂vi

)
− ∂L

∂qi
= Bij q̇j + Biaṗa, i = 1, . . . , n,

− ∂L
∂pa

= −Biaq̇i + Babṗb, a = 1, . . . , k.

Here we used the following coordinate expression of the 2-form B is 1
2Bijdq

i ∧ dqj + Biadqi ∧
dpa + 1

2Babdp
a ∧ dpb. These Euler–Lagrange equations have a geometric interpretation (see

Proposition 2). First we introduce additional notations.
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Definition 8. Assume a magnetic Lagrangian system (ε : P → Q,L,B) is given.

1. TPQ denotes the fibred product TQ ×Q P and (vq, p), where vq ∈ TQ and p ∈ P such
that ε(p) = q, is a point in TPQ. Similarly, T ∗PQ denotes the fibred product T ∗Q ×Q P
and (αq, p), with ε(p) = q, is an arbitrary element in T ∗PQ.

2. V ε denotes the distribution on P of tangent vectors vertical to ε.

3. ε̂ : TP → TPQ is the projection fibred over P that maps vp ∈ TP onto (Tε(vp), p) ∈ TPQ.

4. ρ1 : TPQ→ TQ is the projection that maps (vq, p) ∈ TPQ onto vq ∈ TQ.

5. ρ2 : TPQ→ P is the projection that maps (vq, p) ∈ TPQ onto p ∈ P .

6. ε1 : T ∗PQ→ T ∗Q is the projection that maps (αq, p) ∈ T ∗PQ onto αq ∈ T ∗Q.

7. ε2 : T ∗PQ→ P is the projection that maps (αq, p) ∈ T ∗PQ onto p ∈ P .

8. The Legendre transform FL : TPQ → T ∗PQ maps (vq, p) ∈ TPQ to (αq, p) ∈ T ∗PQ where
αq ∈ T ∗qQ is determined from

〈αq, wq〉 =
d

du

∣∣∣∣
u=0

L(vq + uwq, p),

for arbitrary wq ∈ TqQ.

9. The energy EL is a function on TPQ defined by EL(vq, p) = 〈FL(vq, p), (vq, p)〉 − L(vq, p).
(Here the contraction of an element (αq, p) ∈ T ∗PQ with (vq, p) ∈ TPQ is defined naturally
as 〈(αq, p), (vq, p)〉 = 〈αq, vq〉.)

10. By means of the Legendre transform we can pull-back the presymplectic 2-form ε∗1ωQ+ε∗2B
on T ∗PQ to a presymplectic 2-form FL∗(ε∗1ωQ + ε∗2B) on TPQ. The latter is denoted by
ΩL,B (Here ωQ = dθQ, with θQ the Poincaré–Cartan 1-form on T ∗Q and a presymplectic
2-form is understood to be a closed 2-form, not necessarily of constant rank.)

Proposition 2. Given a curve p(t) in P , and let γ(t) denote the curve in TPQ equal to
(q̇(t), p(t)) ∈ TPQ with q(t) = ε(p(t)). The curve p(t) in P is a solution to the Euler–Lagrange
equations for the magnetic Lagrangian system (ε : P → Q,L,B) iff γ(t) is a solution to the
presymplectic equation

iγ̇(t)Ω
L,B(γ(t)) = −dEL(γ(t)).

Locally, the presymplectic equation coincides with the previously mentioned Euler–Lagrange
equations, since

ΩL,B = d

(
∂L

∂vi

)
∧ dqi +

1

2
Bijdqi ∧ dqj + Biadqi ∧ dpa +

1

2
Babdpa ∧ dpb,

dEL = vid

(
∂L

∂vi

)
+
∂L

∂vi
dvi − dL = vid

(
∂L

∂vi

)
− ∂L

∂qi
dqi − ∂L

∂pa
dpa.

Definition 9. A magnetic Lagrangian system (ε : P → Q,L,B)

1) is hyperregular if FL is a diffeomorphism and if the restriction of B to V ε is nondegenerate,

2) is of mechanical type if L(vq, p) = 1
2 〈〈(vq, p), (vq, p)〉〉ρ1 − V (p) with 〈〈·, ·〉〉ρ1 is a metric on

the vector bundle ρ1 : TPQ→ P and V is a function on P .

Note that if B is nondegenerate, then the typical fibre of P necessarily has to be even-
dimensional. In a local coordinate chart the nondegeneracy condition on B is expressed by
detBab 6= 0.
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Proposition 3. If a magnetic Lagrangian system (ε : P → Q,L,B) is hyperregular, the 2-form
ΩL,B = FL∗(ε∗1ωQ + ε∗2B) determines a symplectic structure on TPQ.

Proof. Assume that the magnetic Lagrangian system is hyperregular. The nondegeneracy
of ΩL,B is easily checked if we work in a coordinate chart adapted to the fibration:

ΩL,B = d

(
∂L

∂vi

)
∧ dqi +

1

2
Bijdqi ∧ dqj + Biadqi ∧ dpa +

1

2
Babdpa ∧ dpb.

Since FL is a diffeomorphism, the 1-forms d
(
∂L
∂vi

)
, dqi and dpa provide pointwise a basis

on T ∗(TPQ). One can now use standard arguments to prove the nondegeneracy. �

We conclude that a hyperregular magnetic Lagrangian system has a symplectic structure
although the Lagrangian itself is singular when interpreted as a function on TP . The energy EL
is the Hamiltonian. This is an important observation.

Remark 1. Throughout the paper we only consider magnetic Lagrangian systems that are
hyperregular. This is not a true restriction. The results remain valid for general magnetic
Lagrangian systems: instead of relating Routh reduction to symplectic reduction, it is possible
to relate it to presymplectic reduction [7].

Remark 2. We conclude this section with a remark on equivalent magnetic Lagrangian systems.
Roughly speaking, two Lagrangian systems are equivalent if the resulting dynamics coincide,
more specifically if they produce the same Euler–Lagrange equations. It is well known that
for a Lagrangian system the Euler–Lagrange equations do not change when the Lagrangian is
augmented with a total time derivative of a function on the configuration space. For magnetic
Lagrangian systems this gauge freedom can be extended.

Consider a 1-form α along ε, i.e. a section of ε2 : T ∗PQ → P , or in other words a linear
function on TPQ given by (vq, p) 7→ 〈α(p), (vq, p)〉. When α : P → T ∗PQ is composed with
T ∗ε ◦ ε1 : T ∗PQ → T ∗P , it determines a 1-form on P which, with a slight abuse of notation,
we denote by ε∗α. Now consider the function L′(vq, p) = L(vq, p) − 〈α(p), (vq, p)〉 and the
gyroscopic 2-form B′ = B + dε∗α. Together they define a new magnetic Lagrangian system
(ε : P → Q,L′,B′) which is equivalent to (ε : P → Q,L,B).

Lemma 1. The magnetic Lagrangian systems (ε, L′,B′) and (ε, L,B) are equivalent.

This is a reformulation of a well-known result in classical mechanics, saying that an exact
gyroscopic force can be taken into account by means of a velocity dependent potential [19].

Proof. We show that any solutions to the Euler–Lagrange equations of (ε, L′,B′) is a solution to
the Euler–Lagrange equations of (ε, L,B). We work in a local coordinate neighborhood (qi, pa)
as before. We fix a coordinate expression for α = αi(q

j , pa)dqi. The Euler–Lagrange equations
for (ε, L′,B′) equal, with q̇i = vi and ṗa = va

d

dt

(
∂L′

∂vi

)
− ∂L′

∂qi
= B′ijvj + B′iava, i = 1, . . . , n,

−∂L
′

∂pa
= −B′iavi + B′abvb, a = 1, . . . , k.

It now remains to substitute the definition of L′ and B′, i.e. L′ = L− αivi and

B′ij = Bij +

(
∂αj
∂qi
− ∂αi
∂qj

)
, B′ia = Bia −

∂αi
∂pa

, B′ab = Bab. �
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4 Magnetic Lagrangian systems with symmetry

4.1 Symplectic reduction: a brief introduction

An overall reference for this section is e.g. [12]. Let (M,ω) be a symplectic manifold on which
G acts on the right, ΨM : M ×G→M . Given a function f : M → g∗, then fξ for ξ ∈ g denotes
the real valued function on M defined by fξ(m) = 〈f(m), ξ〉.

Definition 10.

1. The action ΨM is said to be canonical if (ΨM
g )∗ω = ω for all g ∈ G.

2. A map J : M → g∗ is a momentum map if iξMω = −dJξ, for ξ ∈ g arbitrary.

3. If M is connected, the non-equivariance 1-cocycle σ of the momentum map J equals

σ : G→ g∗ : g 7→ J
(
mg−1

)
−Ad∗g−1(J(m)),

where m is arbitrary in M .

The definition of σ is independent of m (see [1]). Recall that a 1-cocycle with values in g∗

statisfies, for g, h ∈ G arbitrary,

σ(gh) = σ(g) + Ad∗g−1σ(h).

Definition 11. Let σ be a 1-cocycle with values in g∗. The affine action of G on g∗ with
1-cocycle σ is given by (g, µ) 7→ Ad∗gµ+ σ(g−1) for arbitrary µ ∈ g∗ and g ∈ G.

The momentum map J is equivariant with respect to the affine action with 1-cocyle from
Definition 10: J(mg) = Ad∗gJ(m) + σ(g−1). For a fixed element µ ∈ g∗, the Lie group Gµ < G
denotes the isotropy subgroup of µ w.r.t. the affine action, i.e. g ∈ Gµ if µ = Ad∗gµ+ σ(g−1) or
equivalently if

µ− J(mg) = Ad∗g(µ− J(m)).

Theorem 2 (symplectic reduction SR). Let (M,ω) be a symplectic manifold, with G acting
canonically on M . Let J be a momentum map for this action with non-equivariance cocycle σ.
Assume that µ is a regular value of J , and denote by Gµ the isotropy group of µ under the affine
action of G on g∗. Then the pair (Mµ, ωµ) is a symplectic manifold, with Mµ = J−1(µ)/Gµ
and with ωµ a 2-form on Mµ uniquely determined from i∗µω = π∗µωµ, with iµ : J−1(µ)→M and
πµ : J−1(µ)→Mµ = J−1(µ)/Gµ.

Any Hamiltonian h on M which is invariant under the action of G induces a function hµ
on Mµ satisfying π∗µhµ = i∗µh. The Hamiltonian vector field Xh is tangent to J−1(µ) and the
corresponding vector field on J−1(µ) is πµ-related to the Hamiltonian vector field Xhµ on Mµ.

4.2 Invariant magnetic Lagrangian systems and momentum maps

In order to define invariant magnetic Lagrangian systems, we start from a free and proper action
of a Lie group G on both P and Q such that they commute with ε: for arbitrary g ∈ G,

ε ◦ΨP
g = ΨQ

g ◦ ε. (1)

In other words, G acts on ε : P → Q by bundle automorphisms. The projections of the principal
bundles are denoted by πQ : Q → Q/G and πP : P → P/G. These actions induce lifted right
actions on TPQ and T ∗PQ:
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1) ΨTPQ
g (vq, p) := (TΨQ

g (vq),Ψ
P
g (p)) for (vq, p) ∈ TPQ and g ∈ G,

2) Ψ
T ∗PQ
g (αq, p) := (T ∗ΨQ

g−1(αq),Ψ
P
g (p)) for (αq, p) ∈ T ∗PQ and g ∈ G.

Definition 12. A magnetic Lagrangian system (ε : P → Q,L,B) is G-invariant if

1) B is invariant under the action of ΨP : (ΨP
g )∗B = B for all g ∈ G,

2) the Lagrangian L is invariant under the lifted action ΨTPQ on TPQ, i.e. L ◦ΨTPQ
g = L for

all g ∈ G.

Let (ε : P → Q,L,B) be a G-invariant hyperregular magnetic Lagrangian system and consider
the symplectic 2-form ε∗1ωQ + ε∗2B on T ∗PQ.

Proposition 4. The action ΨT ∗PQ is canonical and the Legendre transform FL : TPQ → T ∗PQ

is equivariant, i.e. FL ◦ ΨTPQ
g = Ψ

T ∗PQ
g ◦ FL. As a consequence the action ΨTPQ is canonical

w.r.t. ΩL,B.

Proof. Note that ε1 ◦Ψ
T ∗PQ
g = T ∗ΨQ

g−1 ◦ ε1 and ε2 ◦Ψ
T ∗PQ
g = ΨP

g ◦ ε2. Since the action ΨT ∗Q
g =

T ∗ΨQ
g−1 on T ∗Q is canonical w.r.t. ωQ and since B is a G-invariant 2-form on P , we conclude that

ΨT ∗PQ is canonical. To show the equivariance of FL we use its definition: let g ∈ G, vq, wq ∈ TQ
be arbitrary, then

〈FL
(
ΨTPQ
g (vq, p)

)
,ΨTPQ

g (wq, p)〉 =
d

du

∣∣∣∣
u=0

L(ΨTPQ
g (vq + uwq))

=
d

du

∣∣∣∣
u=0

L(vq + uwq) = 〈FL(vq, p), (wq, p)〉. �

In order to define a momentum map, we introduce a concept that is similar to the so-called
Bg-potential in [12].

Definition 13. A g∗-valued function δ on P is a Bg-potential for the magnetic 2-form B if
iξPB = dδξ for any ξ ∈ g.

Recall that δξ is defined pointwise as δξ(p) = 〈δ(p), ξ〉. If B is G-invariant and admits
a Bg-potential δ, then it follows that d((ΨP

g )∗δξ − δAdgξ) = 0. If P is connected, this induces
a g∗-valued 1-cocycle on G:

σδ : G→ g∗; g 7→ (ΨP
g−1)∗δ(p)−Ad∗g−1 · δ(p),

with p arbitrary in P . The infinitesimal version of this 1-cocycle is denoted by Σδ(ξ, η) =
−〈Teσδ(ξ), η〉. It is a 2-cocycle on the Lie algebra and satisfies Σδ(ξ, η) = −B(ξP , ηP )− δ[ξ,η] =

ξP (δη)− δ[ξ,η]. For the following proposition, recall from Definition 2 that (ψQ)∗ : T ∗Q→ g∗ is
the dual of the infinitesimal action of G on Q.

Proposition 5. The map Jδ = (ψQ)∗◦ε1−δ◦ε2 is a momentum map for the symplectic manifold
(T ∗PQ, ε

∗
1ωQ + ε∗2B) with non-equivariance 1-cocycle −σδ. Due to the equivariance of FL, the

map JL,δ = Jδ ◦ FL is a momentum map for the symplectic manifold (TPQ,Ω
L,B) with non-

equivariance 1-cocycle −σδ.

Proof. The map (ψQ)∗ : T ∗Q → g∗ is an equivariant momentum map for the symplectic
manifold (T ∗Q,ωQ). It is straightforward that the combined map Jδ = (ψQ)∗ ◦ ε1 − δ ◦ ε2 is
a momentum map for the lifted action on T ∗PQ w.r.t. the symplectic form ε∗1ωQ + ε∗2B with
non-equivariance cocycle −σδ. The rest of the statement follows by construction. �

We conclude that the symplectic structures (TPQ,Ω
L,B) and (T ∗PQ, ε

∗
1ωQ + ε∗2B) associated

to a G-invariant and hyperregular magnetic Lagrangian system with a Bg-potential δ admit
a momentum map with cocycle −σδ and are amenable to symplectic reduction.
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5 Routh reduction for magnetic Lagrangian systems

5.1 Magnetic cotangent bundle reduction

In this section we study the reduction of the symplectic manifold (T ∗PQ, ε
∗
1ωQ+ ε∗2B) determined

from the magnetic 2-form B of a G-invariant hyperregular magnetic Lagrangian system with
Bg-potential δ. From Proposition 5, it follows that the function Jδ is a momentum map with
non-equivariance cocycle −σδ. As usual, Gµ denotes the isotropy subgroup of µ ∈ g∗ for the
affine action.

Proposition 6. Fix a connection AQ on the bundle πQ : Q → Q/G and a regular value µ of
the momentum map Jδ.

1. g ∈ Gµ iff µ+ δ(pg) = Ad∗g(µ+ δ(p)).

2. AP = ε∗AQ is a principal connection on πP : P → P/G.

3. The 1-form 〈µ+ δ,AP 〉 on P is Gµ-invariant.

4. The 2-form B + d(〈µ+ δ,AP 〉) is Gµ-invariant and reducible to a 2-form on P/Gµ.

5. The quotient manifold J−1
δ (µ)/Gµ is diffeomorphic to T ∗P/Gµ(Q/G).

Proof. Recall the pointwise definition of 〈µ+δ,AP 〉: given vp ∈ TP , then 〈µ+δ,AP 〉(p)(vp) :=
〈µ + δ(p),AP (p)(vp)〉. Below, 〈µ + δ(p),AP (p)〉 ∈ T ∗pP denotes the cotangent vector 〈µ +

δ,AP 〉(p). We continue with the proof.

1. This is straightforward from the definition of σδ.

2. The g∗-valued 1-form AP determines a principal connection if it satisfies AP (ξP ) = ξ for
all ξ ∈ g, and if (ΨP

g )∗AP = Adg−1 · AP for all g ∈ G:

AP (ξP )(p) = AQ(ε(p))(Tε(ξP (p))) = AQ(ε(p))(ξQ(ε(p))) = ξ and

(ΨP
g )∗AP = (ΨP

g )∗ε∗AQ = ε∗(ΨQ
g )∗AQ = Adg−1 · ε∗AQ = Adg−1 · AP .

3. The pull-back 1-form (ΨP
g )∗〈µ+ δ,AP 〉 equals

〈µ+ δ(pg), ((ΨP
g )∗AP )(p)〉 = 〈Ad∗g(µ+ δ(p)),Adg−1 · AP (p)〉.

4. That B + d(〈µ + δ,AP 〉) is Gµ-invariant is a straightforward consequence of 3. It is
projectable to P/Gµ since the contraction with any fundamental vector field ξP with ξ ∈ gµ
vanishes:

iξP
(
d(〈µ+ δ,AP 〉) + B

)
= LξP (〈µ+ δ,AP 〉)− d(〈µ+ δ, ξ〉) + dδξ

= 〈ξP (µ+ δ),AP 〉+ 〈µ+ δ, ad−ξ · AP 〉 − dδξ + dδξ

= 〈ξP (δ)− ad∗ξµ− ad∗ξδ,AP 〉 = 0,

where we used the fact that ξ ∈ gµ, or equivalently ad∗ξµ = iξΣδ.

5. Similar to cotangent bundle reduction, we use a ‘shift map’ to construct the required
diffeomorphism. Recall that V πQ denotes the bundle of tangent vectors vertical to πQ : Q →
Q/G. The subbundle V 0πQ of T ∗Q is defined as the annihilator of V πQ. Below we introduce
a shift map φAµ between J−1

δ (µ) and V 0
Pπ

Q = V 0πQ×QP and we show that it is equivariant w.r.t.

to actions of Gµ obtained by restriction of ΨTPQ to J−1
δ (µ) and V 0

Pπ
Q. This is sufficient for φAµ

to project to a diffeomorphism [φAµ ] between the quotient spaces. This provides us with the

desired diffeomorphism because the quotient of V 0
Pπ

Q is well known: V 0
Pπ

Q/Gµ = T ∗P/Gµ(Q/G).
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Definition of the shift map. In the following we use a slight abuse of notations: if we
write 〈µ + δ(p),AQ(q)〉 for some p ∈ P and q = ε(p), then this is the cotangent vector in T ∗qQ

determined by vq 7→ 〈µ+ δ(p),AQ(q)(vq)〉. Let φAµ be the map

φAµ : J−1
δ (µ)→ V 0

PπQ; (αq, p) 7→
(
αq − 〈µ+ δ(p),AQ(q)〉, p

)
.

It is well defined, i.e. φAµ (αq, p) ∈ V 0
Pπ

Q for any (αq, p) in the level set J−1
δ (µ) since

〈φAµ (αq, p), (ξQ(q), p)〉 = 〈αq, ξQ(q)〉 − 〈µ+ δ(p),AQ(q)(ξQ(q))〉
= 〈Jδ(αq, p), ξ〉 − 〈µ, ξ〉 = 0.

Equivariance of the shift map. For arbitrary g ∈ Gµ,

φAµ
(
Ψ
T ∗PQ
g (αq, p)

)
=
(
T ∗ΨQ

g−1(αq)− 〈µ+ δ(pg),AQ(qg)〉, pg
)

=
(
T ∗ΨQ

g−1

(
αq − 〈µ+ δ(pg),Adg−1 · AQ(q)〉

)
, pg
)

=
(
T ∗ΨQ

g−1

(
αq − 〈µ+ δ(p),AQ(q)〉

)
, pg
)

= Ψ
T ∗PQ
g

(
φAµ (αq, p)

)
.

The projection of φAµ is thus well defined, and it is denoted by [φAµ ], i.e. [φAµ ] : J−1
δ (µ)/Gµ →

V 0
Pπ

Q/Gµ = T ∗P/Gµ(Q/G). �

Definition 14. B̃ is the 2-form on P/Gµ obtained after reducing B + d(〈µ+ δ,AP 〉).

In the following proposition we put a symplectic structure on the fibred product T ∗P/Gµ(Q/G)

= T ∗(Q/G)×Q/G P/Gµ. The notations are similar to those on T ∗PQ.

Definition 15. We define the projections

1) ε̃1 : T ∗P/Gµ(Q/G)→ T ∗(Q/G),

2) ε̃2 : T ∗P/Gµ(Q/G)→ P/Gµ.

The canonical symplectic 2-form on T ∗(Q/G) is denoted by ωQ/G.

Completely analogous to the construction on T ∗PQ, we introduce ε̃∗1ωQ/G + ε∗2B̃ as a 2-form
on T ∗P/Gµ(Q/G).

Figure 1. Cotangent bundle reduction (notations as in Theorem 2 with M = T ∗
PQ).
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Theorem 3 (Generalized magnetic cotangent bundle reduction). Let µ denote a regular value of
the momentum map Jδ for the symplectic structure (T ∗PQ, ε

∗
1ωQ+ε∗2B) with isotropy subgroup Gµ,

and let AQ be a principal connection on Q → Q/G. Then the symplectically reduced manifold
(Mµ, ωµ) is symplectomorphic to (T ∗P/Gµ(Q/G), ε̃∗1ωQ/G + ε̃∗2B̃)), with symplectomorphism [φAµ ].

Although this result is a straightforward extension of standard magnetic cotangent bundle
reduction in [12], we include a proof because its method turns out to be useful later on.

Proof. Let i0 denote the injection V 0
Pπ

Q → T ∗PQ and π0
µ the projection V 0

Pπ
Q → T ∗P/Gµ(Q/G).

We know that [φAµ ] is a diffeomorphism, and therefore it only remains to show that the 2-form

ε̃∗1ωQ/G + ε̃∗2B̃ is pull-backed to ωµ under this map (and therefore, implicitly ε̃∗1ωQ/G + ε̃∗2B̃ will
be nondegenerate).

We use the fact that ωµ is uniquely determined by i∗µωQ = π∗µωµ, with iµ : J−1
δ (µ) → T ∗PQ

the natural inclusion and πµ : J−1
δ (µ) → Mµ the projection to the quotient space. Due to the

uniqueness property, it is therefore sufficient to show that

π∗µ
(
[φAµ ]∗(ε̃∗1ωQ/G + ε̃∗2B̃)

)
= i∗µ(ε∗1ωQ + ε∗2B). (2)

The left-hand side of (2). Since [φAµ ]◦πµ = π0
µ◦φAµ the left-hand side of the above equation

is (π0
µ ◦ φAµ )∗

(
ε̃∗1ωQ/G + ε̃∗2B̃

)
.

The right-hand side of (2). We first show the equality of two 1-forms:

i∗µ(ε∗1θQ) and
(
φAµ
)∗(

i∗0
(
ε∗1θQ + ε∗2〈µ+ δ,AP 〉

))
.

Let (αq, p) ∈ J−1
δ (µ), V(αq ,p) ∈ T (T ∗PQ) a tangent vector to J−1

δ (µ) and vq ∈ TqQ denotes the
projection of V(αq ,p). Then, the first 1-form equals

i∗µ(ε∗1θQ)(αq, p)(V(αq ,p)) = θQ(αq)(Tε1(V(αq ,p))) = 〈αq, vq〉.

The second 1-form evaluated on this tangent vector gives

(φAµ )∗
(
i∗0
(
ε∗1θQ + ε∗2〈µ+ δ,AP 〉

))
(αq, p)(V(αq ,p))

= θQ
(
αq − 〈µ+ δ(p),AQ(q)〉

)(
Tε1(T (φAµ )(V(αq ,p)))

)
+ 〈µ+ δ(p),AQ(q)(vq)〉

= 〈αq, vq〉.

The two 1-forms are identical and after taking the exterior derivative and adding ε∗2B, we obtain
that the right-hand side of (2) equals

i∗µ(ε∗1ωQ + ε∗2B) =
(
φAµ
)∗(

i∗0
(
ε∗1ωQ + ε∗2(d〈µ+ δ,AP 〉+ B)

))
.

Since (i) (ε̃2 ◦ π0
µ)∗B̃ = (ε2 ◦ i0)∗(d〈µ+ δ,AP 〉+ B), and (ii) (ε̃1 ◦ π0

µ)∗θQ/G = i∗0ε
∗
1θQ, one easily

verifies that the left-hand side equals the right-hand side in (2). �

We conclude with a result on the behavior of a symplectomorphism under symplectic re-
duction. Assume two symplectic manifolds (M,Ω) and (M ′,Ω′) and a symplectomorphism
f : M → M ′ (i.e. a map for which f∗Ω′ = Ω) are given. We assume in addition that both
M and M ′ are equipped with a canonical free and proper action of G. Let J : M → g∗ and
J ′ : M ′ → g∗ denote corresponding momentum maps for these actions on M and M ′ respec-
tively. We say that f is equivariant if f(mg) = f(m)g for arbitrary m ∈ P , g ∈ G. Note that the
non-equivariance cocycles for J and J ′ are equal up to a coboundary. Without loss of generality
we may assume that f∗J ′ = J and that the non-equivariance cocycles coincide. This in turn
guarantees that the affine actions on g∗ coincide and that the isotropy groups of an element
µ ∈ g∗ coincide for both affine actions. Finally, fix a regular value µ ∈ g∗ for both J and J ′.
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Theorem 4. If f is an equivariant symplectic diffeomorphism M →M ′, such that J ′ = J ◦ f ,
then under symplectic reduction, the symplectic manifolds (Mµ,Ωµ) and (M ′µ,Ω

′
µ) are symplec-

tically diffeomorphic under the map

[fµ] : Mµ →M ′µ; [m]Gµ 7→ [f(m)]Gµ .

Proof. This is a straightforward result. Since f is a diffeomorphism for which J ′ = J ◦ f ,
the restriction fµ of f to J−1(µ) determines a diffeomorphism from J−1(µ) to J ′−1(µ). The
equivariance implies that fµ reduces to a diffeomorphism [fµ] from Mµ = J−1(µ)/Gµ to M ′µ =
J ′−1(µ)/Gµ. It is our purpose to show that [fµ]∗Ω′µ = Ωµ, or since both πµ and π′µ are projec-
tions, that π∗µΩµ = f∗µ(π′∗µ Ω′µ). The determining property for Ωµ is π∗µΩµ = i∗µΩ (and similarly
for Ω′µ). From diagram chasing we have that i∗µΩ = f∗µ(i′∗µΩ′). Then

π∗µΩµ = i∗µΩ = f∗µ(i′∗µΩ′) = f∗µ(π′∗µ Ω′µ) = π∗µ([fµ]∗Ω′µ),

since π′µ ◦ fµ = [fµ] ◦ πµ by definition. This concludes the proof. �

5.2 Routh reduction for magnetic Lagrangian systems

In Proposition 5 we have introduced the momentum map JL,δ = Jδ ◦ FL for a G-invariant
hyperregular magnetic Lagrangian system (ε : P → Q,L,B), i.e.

〈JL,δ(vq, p), ξ〉 = 〈FL(vq, p), (ξQ(q), p)〉 − δξ(p).

We know from Proposition 4 that the Legendre transform FL is equivariant. After restriction
to J−1

L,δ(µ) it reduces to a symplectic diffeomorphism between the symplectically reduced spaces

J−1
L,δ(µ)/Gµ and J−1

δ (µ)/Gµ (see also Theorem 4). The following diagram summarizes these
previous observations.

Figure 2. Diagram relating tangent and cotangent reduction (SR = symplectic reduction).

We are now only three steps away from a description of Routh reduction for magnetic La-
grangian systems. The final goal is to describe the symplectic reduced manifold (J−1

L,δ(µ)/Gµ,Ωµ)
as a symplectic manifold associated with a new magnetic Lagrangian system, with Lagrangian
say Lµ.

1. The first step is the construction of a diffeomorphism ∆µ : TP/Gµ(Q/G)→ J−1
L,δ(µ)/Gµ.

This is crucial because the Hamiltonian dynamics determined by the Euler–Lagrange equations
reduce to Hamiltonian dynamics on a manifold of the form TP/Gµ(Q/G). If we can characterize
this reduced dynamics as the Euler–Lagrange equations of a magnetic Lagrangian system with
configuration manifold P/Gµ → Q/G, we have developed a Routh reduction technique for mag-
netic Lagrangian systems. This characterization consists of the two remaining steps mentioned
before:
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2. We show that the composition [φAµ ] ◦ [(FL)µ] ◦ ∆µ equals the fibre derivative of some

Lagrangian function L̃ on TP/Gµ(Q/G), and this implies that the symplectic 2-form ∆∗µΩµ

on TP/Gµ(Q/G) is of the form

FL̃∗(ε̃∗1ωQ/G + ε̃∗2B̃),

which is the symplectic structure associated to the reduced magnetic Lagrangian system
(P/Gµ → Q/G, L̃, B̃);

3. We show that the reduction of the energy EL in the symplectic reduction scheme is pre-
cisely the energy EL̃ on TP/Gµ(Q/G). This guarantees that the Euler–Lagrange equations

associated to the reduced Lagrangian L̃ are related to the Euler–Lagrange equations for L.

The new reduced Lagrangian L̃ is what we call the Routhian (it is often alternatively denoted
by R or Rµ). This is summarized in the diagram in Fig. 3.

Figure 3. A symplectic view on Routh reduction.

Step 1: the definition of ∆µ : TP/Gµ(Q/G) → J−1
L,δ(µ)/Gµ. First consider the map

Πµ : J−1
L,δ(µ)/Gµ → TP/Gµ(Q/G) which is obtained from the Gµ-invariance of the map

J−1
L,δ(µ)→ TP/Gµ(Q/G); (vq, p) 7→ (TπQ(vq), [p]Gµ).

We will define the map ∆µ as the inverse of Πµ. In general however, Πµ is not invertible. The
following definition is the analogue of G-regularity for a classical Lagrangian.

Definition 16. The Lagrangian L of a G-invariant magnetic Lagrangian system is called G-
regular if the map JL,δ|(vq ,p) : g → g∗; ξ 7→ JL,δ(vq + ξQ(q), p) is a diffeomorphism for all
(vq, p) ∈ TPQ.

Every mechanical G-invariant magnetic Lagrangian system is G-regular because JL,δ|(vq ,p) is
an affine map modeled on the metric on g obtained from the kinetic energy metric.

Proposition 7. Πµ is a diffeomorphism if the Lagrangian is G-regular.

Proof. We construct the inverse for Πµ. Choose an element (v[q]G , [p]Gµ) in TP/Gµ(Q/G) and

fix a point (vq, p) ∈ TPQ that projects onto (v[q]G , [p]Gµ), i.e. TπQ(vq) = v[q] and p ∈ [p]Gµ . Due
to the G-regularity of L, there exists a unique element ξ in g such that JL,δ(vq + ξQ(q), p) = µ.
The orbit of the point (vq + ξQ(q), p) under the Gµ-action determines an element in J−1

L,δ(µ)/Gµ.
We will show that this construction is independent of the chosen point (vq, p), and therefore
defines a map ∆µ : TP/Gµ(Q/G)→ J−1

L,δ(µ)/Gµ which is the inverse to Πµ.
To show that the construction is independent of the chosen point (vq, p) in TPQ, we choose

any other point (v′q, p
′) in TPQ projecting onto (v[q]G , [p]Gµ). The point is of the form (v′q, p

′) =

(ΨTQ
g (vq + ηQ(q)), pg) for some g ∈ Gµ and η ∈ g. We now repeat the previous construction

applied to (v′q, p
′): we consider a unique element ξ′ ∈ g for which JL,δ(Ψ

TQ
g (vq + ηQ(q)) +

ξ′Q(qg), pg) = µ. Due to the equivariance of JL,δ, we conclude that

µ = JL,δ(Ψ
TQ
g (vq + ηQ(q)) + ξ′Q(qg), pg) = Ad∗g · JL,δ(vq + (η + Adgξ

′)Q(q), p)− σδ(g−1).
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Since g ∈ Gµ, we may conclude that JL,δ(vq+(η+Adgξ
′)Q(q), p) = µ and therefore η+Adgξ

′ = ξ.

This implies that (v′q + ξ′Q(q), p′) = ΨTPQ
g (vq + ξQ(q), p) for g ∈ Gµ such that p′ = pg. This

concludes the proof. �

The previous proposition guarantees that for a given G-regular Lagrangian and a bundle
adapted coordinate chart (xr, gm) in Q → Q/G and (xr, gm, pa) in P → Q, the functions
(xr, ẋr, gm, pa) determine a coordinate chart in J−1

L,δ(µ). This is useful in the following.

Step 2: the reduced symplectomorphism. We will now introduce a new Lagrangian L̃
on TP/Gµ(Q/G) with the property that its Legendre transform FL̃ : TP/Gµ(Q/G)→ T ∗P/Gµ(Q/G)

is precisely the reduced Legendre transform [(FL)µ], more specifically FL̃ = [φAµ ] ◦ [(FL)µ] ◦∆µ.

As is already described in [10], the structure of the Lagrangian L̃ is completely determined by
the cotangent bundle reduction scheme, and in particular by the shift map φAµ from J−1

δ (µ) →
V 0
Pπ

Q. To make this statement more precise, we remark that [φAµ ] ◦ [(FL)µ] is the quotient map

of φAµ ◦ FL. Thus, if [(vq, p)]Gµ is arbitrary in J−1
L,δ(µ)/Gµ, then [φAµ ] ◦ [(FL)µ]([(vq, p)]Gµ) is the

quotient of

FL(vq, p)−
(
〈µ+ δ(p),AQ(q)〉, p

)
.

The latter is the fibre derivative of a new function on TPQ, namely L(vq, p)−〈µ+δ(p),AQ(q)(vq)〉.
This function is clearly Gµ-invariant.

Definition 17. The function L̃ is defined as the pull-back under ∆µ of the quotient map of the
restriction to J−1

L,δ(µ) of the function

(vq, p) 7→ L(vq, p)−
〈
µ+ δ(p),AQ(q)(vq)

〉
.

Lemma 2. FL̃ = [φAµ ] ◦ [(FL)µ] ◦∆µ.

Proof. Fix elements (v[q]G , [p]Gµ) ∈ TP/Gµ(Q/G) and fix a representative (vq, p) ∈ J−1
L,δ(µ) in

the orbit ∆µ(v[q]G , [p]Gµ) ∈ J−1
L,δ(µ)/Gµ. By definition of the maps involved, we have(

[φAµ ] ◦ [(FL)µ] ◦∆µ

)
(v[q]G , [p]Gµ) = (π0

µ ◦ φAµ )(FL(vq, p))

= π0
µ

(
FL(vq, p)−

(
〈µ+ δ(p),AQ(q)〉, p

))
.

Next we study the fibre derivative of the map L̃. Fix a point (w[q]G , [p]Gµ) and we compute

〈
FL̃(v[q]G , [p]Gµ), (w[q]G , [p]Gµ)

〉
=

d

du

∣∣∣∣
u=0

L̃(v[q]G + uw[q]G , [p]Gµ).

We construct a curve u 7→ ζ(u) in J−1
L,δ(µ) that projects onto the curve u 7→ ∆µ(v[q]G +

uw[q]G , [p]Gµ) in J−1
L,δ(µ)/Gµ such that ζ(0) = (vq, p) and ζ̇(0) is vertical to the projection

ρ2 ◦ iµ : J−1
L,δ(µ) → P (recall that ρ2 : TPQ → P is the projection onto the second factor in

the fibred product).

The existence of such a curve is best shown in a specific coordinate chart (see above) for
J−1
L (µ): (xr, ẋr, gm, pa) where the index r = 1, . . . ,dimQ/G, m = 1, . . . ,dimG and a =

1, . . . ,dimP − dimQ. Note that (xr, ẋr) is a coordinate chart in T (Q/G). In these coordi-
nates, we let (vq, p) = (xr0, ẋ

r
0, g

m
0 , p

a
0) and w[q]G = (xr0, w

r
0). We define the curve ζ(u) to be the

curve u 7→ (xr0, ẋ
r
0 + uwi0, g

m
0 , p

a
0). Then the tangent vector to Tρ1(ζ̇(0)) is the vertical lift of

some wq ∈ TqQ with TπQ(wq) = w[q]G .



Routh Reduction by Stages 17

Finally, from the definition of L̃ and the fibre derivative FL̃ we obtain〈
FL̃(v[q]G , [p]Gµ), (w[q]G , [p]Gµ)

〉
=

d

du

∣∣∣∣
u=0

(
L−

〈
µ+ δ,AQ

〉)
(ζ(u))

= 〈FL(vq, p)− (〈µ+ δ(p),AQ(q)〉, p), (wq, p)〉

=
〈
π0
µ

(
FL(vq, p)−

(
〈µ+ δ(p),AQ(q)〉, p

))
, (w[q]G , [p]Gµ)

〉
,

since FL(vq, p)− (〈µ+ δ(p),AQ(q)〉, p) ∈ V 0
Pπ

Q. This concludes the proof. �

Step 3: the reduced energy Hamiltonian. The third and last step concerns the specific
reduced dynamics. We have to relate the energy EL on TPQ to the energy of the Routhian L̃
on TP/Gµ(Q/G). In the following Lemma we again use the notations from Theorem 2 applied

to the reduction of the symplectic structure on (TPQ,Ω
L,B).

Lemma 3. The energy EL̃ is the reduced Hamiltonian, i.e. it satisfies:

(Πµ ◦ πµ)∗EL̃ = i∗µEL,

with Πµ ◦ πµ : J−1
L,δ(µ)→ J−1

L,δ(µ)/Gµ → TP/Gµ(Q/G) and iµ : J−1
L,δ(µ)→ TPQ.

Proof. Let (vq, p) ∈ J−1
L,δ(µ), such that (Πµ ◦ πµ)(vq, p) = (v[q]G , [p]Gµ). Then

i∗µEL(vq, p) = 〈FL(vq, p), (vq, p)〉 − L(vq, p)

= 〈(φAµ ◦ (FL)µ)(vq, p), (vq, p)〉 −
(
L(vq, p)− 〈µ+ δ(p),AQ(q)(vq)〉

)
=
〈(

[φAµ ] ◦ [(FL)µ] ◦∆µ

)
(v[q]G , [p]Gµ), (v[q]G , [p]Gµ)

〉
− L̃(v[q]G , [p]Gµ).

Using the result from Lemma 2 this concludes the proof. �

Routh reduction. The previous three steps are summarized in the following theorem.

Theorem 5 (Routh reduction for magnetic Lagrangian systems). Let (ε : P → Q,L,B) be a hy-
perregular, G-invariant and G-regular magnetic Lagrangian system and let δ be a Bg-potential
of the magnetic term B with 1-cocycle σδ.

1. Let µ ∈ g∗ be a regular value of the momentum map JL,δ and let Gµ be the isotropy
subgroup of µ w.r.t. the affine action on g∗ with 1-cocycle −σδ, i.e. g ∈ Gµ if and only if
µ = Ad∗gµ− σδ(g−1).

2. Fix a connection AQ on πQ : Q → Q/G and let AP be the corresponding connection
on P → P/G. Compute the restriction of the Gµ-invariant function L(vq, p) − 〈µ +
δ(p),AQ(q)(vq)〉 to J−1

L,δ(µ) and let L̃ be its quotient to TP/Gµ(Q/G) ∼= J−1
L,δ(µ)/Gµ.

3. Compute B̃ as the projection to P/Gµ of the 2-form B + d〈µ+ δ,AP 〉.
4. Consider the magnetic Lagrangian system: (ε̃µ : P/Gµ → Q/G, L̃, B̃).

This reduced magnetic Lagrangian system is hyperregular and every solution p(t) ∈ P to the
Euler–Lagrange equations for (ε, L,B) with momentum µ projects under P → P/Gµ to a solution
of the Euler–Lagrange equations for (ε̃µ : P/Gµ → Q/G, L̃, B̃). Conversely, every solution to
the Euler–Lagrange equations for (ε̃µ : P/Gµ → Q/G, L̃, B̃) is the projection of a solution to the
Euler–Lagrange equations for (ε, L,B) with momentum µ.

It is possible to say more about the structure of B̃ and its relation to the connection AQ.
This and reconstruction aspects fall out of the scope of this paper. We refer to [11] where
these topics are described in more detail. They carry over to this more general framework in
a straightforward way.
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5.3 Reduction of magnetic Lagrangian systems on Lie groups

Consider a magnetic Lagrangian system on P = Q = G, i.e. the configuration space is a Lie
group G. We start from a function ` on g and with it we associate a Lagrangian L on TG
by right multiplication L(g, vg) = `(vgg

−1). By definition L is invariant under the right action
of G on itself. We assume that a magnetic 2-form B is given which is invariant under right
multiplication and admits a Bg-potential δ : G→ g∗. We first rephrase some definitions in this
specific setting.

1. The 1-cocycle σδ : G→ g∗ satisfies σδ(g) = δ(hg−1)−Ad∗g−1δ(h), for arbitrary h ∈ G. If we

let h = e, then σδ(g) = δ(g−1)−Ad∗g−1δ(e) or equivalently, Ad∗gσδ(g) = Ad∗gδ(g
−1)− δ(e).

Similarly if we let h = g, then σδ(g) = δ(e) − Ad∗g−1δ(g). Since δ is determined up to
a constant, we may assume without loss of generality that δ(e) = 0.

2. The associated 2-cocycle Σδ(ξ, η) = ξG(δη)− δ[ξ,η].

3. We use the right identification of TG with G×g, i.e. (g, vg) is mapped to (g, vgg
−1) ∈ G×g.

The right action of G on TG equals right multiplication in the first factor of G× g under
this identification.

4. We use the Maurer–Cartan principal connection on G→ G/G: A(g)(vg) = g−1vg. In the
right identification, the connection corresponds to the map (g, ξ) ∈ G× g 7→ Adg−1ξ ∈ g.

5. The momentum map JL,δ : TG→ g∗ equals JL,δ(g, ξg) = Ad∗gF`(ξ)−δ(g), for (g, ξ) ∈ G×g
arbitrary. If L is G-regular then F` is invertible, i.e. there exists a function χ : g∗ → g
such that F`(χ(ν)) = ν.

6. The affine action on g∗ is (g, µ) 7→ Ad∗gµ− σδ(g−1).

7. The isotropy group Gµ consists of group elements g such that µ+ δ(g) = Ad∗gµ.

8. The quotient G/Gµ (right coset space) can be identified with Õµ, i.e. [g]Gµ ∈ G/Gµ is
mapped onto ν = Ad∗g−1µ− σδ(g) = Ad∗g−1(µ+ δ(g)). A tangent vector to G/Gµ at [g]Gµ
which is the projection of ξg is mapped to a vector ν̇ = −ad∗ξν + iξΣδ in g∗.

Lemma 4. The 2-form B + d(〈µ + δ,A〉) reduces to the Kirillov–Kostant–Souriau symplectic
2-form on Õµ ∼= G/Gµ.

Proof. Let g be arbitrary, and let vg = ξg, wg = ηg be two tangent vectors in TgG with ξ, η ∈ g
arbitrary. Note that vg = ξ′G(g) with ξ′ = Adg−1ξ, and similarly wg = η′G(g) with η′ = Adg−1η.
Then

B(g)(vg, wg) = B(g)(ξ′G(g), η′G(g)) = η′G(δξ′)(g).

On the other hand

d(〈µ+ δ,A〉)(g)(vg, wg) = ξ′G(〈µ+ δ, η′〉)(g)− η′G(〈µ+ δ, ξ′〉)(g)− 〈µ+ δ(g), [ξ′, η′]〉.

Before continuing, we compute the equivariance of the 2-cocycle Σδ(ξ
′, η′):

Σδ(ξ
′, η′) = − d

ds
〈σδ(g−1 exp sξg), η′〉 = − d

ds
〈σδ(g−1 exp sξ) + Ad∗exp−sξgσδ(g), η′〉

= − d

ds
〈σδ(g−1) + Ad∗gσδ(exp sξ) + Ad∗gAd∗exp−sξσδ(g),Adg−1η〉

= Σδ(ξ, η) + 〈σδ(g), [ξ, η]〉.

Summarizing, we have(
B + d(〈µ+ δ,A〉)

)
(g)(vg, wg) = ξ′G(〈µ+ δ, η′〉)(g)− 〈µ+ δ(g), [ξ′, η′]〉



Routh Reduction by Stages 19

= Σδ(ξ
′, η′) + δ[ξ′,η′](g)− 〈µ+ δ(g), [ξ′, η′]〉

= Σδ(ξ, η)− 〈Ad∗g−1µ− σδ(g), [ξ, η]〉.

This 2-form is reducible to a 2-form on Õµ. If we use the isomorphism G/Gµ → Õµ introduced
above, the 2-form reduces to B̃(ν)(ν̇, ν̇ ′) = 〈ν̇, η〉 with η ∈ g such that ν̇ ′ = −ad∗ην + iηΣδ. �

We conclude by computing the Routhian L̃ as a function on Õµ. By definition, it equals the
reduction to Õµ of L− 〈µ+ δ,A〉|JL,δ=µ. In the right identification, the level set JL,δ(g, vg) = µ

is precisely Ad∗g−1(µ + δ(g)) = F`(ξ), with ξg = vg. If we set ν = Ad∗g−1(µ + δ(g)) ∈ Õµ, the

fixed momentum condition is ξ = χ(ν). The Routhian L̃(ν) becomes in the right identification

L̃(ν) = `(χ(ν))− 〈ν, χ(ν)〉.

By application of the chain rule, it easily follows that 〈dL̃(ν), ν̇ ′〉 = −〈ν̇ ′, χ(ν)〉. The reduced
Euler–Lagrange equations are

iν̇B̃(ν) = dL̃(ν) or ν̇ = −ad∗χ(ν)ν + iχ(ν)Σδ. (3)

For later purpose, we remark that for a left action and ` originating from a left invariant
Lagrangian, the reduced equations are ν̇ = ad∗χ(ν)ν−iχ(ν)Σδ (here the 1-cocycle satisfies σδ(g) =
δ(g)).

6 Routh reduction by stages

In reduction by stages, we study the reduction of a G-invariant system (symplectic or La-
grangian) under the action of the full group G and under the induced action w.r.t. a normal
subgroup K � G. We shall adopt as far as possible the notations used in [12]. A detailed
construction of the following definitions is found in this reference.

Definition 18.

1. The Lie-algebra of K is K and i denotes the injection i : K→ g with dual i∗ : g∗ → K∗.

2. The group G acts on K by restriction of the adjoint action. The induced action of G on
K∗ is denoted by the same symbol Ad∗ : G× K∗ → K∗.

3. µ denotes an element in g∗ and ν ∈ K∗. Then Gµ is the isotropy subgroup of µ under the
Ad∗-action of G on g∗; Gν is the isotropy subgroup of ν under the Ad∗-action of G on K∗

obtained as the dual of the restricted Ad-action of G on K; and Kν is the isotropy of ν
w.r.t. to standard coadjoint action of K on K∗. These groups satisfy Gν ∩K = Kν and Kν

is normal in Gν .

4. gν and Kν denote the Lie algebras of Gν and Kν respectively. Ḡν denotes the quotient
group Gν/Kν and its Lie algebra equals ḡν = gν/Kν .

5. The projections onto the quotient groups are denoted by r : G→ Ḡ = G/K and rν : Gν →
Ḡν , and on the level of the Lie algebra: r′ : g→ ḡ = g/K and r′ν : gν → ḡν . The inclusion
map Gν → G induces a map kν : gν → g, with its dual k∗ν : g∗ → g∗ν .

6. ρ denotes an element in ḡ∗ν .

In [12] symplectic reduction by stages is performed under the condition of a so-called ‘stages
hypothesis’. An element µ ∈ g∗ is said to satisfy the stages hypothesis if for any µ′ ∈ g∗

satisfying µ|K = µ′|K = ν and µ|gν = µ′|gν = ν̄, there exists an element k ∈ Kν and g ∈ (Gν)ν̄
such that Ad∗kgµ

′ = µ. The stages hypothesis is a condition on a chosen momentum value and
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depends only on the symmetry group G. It was already clear in [12] that the hypothesis is
automatically satisfied if G is a central extension or if G is a semi-direct product group. In the
recent contribution [16] it has been pointed out that the hypothesis is in fact always satisfied,
and that it can be taken out of the reduction by stages statements altogether. Taking advantage
of this result, in this paper, we will not make further reference to the stages hypothesis.

6.1 Symplectic reduction by stages

Theorem 6 (Symplectic reduction by stages [12]). Let (M,ω) be a symplectic manifold with
a canonical G-action ΨM with an equivariant momentum map JG.

1. Fix a regular value µ ∈ g∗ of the momentum map and perform symplectic reduction to
obtain the symplectic manifold (Mµ, ωµ).

2. The restriction of the action ΨM to K is canonical and the map JK = i∗ ◦ JG : M → K∗

determines an equivariant momentum map for this induced action. Fix a regular value ν
of JK and perform symplectic reduction to obtain the symplectic manifold (Mν , ων).

3. The level set J−1
K (ν) is Gν-invariant.

4. The group Ḡν = Gν/Kν acts on Mν by projecting the restricted action of Gν on J−1
K (ν).

This induced action ΨMν is free, proper and canonical on (Mν , ων). Assume that Kν is
connected.

5. Fix an element ν̄ in g∗ν such that the restriction of ν̄|Kν equals ν|Kν . There is a well-defined
momentum map JḠν : Mν → ḡ∗ν for the induced action ΨMν . This momentum map is
determined from JG and ν̄ and has a non-equivariance cocycle: JḠν satisfies

(r′ν)∗ ◦ JḠν ◦ πν = k∗ν ◦ JG ◦ iν − ν̄.

6. Let ρ ∈ ḡ∗ν be a regular value for the momentum map JḠν and let (Ḡν)ρ be the isotropy
subgroup of ρ w.r.t. the affine action of Ḡν on ḡ∗ν . Perform symplectic reduction to obtain
the symplectic manifold ((Mν)ρ, (ων)ρ) with (Mν)ρ = J−1

Ḡν
(ρ)/(Ḡν)ρ.

If ρ is chosen such that (r′ν)∗ρ = µ|gν − ν̄, then there exists a symplectic diffeomorphism

F : (Mµ, ωµ)→ ((Mν)ρ, (ων)ρ).

For our purpose it is also important to understand the reduction of a G-invariant Hamil-
tonian h on M . We assume that all conditions in Theorem 6 are satisfied. First note that,
by definition of the momentum maps, we have an inclusion jµ of J−1

G (µ) in J−1
K (ν). Recall

that we use πν for the projection J−1
K (ν) → Mν . It was shown in [12] that the image of

πν ◦ jµ : J−1
G (µ) → Mν is contained in J−1

Ḡν
(ρ). Moreover, this map is equivariant w.r.t. the

action of Gµ on J−1
G (µ) and (Ḡν)ρ on J−1

Ḡν
(ρ) (this makes sense, since Gµ projects to a subset

of (Ḡν)ρ). The quotient of πν ◦ jµ is the symplectic diffeomorphism F mentioned in the previous
theorem (see also Fig. 4).

Let h be a G-invariant Hamiltonian on M and let hµ be the function on Mµ obtained from
π∗µhµ = i∗µH. On the other hand we let hν be the function satisfying π∗νhν = i∗νh. This function is

Ḡν-invariant: hν([m]Kν [g]Kν ) = h(iν(mg)) = h(iν(m)g), with m ∈ J−1
K (ν) and g ∈ Gν arbitrary.

Note that (πν ◦ jµ)∗hν = i∗µh.
The Hamiltonian hν is a Ḡν-invariant function on (Mν , ων). Applying the second symplectic

reduction to this manifold, we obtain a new reduced Hamiltonian (hν)ρ on (Mν)ρ.

Proposition 8. F ∗((hν)ρ) = hµ.
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Figure 4. Commuting diagram relating the different reduced symplectic manifolds.

Proof. We rely on the commuting diagram in Fig. 4:

π∗µ(F ∗((hν)ρ)) = (πν ◦ jµ)∗hν = i∗µ(h).

This uniquely characterizes F ∗((hν)ρ) as the function hµ. �

6.2 Routh reduction by stages

Routh reduction by stages is symplectic reduction by stages applied to the symplectic struc-
ture of the initial Lagrangian system. In this section we show that the symplectic structures
and energy hamiltonians in the different stages can in fact be associated to specific magnetic
Lagrangians systems, and eventually gives us Routh reduction by stages. The symplectic re-
duction by stages then provides us a diffeomorphism relating the solutions of the different
Euler–Lagrange equations for the Lagrangian systems in the final stages.

We start with a hyperregular Lagrangian L, invariant under the action of a Lie group G. We
assume that this Lagrangian satisfies a regularity condition which is more stringent than mere
G-regularity.

Definition 19. The Lagrangian L is said to be G-hyperregular if for any vq ∈ TQ and any
subspace K′ < g with injection i′ : K′ → g, the mapping i′∗ ◦ JL|vq ◦ i′ : K′ → K′∗ defined by
ξ 7→ i′∗

(
JL(vq + (i′(ξ))Q(q))

)
is invertible.

Lagrangians of mechanical type are G-hyperregular. Let K be a normal subgroup of G, K the
Lie algebra of K and i : K→ g the canonical injection. Due to the hyperregularity the invariant
Lagrangian L is both G- and K-hyperregular, and both G- and K-invariant. By definition of JL,
the map i∗ ◦ JL = i∗ ◦ (ψTQ)∗ ◦ FL is the momentum map for the K-action.

Theorem 7 (Routh reduction by stages). Assume (Q,L) is a hyperregular, G-hyperregular and
G-invariant Lagrangian system. Let K denote a normal subgroup of G.

1. Let µ ∈ g∗ be a regular value of the momentum map JL and A0 a G-connection on Q. Let
(Q/Gµ → Q/G,L0,B0) be the magnetic Lagrangian system obtained by performing Routh
reduction with respect to G.

2. Fix a regular value ν ∈ K∗ of the momentum map i∗ ◦ JL for the K-action and a K-
connection A1 on Q. Assume that A1 is G-equivariant w.r.t. the action of G on Q and K∗.
Consider the magnetic Lagrangian system (Q/Kν → Q/K,L1,B1) obtained by performing
Routh reduction with respect to K.

3. Ḡν acts on Q/Kν and Q/K by projecting the induced action of Gν on Q. These induced
actions are free and proper.

4. Assume that Kν is connected. Fix an element ν̄ ∈ g∗ν such that ν̄|Kν = ν|Kν . Then
the magnetic Lagrangian system (Q/Kν → Q/K,L1,B1) is Ḡν-invariant, Ḡν-regular and
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admits a B1ḡν-potential δ1 entirely determined by the choice of ν̄. The potential satisfies,
for arbitrary q ∈ Q

(r′ν)∗
(
δ1([q]Kν )

)
= −(ψQ ◦ kν)∗

(
〈ν,A1(q)〉

)
+ ν.

Let J1 denote the momentum map associated with δ1.

5. Fix a regular value ρ ∈ ḡ∗ν for the momentum map J1 and let (Ḡν)ρ be the isotropy sub-
group of ρ w.r.t. the affine action of Ḡν on ḡν . Fix a Ḡν-connection on Q/K. Consider
the magnetic Lagrangian system ((Q/Kν)/(Ḡν)ρ → (Q/K)/Ḡν), L2,B2) obtained by per-
forming Routh reduction with respected to Ḡν .

If ρ is chosen such that (r′ν)∗ρ = µ|gν − ν̄, then every solution γ(t) ∈ Q/Gµ to the Euler–
Lagrange equations for (Q/Gµ → Q/G,L0,B0) is mapped to a solution in (Q/Kν)/(Ḡν)ρ to the
Euler–Lagrange equations for ((Q/Kν)/(Ḡν)ρ → (Q/K)/Ḡν , L2,B2). Conversely, a solution in
(Q/Kν)/(Ḡν)ρ to the Euler–Lagrange equations for ((Q/Kν)/(Ḡν)ρ → (Q/K)/Ḡν , L2,B2) is the
projection of a solution in Q/Gµ to the Euler–Lagrange equations for (Q/Gµ → Q/G,L0,B0).

Proof. 1 and 2 are obtained by applying Routh reduction. 3 follows from [12, p. 152]: we know
that the quotient groups Ḡν = Gν/Kν acts in a free and proper way on the quotient space Q/Kν .
The group Ḡν is a subgroup of Ḡ and acts freely and properly and Q/K. We now show 4.
Ḡν-Invariance of the Routh reduced system (Q/Kν → Q/K,L1,B1).

Lemma 5. If the connection A1 is chosen such that it is equivariant w.r.t. the action of the full
group G, i.e. if

(ΨQ
g )∗A1 = Adg−1A1,

then the magnetic Lagrangian system (Q/Kν → Q/K,L1,B1) is Ḡν-invariant and δ1 is a B1ḡν-
potential.

Proof. We first show that L1 is Ḡν-invariant. For that purpose, we choose an arbitrary ḡ ∈ Ḡν
and let g ∈ Gν be a representative. Similar we choose a point (v[q]K , [q]Kν ) ∈ TQ/Kν (Q/K) such
that it is the projection of vq ∈ (i ◦ JL)−1(ν) ⊂ TQ. By definition of the quotient action on
TQ/Kν (Q/K), the action of ḡ on an element (v[q]K , [q]Kν ) equals the projection of vqg. We now
check the invariance of L1 at an arbitrary point in TQ/Kν (Q/K):

L1

(
Ψ
TQ/Kν (Q/K)
ḡ

(
v[q]K , [q]Kν

))
= L(ΨTQ

g (vq))− 〈ν,A1(qg)(TΨQ
g (vq))〉

= L(vq)− 〈Ad∗g−1ν,A1(q)(vq)〉 = L1

(
v[q]K , [q]Kν

)
.

Next, we check the Ḡν-invariance of B1. Recall that B1 is the projection to Q/Kν of the 2-form
d〈ν,A1〉 on Q. We first consider the equivariance of this 2-form under Gν . Let g ∈ Gν be
arbitrary, then

(ΨQ
g )∗(d〈ν,A1〉) = d〈Ad∗g−1ν,A1〉 = d〈ν,A1〉.

We thus obtain Gν-invariance for d〈ν,A1〉, and we may conclude that (Ψ
Q/Kν
ḡ )∗B1 = B1 holds

on Q/Kν .
The third and final step is the definition of the B1ḡν-potential. We consider an element

ξ̄ = [ξ]Kν ∈ ḡν = gν/Kν and let ξ ∈ gν be a representative. Then, by definition of B1, the 1-form
iξ̄Q/Kν

B1 is the projection to Q/Kν of the 1-form iξQd(〈ν,A1〉) on Q (i.e. ξQ projects to ξ̄Q/Kν ).

Again we concentrate on the 1-form on Q:

iξQd〈ν,A
1〉 = LξQ(〈ν,A1〉)− d

(
iξQ〈ν,A

1〉
)
.
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Since 〈ν,A1〉 is Gν-invariant, we conclude that iξQd〈ν,A1〉 = −d
(
iξQ〈ν,A1〉

)
. The exact 1-from

on the right gives a strong hint of the structure of the ḡν-potential. Assume now that we fixed
an element ν ∈ g∗ν such that ν|Kν = ν|Kν .

The function δ on Q, defined by

−δξ(q) = 〈ν,A1(q)(ξQ(q))〉 − 〈ν, ξ〉

is our candidate for the B1ḡν-potential. This statement makes sense provided that δξ projects
to a function on Q/Kν and that it only depends on the equivalence class ξ̄ = ξ + Kν of ξ ∈ gν .
The latter is a straightforward consequence of the fact that A1 is a principal K-connection. The
Kν-invariance is more involved, and we rely on a result in [12]. For any k in Kν , we have

−δξ(qk) = 〈ν,A1(qk)(ξQ(qk))〉 − 〈ν, ξ〉 = 〈ν,A1(q)((Adkξ)Q(q))〉 − 〈ν, ξ〉.

Therefore δξ is constant on the orbits of Kν in Q if 〈ν,A1(q)((ξ − Adkξ)Q(q))〉 vanishes for
all k. To show this we introduce a function f on Kν given by f(k) = 〈ν,A1(q)((ξ−Adkξ)Q(q))〉
and we use similar arguments as in [12, p. 156]. If we can show that f(e) = 0, df |e = 0 and
f(k1k2) = f(k1) + f(k2) for arbitrary k1,2 ∈ Kν , we may conclude that f = 0 (since Kν is
assumed connected).

The first condition f(e) = 0 is trivial. To check the second condition: let κ ∈ Kν be arbitrary,
then

df |e(κ) = 〈ν,A1(q)(−adκξ)Q(q))〉 = −〈ν, adκξ〉 = −〈ad∗κ, ξ〉 = 0.

Above, we have used the fact that Kν is normal in Gν and that, as a consequence, the Lie
bracket [κ, ξ] is in Kν . Therefore the contraction of the corresponding fundamental vector field
with A1 is precisely [κ, ξ]. Next, we check the third condition and compute f(k1k2). Given the
identity

ξ −Adk1Adk2ξ = ξ −Adk1ξ + Adk1(ξ −Adk2ξ)

and the fact that k1 ∈ Kν ,

f(k1k2) = 〈ν,A1(q)((ξ −Adk1k2ξ)Q(q))〉
= 〈ν,A1(q)((ξ −Adk1ξ)Q(q))〉+ 〈ν,A1(q)(Adk1(ξ −Adk2ξ)Q(q))〉
= f(k1) + 〈Ad∗k1ν,A

1(q)((ξ −Adk2ξ)Q(q))〉 = f(k1) + f(k2).

This completes the proof: the g∗ν-valued function δ is shown to be projectable to a ḡ∗ν-valued
function on Q/Kν . This is the sought-after potential δ1: for arbitrary q ∈ Q, we have

(r′ν)∗
(
δ1([q]Kν )

)
= −(ψQ ◦ kν)∗

(
〈ν,A1(q)〉

)
+ ν. �

Symplectic structure of (Q/Kν → Q/K,L1,B1) and symplectic reduction by stages.

Lemma 6. Apply symplectic reduction by stages to the symplectic structure associated to the
G-invariant Lagrangian system (Q,L). Identify the symplectically reduced manifold Mν with
the symplectic structure on TQ/Kν (Q/K) induced by the magnetic Lagrangian system (Q/Kν →
Q/K,L1,B1). Then:

1. The action ΨTQ/Kν (Q/K) of Ḡν on TQ/Kν (Q/K) is precisely the induced action on the first
reduced space Mν in symplectic reduction by stages.

2. For a chosen ν̄ ∈ g∗ν , the momentum map J1 : TQ/Kν (Q/K)→ ḡ∗ν associated with the mag-
netic Lagrangian system (Q/Kν → Q/K,L1,B1) corresponds to the induced momentum
map JḠν from symplectic reduction by stages.
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Proof. 1. The momentum map for the K action is precisely JK := i∗K ◦JL, with JL : TQ→ g∗.
By definition, the induced action of Ḡν on J−1

K (ν)/Kν is obtained by projecting the action
of Gν on J−1

K (ν). If we take into account that we realize the quotient manifold J−1
K (ν)/Kν as

TQ/Kν (Q/K), the induced action on TQ/Kν (Q/K) is obtained by projection of the action of Gν
on TQ under the projection TQ→ TQ/Kν (Q/K). This is precisely the action we have introduced
above.

2. The induced momentum map JḠν is defined in the following way (we consider it directly
as a function on TQ/Kν (Q/K) instead of on Mν):〈

JḠν
(
v[q]K , [q]Kν

)
, ξ̄
〉

= 〈JL(vq), kν(ξ)〉 − 〈ν̄, ξ〉 = 〈FL(vq), ξQ〉 − 〈ν̄, ξ〉, (4)

where ξ ∈ gν is arbitrary and projects to ξ̄ ∈ ḡν , vq projects to (v[q]K , [q]Kν ). By definition of
the momentum map of the magnetic Lagrangian system (Q/Kν → Q/K,L1,B1), we have〈

J1

(
v[q]K , [q]Kν

)
, ξ̄
〉

=
〈
FL1

(
v[q]K , [q]Kν

)
,
(
(ξ̄)Q/K , [p]Kν

)〉
− (δ1)ξ̄([p]Kν ). (5)

We now show that the right-hand side of (5) equals the right-hand side of (4). We therefore use
the definition of FL1 and δ1 as being the projection of maps upstairs:〈

FL1

(
v[q]K , [q]Kν

)
,
(
(ξ̄)Q/K , [q]Kν

)〉
= 〈FL(vq), ξQ(q)〉 − 〈ν,A1(q)(ξQ(q))〉,

(δ1)ξ̄([q]Kν ) = δξ(p) = −〈ν,A1(q)(ξQ(q))〉+ 〈ν, ξ〉. �

Finally, before we can reapply Routh reduction for the second stage, we need to check that
L1 is Ḡν-regular.

Lemma 7. The magnetic Lagrangian system (Q/Kν → Q/K,L1,B1) is Ḡν-regular.

Proof. We have to show that, for any (v[q]K , [q]Kν ) the map

ḡν → ḡ∗ν ; ξ̄ 7→ J1(v[q]K + ξ̄Q/K([q]K), [q]Kν )

is invertible. Let vq determine a tangent vector in J−1
K (ν) representing (v[q]K , [q]Kν ). Let η

denote an arbitrary element in ḡ∗ν . Due to the assumed G-hyperregularity, there is a unique
ξ ∈ gν such that k∗ν(JL(vq + ξQ(q))) = (r′ν)∗η + ν. The projection ξ̄ = r′ν(ξ) of ξ defines the
inverse element for η, since it is such that

k∗ν(JL(vq + ξQ(q)))− ν̄ = (r′ν)∗J1(v[q]K + ξ̄Q/K) = (r′ν)∗η. �

Symplectic and Routh reduction by stages. Summarizing the above lemmas, we con-
clude that the magnetic Lagrangian system (Q/Kν → Q/K,L1,B1) is amenable to Routh re-
duction and that the symplectic structure and momentum map associated to this Lagrangian
system correspond to the symplectic structure and momentum map encountered in symplec-
tic reduction by stages. If ρ is chosen such that the compatibility relation (r′ν)∗ρ = µ|gν − ν̄
holds, then from symplectic reduction by stages we have that the symplectic structures asso-
ciated to (Q/Gµ → Q/G,L0,B0) and ((Q/Kν)/(Ḡν)ρ → (Q/K)/Ḡν , L2,B2) are symplectically
diffeomorphic by means of the symplectic diffeomorphism F introduced earlier. From Proposi-
tion 8 it follows that F ∗EL2 = EL0 and therefore the corresponding Hamiltonian vector fields
are F -related. We define a map τ : Q/Gµ → (Q/Kν)/(Ḡν)ρ as τ([q]Gµ) =

[
[q]Kν

]
(Ḡν)ρ

. The

map is well-defined since Gµ is a subgroup of Gν and since rν(Gµ) ⊂ (Ḡν)ρ.

Lemma 8. The symplectic diffeomorphism F is fibred over τ .
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Figure 5. Fibration of the symplectic diffeomorphism F .

Proof. We recall the definition of the map F : fix an element (v[q]G , [q]Gµ) and let vq ∈ J−1
L (µ)

be a representative. The point F (v[q]G , [q]Gµ) is obtained by taking the consecutive quotients
of vq. In particular, the component of the final quotient in the configuration space (Q/Kν)/(Ḡν)
of the magnetic Lagrangian system, is precisely the image τ . �

Since F is a diffeomorphism, τ is onto. The Hamiltonian vector field on TQ/Gµ(Q/G) and
T(Q/Kν)/(Ḡν)ρ((Q/K)/Ḡν) are F -related. Their integral curves project onto solutions of the
Euler–Lagrange equations. This concludes the proof of Theorem 7. �

7 Examples

7.1 Elroy’s Beanie

This system appears in e.g. [13]. It consists of two planar rigid bodies that are connected in their
center of mass. The system moves in the plane and it is subject to some conservative force with
potential V . The configuration space is SE(2)× S1, with coordinates (x, y, θ, ψ). Here (x, y) is
the position of the center of mass, θ is the rotation of the first rigid body, and ψ the relative
rotation of the second body w.r.t. the first. The kinetic energy of the system is SE(2)-invariant
and we will suppose that the potential is invariant as well. This means in fact that only the
relative position of the two bodies matters for the dynamics of the system. The Lagrangian is
of the form

L =
1

2
m(ẋ2 + ẏ2) +

1

2
I1θ̇

2 +
1

2
I2(θ̇ + ψ̇)2 − V (ψ).

The Euler–Lagrange equations of the system are, in normal form,

ẍ = 0, ÿ = 0, θ̈ =
1

I1
V ′, ψ̈ = −I1 + I2

I1I2
V ′.

The symmetry group and the principal connection. An element of SE(2), the special
Euclidean group, can be represented by a matrix of the form cos θ − sin θ x

sin θ cos θ y
0 0 1

 . (6)

The identity of the group is (x = 0, y = 0, θ = 0) and the multiplication is given by

(x1, y1, θ1) ∗ (x2, y2, θ2) = (x2 cos θ1 − y2 sin θ1 + x1, x2 sin θ1 + y2 cos θ1 + y1, θ1 + θ2).

The matrices

e1 =

0 0 1
0 0 0
0 0 0

 , e2 =

0 0 0
0 0 1
0 0 0

 , e3 =

0 −1 0
1 0 0
0 0 0

 ,



26 B. Langerock, T. Mestdag and J. Vankerschaver

form a basis for the Lie algebra, for which [e1, e2] = 0, [e1, e3] = e2 and [e2, e3] = −e1. A corre-
sponding basis of fundamental vector fields on Q is

ẽ1 =
∂

∂x
, ẽ2 =

∂

∂y
, ẽ3 = −y ∂

∂x
+ x

∂

∂y
+

∂

∂θ
,

and a basis of invariant vector fields is

ê1 = cos θ
∂

∂x
+ sin θ

∂

∂y
, ê2 = − sin θ

∂

∂x
+ cos θ

∂

∂y
, ê3 =

∂

∂θ
.

One can easily verify that the Lagrangian is invariant under the SE(2)-action. There is a trivial
principal connection on P = Q = SE(2)× S1 → Q/SE(2) = S1, which locally takes the form

(dx+ ydθ)e1 + (dy − xdθ)e2 + dθe3.

The momentum map JL is given by:

JL = mẋe1 +mẏe2 +
(
m(xẏ − yẋ) + I1θ̇ + I2(θ̇ + ψ̇)

)
e3.

In what follows we perform two Routh reductions on the Lagrangian. The first reduction is
done w.r.t. the full symmetry group SE(2), and the second reduction w.r.t. the Abelian normal
subgroup R2.

Full reduction. Let µ = µ1e
1 + µ2e

2 + µ3e
3 be a generic element in g∗. An element

ξ = ξ1e1 + ξ2e2 + ξ3e3 of the isotropy algebra gµ satisfies

ξ3µ2 = 0, ξ3µ1 = 0, ξ1µ2 − ξ2µ1 = 0.

So if we suppose that µ1 and µ2 do not both vanish – we will set µ1 = 1 from now on – then
a typical element of gµ is ξ = ξ1(e1 + µ2e2). Since gµ is 1-dimensional, Gµ is of course Abelian.
A convenient way to describe the manifold P/Gµ = SE(2)/Gµ locally is by considering a coor-
dinate transformation (x′, y′, θ′) in the group coordinates such that the vector field associated
to an element in gµ becomes a coordinate vector field: in the new coordinates, we should have
∂x′ = ∂x + µ2∂y. This is obtained by the following transformation

x′ = x, y′ = y − µ2x, θ′ = θ.

Then clearly (y′, θ) is a coordinate chart on SE(2)/Gµ. And simultaneously, we have that
(y′, θ, ψ) is a coordinate chart on the reduced configuration manifold P/Gµ = (SE(2)×S1)/Gµ,
and the fibration P/Gµ → Q/G = S1 is locally represented by (y′, θ, ψ) 7→ (ψ). For a more
systematic treatment on appropriate coordinate changes, we refer to [6].

We now compute the Routhian L0 and the 2-form B0. Following [19], a convenient way
to compute the (unreduced) Routhian for mechanical Lagrangians is by using 2(L0 + V ) =(
− pxẋ− pyẏ − θ̇pθ + ψ̇pψ

)
J−1
L (µ)

, where pi is the momentum in the ith coordinate. We have:

2(L0 + V ) =
(
−m(ẋ2 + ẏ2)− I1θ̇

2 − I2(θ̇ + ψ̇)θ̇ + I2(θ̇ + ψ̇)ψ̇
)
J−1
L (µ)

=
(
−m(ẋ2 + ẏ2)− (I1 + I2)θ̇2 + I2ψ̇

2
)
J−1
L (µ)

= − 1

m
(1 + µ2

2)−

(
µ3 − (xµ2 − y)− I2ψ̇

)2

I1 + I2
+ I2ψ̇

2

=
I1I2

I1 + I2
ψ̇2 + 2I2

µ3 − (xµ2 − y)

I1 + I2
ψ̇ − (µ3 − (xµ2 − y))2

I1 + I2
.
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In the last step we have left out some constant terms. The reduced Lagrangian is then ob-
tained by taking the quotient w.r.t. the action of Gµ. This is done by applying the coordinate
transformation introduced above. We get:

L0 =
1

2

I1I2

I1 + I2
ψ̇2 + I2

µ3 + y′

I1 + I2
ψ̇ −

(
V (ψ) +

1

2

(µ3 + y′)2

I1 + I2

)
,

which is clearly independent of x′. The 2-form B0 is obtained by reducing the 2-form

d ((dx+ ydθ) + µ2(dy − xdθ) + µ3dθ) = d(y − µ2x) ∧ dθ.

Using the coordinate change we get B0 = dy′ ∧ dθ.
In this example the Routhian L0 depends on the velocity corresponding to the coordinate ψ

on S1, but is independent of the velocities corresponding to the two remaining coordinates (y′, θ).
With the above, the reduced Euler–Lagrange equations take the form

ẏ′ = 0,

θ̇ =
1

I1 + I2
(y′ + µ3 − I2ψ̇),

ψ̈ = −I1 + I2

I1I2
V ′ − 1

I1
ẏ′.

Note that the second order equation in ψ decouples from the first order equations, and that
these two first order equations are the momentum equations rewritten in normal form.

Abelian reduction. We now perform first Routh reduction w.r.t. the Abelian symmetry
group R2 of translations in the x and y direction. Let us denote the symmetry group by K = R2

and study the quotient spaces. We will use the same notations as before: the Lie algebra elements
e1, e2 denote a basis for the subalgebra K of K in g. The momentum map for this action is now
JK = i∗ ◦ JL = mẋe1 + mẏe2. We choose ν to be the projection of the momentum µ we had
used in the full reduction: let ν = e1 +µ2e

2 ∈ g∗. Since K is Abelian, Kν = K and the quotient
space is SE(2)× S1/R2 = S1 × S1. If we choose A1 = dxe1 + dye2 to be the trivial connection,
we simply get B1 = 0. The Routhian L1 can now be obtained from

2(L1 + V ) =
(
−pxẋ− pyẏ + pθθ̇ + pψψ̇

)
J−1
L (ν)

=
(
−mẋ2 −mẏ2 + I1θ̇

2 + I2(θ̇ + ψ̇)2
)
J−1
L (ν)

= I1θ̇
2 + I2(θ̇ + ψ̇)2,

where we ignored again some constant terms. The Routh reduced system is now a standard
Lagrangian system on S1 × S1 with Lagrangian L1 = 1

2I1θ̇
2 + 1

2I2(θ̇ + ψ̇)2 − V (ψ) (see the
paragraphs on Abelian Routh reduction). Its equations of motion are

θ̈ =
1

I1
V ′, ψ̈ = −I1 + I2

I1I2
V ′.

For this example there is actually no second stage: the group Ḡν = Gν/Kν is the trivial
one {e}, and the vector space ḡν = gν/Kν is only the zero vector. So, there is no second
momentum map to take into account, and there is no further symmetry to quotient out.

In the reduction by stages process we have not made use of µ3. We now show that the two
ways of reducing the system are equivalent.

Equivalence between direct reduction and reduction by stages. Let us compute the
diffeomorphism F for this example. Here, it is a map J−1

L (µ)/Gµ → J−1
K (ν)/K that is obtained

by projection of the inclusion map J−1
L (µ)→ J−1

K (ν). The latter equals, in coordinates

(x, y, θ, ψ, ψ̇) 7→
(
x, y, θ, ψ, θ̇ =

1

I1 + I2
(µ3 − (xµ2 − y)− I2ψ̇), ψ̇

)
.
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The map is reducible, and after taking the quotient it becomes

F : J−1
L (µ)/Gµ → J−1

K (ν)/K; (y′, θ, ψ, ψ̇) 7→
(
θ, ψ, θ̇ =

1

I1 + I2
(µ3 + y′ − I2ψ̇), ψ̇

)
.

This diffeomorphism maps the Gµ-reduced system on the Kν-reduced system, as is obvious
from the respective equations of motion.

7.2 Rigid bodies on the Heisenberg group

As a second example of Routh reduction by stages, we discuss the dynamics of a rigid body
immersed in a potential flow with circulation [20]. We assume that the body is circular, and in
this case the equations of motion are given by

d

dt

[
px
py

]
= Γ

[
−vy
vx

]
, where

[
px
py

]
= M

[
vx
vy

]
. (7)

Here Γ represents the circulation and M is a (non-diagonal) mass matrix, which incorporates the
inertia and added masses of the body. The right-hand side of the equations of motion represents
the so-called Kutta–Joukowski lift force, a gyroscopic force due to circulation [9, 17].

While this system is extremely easy to integrate, it nevertheless exhibits all the interesting
geometric characteristics of more complicated examples. As we show below, the configuration
space for this system is the Heisenberg group, arguably the simplest non-trivial central extension
group, and the procedure of reduction by stages demonstrated here can be applied equally well
to more complicated central extensions, such as the oscillator group (describing the dynamics of
rigid bodies of arbitrary cross section in circulatory flow) and the Bott–Virasoro group describing
the KdV equation.

In this context, the Heisenberg group H is the Euclidian space R3, equipped with the multi-
plication

(x, y, s) · (x′, y′, s′) =

(
x+ x′, y + y′, s+ s′ +

1

2
(xy′ − yx′)

)
,

using the definition of H given in [18]. The coordinates (x, y) describe the center of the circular
disc, while the coordinate s corresponds to the flux of the fluid around the body. The conjugate
momentum corresponding to s will be the circulation of the fluid.

The Heisenberg group can alternatively be described as the central extension of R2 con-
structed by means of the cocycle B((x, y), (x′, y′)) = 1

2(xy′ − yx′). We now introduce the
infinitesimal cocycle C : R2 × R2 → R, given by

C((vx, vy), (v
′
x, v
′
y)) = vxv

′
y − vyv′x.

For the relation between B and C, see for instance [12]. The Lie algebra h of H can then be
identified with R3 with the bracket

[(vx, vy, v), (v′x, v
′
y, v
′)] = (0, 0, C((vx, vy), (v

′
x, v
′
y))) = (0, 0, vxv

′
y − vyv′x).

The dual Lie algebra h∗ can again be identified with R3, with coordinates (px, py, p) and duality
pairing 〈(px, py, p), (vx, vy, v)〉 = pxvx + pyvy + pv.

We now induce the following quadratic Lagrangian ` on h:

`(vx, vy, v) =
1

2
[vx, vy]M

[
vx
vy

]
+
v2

2
,
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and we define L on H by left extension: L(g, ġ) = `(g−1ġ), or explicitly

L(x, y, s; ẋ, ẏ, ṡ) =
1

2
[ẋ, ẏ]M

[
ẋ
ẏ

]
+

1

2

(
ṡ− 1

2
(xẏ − yẋ)

)2

. (8)

The Euler–Poincaré equations obtained from ` are given by

d

dt

pxpy
p

 = p

−vyvx
0

 .
After setting p = Γ, we obtain the equations (7). These equations also coincide with the Euler–
Lagrange equations obtained from the Lagrangian (8).

Reduction with respect to R. The center of H is the normal subgroup isomorphic to R
which consists of all elements of the form (0, 0, s), where s ∈ R. We first perform Routh reduction
with respect to the left action of this subgroup on H. On the principal bundle H → H/R ∼= R2

we consider the connection one-form given at the identity by A(e)(vx, vy, v) = v, and extended
to the whole of H by left translation. Explicitly, we have

A(x, y, s) = ds− 1

2
(xdy − ydx).

Since the structure group R is Abelian, the curvature of A is given by B = dA = −dx ∧ dy.
Similarly, the momentum map JL : TH → R for the R-action on the tangent bundle TH is

given by JL(x, y, z; ẋ, ẏ, ż) = ṡ − (xẏ − yẋ)/2, so that J−1
L consists of all points (x, y, s; ẋ, ẏ, ṡ)

with ṡ = Γ + (xẏ − yẋ)/2. The isotropy subgroup RΓ = R acts on this level set by translations
in the s-direction, so that the reduced velocity space is given by

J−1(Γ)/RΓ = TR2.

The symplectic form on the reduced space can easily be computed, and is explicitly given by

Adẋ ∧ dx+B(dẋ ∧ dy + dẏ ∧ dx) + Cdẏ ∧ dy − Γdx ∧ dy,

where A, B, C are the entries of the mass matrix M. The last term of the symplectic form,
−Γdx ∧ dy, is the curvature term of the connection, paired with Γ ∈ R. Finally, a quick
computation shows that the reduced Lagrangian is just the kinetic energy Lagrangian on TR2:

L1(x, y; ẋ, ẏ) =
1

2
[ẋ, ẏ]M

[
ẋ
ẏ

]
, (9)

up to constant terms.
Second reduction. We now perform reduction with respect to the remaining symmetry

group, H/R ∼= R2, using the results from Section 5.3. We have a left invariant magnetic
Lagrangian system on the group R2, with Lagrangian (9) and magnetic form BΓ = −Γdx ∧ dy.
The potential δ : R2 → R2 corresponding to the latter is given by

δ(x, y) = Γ

[
−y
x

]
,

and the momentum map is therefore J2(x, y, ẋ, ẏ) = M(ẋ, ẏ)T − δ(x, y). The non-equivariance
2-cocycle of the momentum map is Σδ = BΓ.

The affine action of R2 on itself is given by (x, y) · (px, py) = (px − Γy, py + Γx). If we fix
a momentum value (λ, µ) ∈ R2, the isotropy group R2

(λ,µ) of the affine action consists of just the

zero element, and consequentially the twice-reduced space J−1
2 (λ, µ)/R2

(λ,µ) is nothing but R2.
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The reduced Euler–Lagrange equations (3) in the case of a left action, assume the following
form

d

dt

[
px
py

]
= −i(vx,vy)Σδ = Γ

[
−vy
vx

]
,

with (px, py)
T = M(vx, vy)

T , and these are nothing but the equations (7).
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