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E-mail: merced@fis.cinvestav.mx, mquesada@fis.cinvestav.mx

URL: http://www.fis.cinvestav.mx/~merced/

Received August 31, 2011, in final form November 07, 2011; Published online November 11, 2011

http://dx.doi.org/10.3842/SIGMA.2011.103

Abstract. A detailed analysis of the BF formulation for general relativity given by Capo-
villa, Montesinos, Prieto, and Rojas is performed. The action principle of this formulation
is written in an equivalent form by doing a transformation of the fields of which the action
depends functionally on. The transformed action principle involves two BF terms and the
two Lorentz invariants that appear in the original action principle generically. As an appli-
cation of this formalism, the action principle used by Engle, Pereira, and Rovelli in their
spin foam model for gravity is recovered and the coupling of the cosmological constant in
such a formulation is obtained.
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1 Introduction

One of the main challenges nowadays is to establish links between loop quantum gravity
(LQG) [1] and spin foam models [2], which are the main approaches to the nonperturbative
and background-independent quantizations of general relativity. Whether or not the two quan-
tization schemes yield two different quantum theories is still an open problem (see [3]). The
search for the links between these approaches lies mostly in the quantum realm, but there are
still some aspects of this correspondence that are unclear classically. It is possible to say that
the connection between the two frameworks at the classical level is the relationship between
the Holst’s action and the BF formulations for general relativity because LQG is based at the
classical level on Holst’s action but spin foam models for gravity are related to constrained BF
theories. This is the issue studied in this paper.

General relativity expressed as a constrained BF theory was given by Plebański many years
ago [4]. The basic idea behind the Plebański formulation is that the fundamental variables
for describing the gravitational field (general relativity) are neither a metric (as it is in the
Einstein–Hilbert action) nor a tetrad together with a Lorentz connection (as it is in the Palatini
action), but rather two-form fields, a connection one-form, and some Lagrange multipliers. The
geometry of spacetime is built up from these fundamental blocks. In order to bring tetrads
into the formalism, the two-forms are eliminated by solving an equation among them, which
implies that the two-forms can be expressed in terms of tetrad fields, and by inserting back
this expression for the two-forms into the Plebański action, it becomes the self-dual action for
general relativity [5, 6].

?This paper is a contribution to the Special Issue “Loop Quantum Gravity and Cosmology”. The full collection
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This view point has been adopted in the construction of other action principles, which also
express general relativity as a constrained BF theory [7, 8, 9, 10, 11, 12]. The link with tetrad
gravity is again made by solving the constraints for the two-form fields which amounts to express
them in terms of tetrad fields. In particular, a formulation for real general relativity expressed
as a constrained BF theory that involves the Immirzi parameter [13, 14, 15] was given in [12] by
Capovilla, Montesinos, Prieto, and Rojas (hereafter CMPR formulation). It is well-known that
the Immirzi parameter in such a formulation appears naturally when the two Lorentz invariants
ηIKηJL−ηILηJK and εIJKL are introduced in the constraint on the Lagrange multipliers φIJKL.
This action principle involves just one BF term. In this work it is shown that by performing
a suitable transformation on the fields involved in the theory, the original action principle can
be written in a form that involves two BF terms, one of them containing a parameter that will
be identified a posteriori with the Immirzi parameter (see also [16]). This allows us to relate
the CMPR formulation with different real BF formulations of gravity currently employed in
the literature (see e.g. [17]). Furthermore, the same transformation is applied to the action
principle studied in [18], which includes the cosmological constant, and we obtain the coupling
of the cosmological constant in the framework of [17]. The material reported in this paper is
part of the work presented in [19].

2 CMPR action for gravity

The action principle for pure gravity introduced by Capovilla, Montesinos, Prieto, and Rojas
in [12] is given by

S[Q,A,ψ, µ] =

∫
M4

[
QIJ ∧ FIJ [A]− 1

2
ψIJKLQ

IJ ∧QKL

− µ
(
a1ψIJ

IJ + a2ψIJKLε
IJKL

) ]
, (1)

where AIJ is an Euclidean or Lorentz connection one-form, depending on whether SO(4) or
SO(3, 1) is taken as the internal gauge group, and F IJ [A] = dAIJ +AIK ∧AKJ is its curvature;
the Q’s are a set of six two-forms on account of their antisymmetry QIJ = −QJI ; the Lag-
range multiplier ψIJKL has 21 independent components due to the properties ψIJKL = ψKLIJ ,
ψIJKL = −ψJIKL, and ψIJKL = −ψIJLK ; the Lagrange multiplier µ implies the additional
restriction a1ψIJ

IJ + a2ψIJKLε
IJKL = 0 on the Lagrange multiplier ψIJKL. The Lorentz (Eu-

clidean) indices I, J,K, . . . = 0, 1, 2, 3 are raised and lowered with the Minkowski (Euclidean)
metric (ηIJ) = diag(σ,+1,+1,+1) where σ = +1 for Euclidean and σ = −1 for Lorentzian
signatures, respectively.

The variation of the action (1) with respect to the independent fields gives the equations of
motion

δQ : FIJ [A]− ψIJKLQKL = 0,

δA : DQIJ = 0,

δψ : QIJ ∧QKL + 2a1µη
[I|K|ηJ ]L + 2a2µε

IJKL = 0, (2)

δµ : a1ψIJ
IJ + a2ψIJKLε

IJKL = 0.

By contracting equation (2) with the Killing–Cartan metric η[I|K|ηJ ]L = 1
2(ηIKηJL − ηILηJK)

and εIJKL, one gets a1µ = − 1
12Q

IJ ∧ QIJ and a2µ = − σ
4!Q

IJ ∧ ∗QIJ respectively, where
∗QIJ := 1

2ε
IJ
KLQ

KL. The non-degenerate case corresponds to µ 6= 0 whereas the degenerate
case corresponds to µ = 0. Let us restrict the analysis to the non-degenerate case. Inserting
back a1µ and a2µ into (2), it is obtained

QIJ ∧QKL − 1

6

(
QMN ∧QMN

)
η[I|K|ηJ ]L − 2σ

4!

(
QMN ∧ ∗QMN

)
εIJKL = 0,
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together with

2a2Q
IJ ∧QIJ − σa1Q

IJ ∧ ∗QIJ = 0,

that follows from the equality of the two expressions for µ and the fact that a1 6= 0 and a2 6= 0.
It is shown in [12] that

QIJ = α ∗
(
eI ∧ eJ

)
+ βeI ∧ eJ , (3)

is the general solution for the Q’s provided that the constants α and β satisfy

a2

a1
=
α2 + σβ2

4αβ
. (4)

By inserting the solution (3) into the action principle (1), we get

S[e,A] =

∫
M4

[
∗ (eI ∧ eJ)+

β

α
eI ∧ eJ

]
∧ FIJ [A].

Notice that, as remarked in [12], the Immirzi parameter appears naturally in equation (3) because
the two invariants ψIJ

IJ and ψIJKLε
IJKL are present in the action.

2.1 CMPR formulation with a1 = 0 or a2 = 0

The cases when a1 or a2 are equal to zero have been analyzed separately [8, 10, 11]. In particular,
if a1 = 0 and a2 6= 0 the Lorentz invariant ψIJ

IJ is not present in the action, which reduces to

S[Q,A,ψ, µ] =

∫
M4

[
QIJ ∧ FIJ [A]− 1

2
ψIJKLQ

IJ ∧QKL − µψIJKLεIJKL
]
. (5)

After solving the constraint on the Q’s, they can be written in terms of the tetrad eI as

(i) QIJ = κ1
∗ (eI ∧ eJ) , (ii) QIJ = κ2e

I ∧ eJ , (6)

where κ1, κ2 are constants. By inserting these expressions for the Q’s into (5), we get action
principles for two different theories, one of which is general relativity [10, 11]

(i) S1[e,A] = κ1

∫
M4

∗ (eI ∧ eJ) ∧ FIJ [A],

(ii) S2[e,A] = κ2

∫
M4

(
eI ∧ eJ

)
∧ FIJ [A]. (7)

In [20] was proposed to consider the action S2[e,A] as a genuine field theory in its own right be-
cause it is background-independent and diffeomorphism-invariant. Recently, it has been shown
that S2[e,A] is indeed topological if the spacetime M4 has no boundary. The proof is given
by performing the covariant canonical analysis to this action as well as by doing the Dirac’s
canonical analysis with and without breaking local Lorentz invariance [21, 22, 23]. The rele-
vance of the action S2[e,A] is not academic, this field theory is a topological limit of general
relativity obtained by taking the Newton constant G → ∞ and the Immirzi parameter γ → 0
while keeping the product Gγ constant [21].

On the other hand, if a1 6= 0 and a2 = 0, the action takes the form [8]

S[Q,A,ψ, µ] =

∫
M4

[
QIJ ∧ FIJ [A]− 1

2
ψIJKLQ

IJ ∧QKL − µψIJ IJ
]
. (8)
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The solutions for the two-forms in terms of the tetrad eI are given by

QIJ = κ
[∗ (eI ∧ eJ)±√−σeI ∧ eJ] .

Therefore, the action principle in terms of the tetrad takes the form

SE [e,A] = κ

∫
M4

[∗ (eI ∧ eJ)± ieI ∧ eJ] ∧ FIJ [A]

in the Euclidean case whereas in the Lorentzian case it becomes

SL[e,A] = κ

∫
M4

[∗ (eI ∧ eJ)± eI ∧ eJ] ∧ FIJ [A].

Notice that last form of the action includes the coupling of the term eI ∧ eJ ∧ FIJ [A] added by
Holst to the Palatini action with (what it is called now) Immirzi parameter equal to ±1, but
this form of the action was reported in [8] several years before Holst, Immirzi, and Barbero’s
papers.

3 Transformation of the CMPR action for gravity

The goal of this section is to study the CMPR formulation for general relativity by performing
a linear transformation from the original variables the action principle depends functionally on
to a new set of two-forms and Lagrange multipliers. It will be shown that the resulting action
principle involves the two possible BF terms, BIJ ∧ FIJ [A] and ∗BIJ ∧ FIJ [A] that can be built
when the internal gauge group is SO(3, 1) or SO(4), with the corresponding change in the
symplectic structure as it was pointed out in [24] and [25].

In order to do what we have explained, i.e., the alternative writing of the CMPR action, we
define

QIJ := b1B
IJ + b2

∗BIJ , (9)

with b1 and b2 constants, from which it follows the inverse transformation

BIJ =
1

b21 − σb22

(
b1Q

IJ − b2∗QIJ
)
, (10)

provided that

b21 − σb22 6= 0, (11)

holds.
Using (9), the Lagrangian of action principle (1) acquires the form(

b1B
IJ + b2

∗BIJ
)
∧ FIJ [A]− 1

2
ψIJKL

(
b1B

IJ + b2
∗BIJ) ∧ (b1BKL − b2 ∗BKL)

−µ
(
a1ψIJ

IJ + a2ψIJKLε
IJKL

)
, (12)

that can further be rewritten by defining

φIJKL := b21ψIJKL + b1b2
∗ψIJKL + b1b2ψ

∗
IJKL + b22

∗ψ∗IJKL, (13)

where ∗ψIJKL := 1
2ε
MN

IJψMNKL and ψ∗IJKL := 1
2ε
MN

KLψIJMN are the dual on the first and
on the second pair of Lorentz indices, respectively. From (13) it follows that

ψIJKL =
1

(b21 − σb22)2

(
b21φIJKL − b1b2 ∗φIJKL − b1b2φ∗IJKL + b22

∗φ∗IJKL
)
. (14)
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Therefore, the second term of (12) takes the form

ψIJKL
(
b1B

IJ + b2
∗BIJ) ∧ (b1BKL − b2 ∗BKL) = φIJKLB

IJ ∧BKL.

Furthermore, using (14), the two invariants ψIJ
IJ and ψIJKLε

IJKL can be written in terms of
the two invariants φIJ

IJ and εIJKLφ
IJKL as

ψIJ
IJ =

1(
b21 − σb22

)2 [(b21 + σb22
)
φIJ

IJ − b1b2φIJKLεIJKL
]
, (15)

and

ψIJKLε
IJKL =

1(
b21 − σb22

)2 [(b21 + σb22
)
φIJKLε

IJKL − 4σb1b2φIJ
IJ
]
. (16)

Thus, using (15) and (16), the last term of (12) acquires the form

a1ψIJ
IJ + a2ψIJKLε

IJKL = A1φIJ
IJ +A2φIJKLε

IJKL, (17)

with

A1 =
1(

b21 − σb22
)2 [a1

(
b21 + σb22

)
− 4σa2b1b2

]
,

A2 =
1(

b21 − σb22
)2 [a2

(
b21 + σb22

)
− a1b1b2

]
. (18)

By using the previous steps, the form that the CMPR action (1) acquires once the transfor-
mation defined in equations (9), (10) and in equations (13), (14) has been done is

S[B,A, φ, µ] =

∫
M4

[ (
b1B

IJ + b2
∗BIJ

)
∧ FIJ [A]− 1

2
φIJKLB

IJ ∧BKL

− µ
(
A1φIJ

IJ +A2φIJKLε
IJKL

) ]
. (19)

Due to the fact that the transformation is invertible, both actions (1) and (19) are equivalent.

The action principle (19) can still be written in terms of tetrads and a Lorentz connection
by solving the constraint on the B’s coming from it. Alternatively, the expression for the two-
forms BIJ in terms of the tetrad field can be obtained from the expression for the Q’s given
in (3) and from the use of the equation (10).

The relationship between the action principle (1) and (19) will be analyzed in detail in an
example given in Section 3.1. Some remarks follow:

(a) It can be observed from equations (15), (16), (17), and (18) that even though we had
started from action (1) with either a1 = 0 or a2 = 0, it might be possible to obtain
generically the two Lorentz invariants in the transformed action (19).

(b) It is possible to get just one of the invariants in the transformed action (19) by imposing
either A1 = 0 or A2 = 0. For instance, the case A1 = 0 can be achieved by solving for the
ratio b2/b1 in terms of the ratio a2/a1, i.e. by choosing a particular transformation (encoded
in b1 and b2) and leaving a1 and a2 arbitrary. Alternatively, A1 = 0 can be achieved by
solving for the ratio a2/a1 in terms of the ratio b2/b1, i.e. by choosing a particular form
for the ratio a2/a1 and leaving the transformation arbitrary. Similarly, the case A2 = 0
can also be handled in two analogous ways.
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The previous analysis points out that is not correct to refer to the term ∗BIJ ∧ FIJ as
“Holst’s term” simply because the term added by Holst to the Palatini action and given by
eI ∧ eJ ∧ FIJ [15] (see also [8]) is at the level of tetrads eI and not at the level of BF theories.
Even though they might be related, they are not exactly the same thing. In particular, ∗BIJ∧FIJ
could be proportional to ∗

(
eI ∧ eJ

)
∧ FIJ , or to eI ∧ eJ ∧ FIJ , or to something else depending

on the expression for the B’s that solves the constraint among them, i.e., a priori there is not
guarantee that ∗BIJ ∧ FIJ would lead to the term added by Holst, because this will ultimately
depend on the expression for the B’s in terms of the tetrads.

3.1 A particular transformation

Let us now study a particular case of the transformation (9). Taking b1 = 1 and b2 = 1
γ the

transformation is invertible for γ2 6= σ. In this case, the action (1) takes the form

S[B,A, φ, µ] =

∫
M4

[(
BIJ +

1

γ
∗BIJ

)
∧ FIJ [A]− 1

2
φIJKLB

IJ ∧BKL

− µ
(
A1φIJ

IJ +A2φIJKLε
IJKL

) ]
, (20)

where now

A1 =
γ2

(γ2 − σ)2

[
a1

(
γ2 + σ

)
− 4σa2γ

]
, A2 =

γ2

(γ2 − σ)2

[
a2

(
γ2 + σ

)
− a1γ

]
. (21)

It is important to notice that, at this stage, the action principle (20) is completely equivalent to
action (1) because the coefficients of the transformation satisfy the condition (11).

As pointed out in the previous remark (b), it is possible to obtain only one of the invariants
in the action (20) by imposing, additionally, either A1 = 0 or A2 = 0.

3.1.1 Case A1 = 0: action with the invariant φIJKLε
IJKL only

In order to eliminate the term with φIJ
IJ in the action (20), A1 must vanish; this is only possible

if a2 and a1 satisfy the condition

a2

a1
=
γ2 + σ

4γσ
. (22)

Using (22), the CMPR action principle (1) takes the form

S[Q,A,ψ, µ] =

∫
M4

[
QIJ ∧ FIJ [A]− 1

2
ψIJKLQ

IJ ∧QKL

− µa1

(
ψIJ

IJ +
γ2 + σ

4γσ
ψIJKLε

IJKL

)]
, (23)

whereas the transformed action principle (20) becomes

S[B,A, φ, µ] =

∫
M4

[(
BIJ +

1

γ
∗BIJ

)
∧ FIJ [A]− 1

2
φIJKLB

IJ ∧BKL

− µa1σγ

4
φIJKLε

IJKL

]
. (24)

This is the form of the action principle used in [17] (see also [16]).
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Remarks:

(c) In the Lorentzian case σ = −1, the particular values γ = ±1 imply γ2 + σ = 0 and thus
the Lorentz invariant φIJKLε

IJKL is not present in the action (23), which then reduces
to the form given in (8). This means that the action (24) can be written as the action
studied in [8] by taking γ = ±1 in the Lorentzian case. For any other arbitrary real value
of the Immirzi parameter the two invariants ψIJ

IJ and ψIJKLε
IJKL are present in the

action (23) [12].

(d) In the Euclidean case, σ = 1, for real values of γ it follows that γ2 + σ 6= 0 and therefore
the two Lorentz invariants are always present in the action (23). This means that the
two invariants ψIJ

IJ and ψIJKLε
IJKL must be involved in order to include arbitrary real

values of γ, as it was recognized in [12]. Nevertheless, it is important to notice that γ2 +σ
can vanish if complex values of γ are allowed, γ = ±i. For these values the invariant
ψIJKLε

IJKL is missing in the action (23), which becomes also the one given in (8).

Continuing with the analysis, the expression for the B’s can be directly obtained from action
principle (24). However, it can be alternatively obtained from the Q’s given in (3) and (4) (and
supplemented with (22)) and from the use of the inverse transformation (10) with b1 = 1 and
b2 = 1

γ . We are going to follow this last approach. Therefore, from the equality of equations (4)
and (22) it follows that in order for the Q’s in (3) to be solutions for the action principle (23),
α/β must satisfy the quadratic equation(

α

β

)2

−
(

1

γ
+ σγ

)
α

β
+ σ = 0,

whose solutions are

(i) α/β = σγ, and (ii) α/β =
1

γ
. (25)

The first root was explicitly mentioned in [12], but the second one was not recognized there as
a possibility to include the Immirzi parameter.

Inserting the two roots given in (25) into (3), we get the corresponding expression for the Q’s

(i) QIJ = α

[
∗ (eI ∧ eJ)+

σ

γ
eI ∧ eJ

]
, (ii) QIJ = α

[ ∗ (eI ∧ eJ)+ γeI ∧ eJ
]
, (26)

and by plugging them into (10) with the restrictions b1 = 1 and b2 = 1
γ we get the corresponding

expressions for the B’s

(i) BIJ = α ∗
(
eI ∧ eJ

)
, (ii) BIJ = αγeI ∧ eJ , (27)

which are precisely the ones given in (6). Furthermore, by comparing (6) and (27), we conclude
that κ1 = α for (i) (and thus κ1 = σγβ) whereas κ2 = αγ for (ii) (and thus κ2 = β).

By plugging (27) into (24) or, equivalently, by plugging (26) into (23), we get

(i) S1[e,A] = κ1

∫
M4

[
∗ (eI ∧ eJ)+

σ

γ
eI ∧ eJ

]
∧ FIJ [A],

(ii) S2[e,A] =
κ2

γ

∫
M4

[ ∗ (eI ∧ eJ)+ γeI ∧ eJ
]
∧ FIJ [A],

which is exactly the same result that we had obtained if we had directly solved the constraint
on the B’s that comes from (24) [17]. It is common to take κ1 = ±1 and κ2 = ±1. Nevertheless,
it must be stressed that these values do not come out from the sole handling of the equations
of motion.
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3.1.2 Case A2 = 0: action with the invariant φIJ
IJ only

In order to obtain the action (24) from (20), a particular function for the ratio a2/a1 has been
taken such that A1 in equation (21) vanishes once the transformation is performed. So, it is
natural to ask what happens if, instead of A1, it is the coefficient A2 which is forced to vanish
in such a way that the invariant φIJKLε

IJKL is not present in the action (20). From (21) this
condition is equivalent to

a1

a2
=
γ2 + σ

γ
. (28)

This means that starting from the CMPR action principle in the form

S[Q,A,ψ, µ] =

∫
M4

[
QIJ ∧ FIJ [A]− 1

2
ψIJKLQ

IJ ∧QKL

− µa2

(
γ2 + σ

γ
ψIJ

IJ + ψIJKLε
IJKL

)]
, (29)

and using the transformation (10) with b1 = 1 and b2 = 1/γ, this action principle acquires the
form

S[B,A, φ, µ] =

∫
M4

[(
BIJ +

1

γ
∗BIJ

)
∧ FIJ [A]− 1

2
φIJKLB

IJ ∧BKL − µa2γφIJ
IJ

]
. (30)

Remarks:

(e) In the case γ2+σ 6= 0 it follows from (29) that the two Lorentz invariants are present in the
action and therefore the expression for the two-forms Q’s in terms of the tetrad field, and
thus the form of the B’s in (30), can be obtained from (3) following the same procedure
carried out in the previous section. In this case the value of a2/a1 comes from (28) and
the final form of the actions (29) and (30) in terms of the tetrad field and the connection
are

(i) S1[e,A] = α

∫
M4

[
∗ (eI ∧ eJ)+

√
−σγ −

√
−σ

γ +
√
−σ

eI ∧ eJ
]
∧ FIJ [A],

(ii) S2[e,A] = α

∫
M4

[
∗ (eI ∧ eJ)−√−σγ +

√
−σ

γ −
√
−σ

eI ∧ eJ
]
∧ FIJ [A],

corresponding to the two solutions for the B’s.

(f) In the case γ2 + σ = 0 the Lorentz invariant ψIJ
IJ is missing in the action (29) and it

becomes the one given in (5). In that analysis the action principles (7) were obtained
by plugging in (5) the solution for the Q’s. In a similar way, the action principle (30)
restricted to γ = ±

√
−σ can be written in terms of the tetrad field by solving for the B’s

and plugging the solutions into (30). The resulting action principles obtained following
one or the other procedure are different by a global factor.

4 Application of the transformation to the coupling
of the cosmological constant

The coupling of the cosmological constant to the CMPR action principle was done in [18] (see
also [26]). However, taking into account the previous analysis, it is natural to wonder how
the coupling looks like in the transformed CMPR action principles discussed in Section 3. In
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particular we are interested in the action principle analyzed in Section 3.1.1 and used in [17].
To do this task, the starting point is the CMPR action principle coupled with the cosmological
constant given in [18]. This action principle can be transformed to one with two BF terms
by applying the general transformation encoded in equations (9) and (14). This will give us
an equivalent action principle for gravity with cosmological constant. Nevertheless, as we are
interested in the coupling of the cosmological constant to gravity in an action principle of the
form given in (24), i.e. with the linear combination BIJ + 1

γ
∗BIJ and using only the Lorentz

invariant φIJKLε
IJKL, it is necessary to apply the particular transformation studied in Section 3

(defined by b1 = 1 and b2 = 1
γ ), and to restrict the constants included in the CMPR action

principle to those which lead us to (24), i.e. to impose on a1 and a2 the condition (22).
The action principle introduced in [18] is given by

S[Q,A,ψ, µ] =

∫
M4

[
QIJ ∧ FIJ [A]− 1

2
ψIJKLQ

IJ ∧QKL

− µ
(
a1ψIJ

IJ + a2ψIJKLε
IJKL − λ

)
+ l1QIJ ∧QIJ + l2QIJ ∧∗ QIJ

]
, (31)

with λ = a1(4!l2σ
a2
a1

+ 12l1 + Λ
β ). It is important to mention that this expression for λ comes

from the fact that Λ is identified with the cosmological constant in the tetrad formalism (see [18]
for the details).

By applying the transformation given in equation (9), the action principle (31) takes the form

S[B,A, φ, µ] =

∫
M4

[ (
b1B

IJ + b2
∗BIJ

)
∧ FIJ [A]− 1

2
φIJKLB

IJ ∧BKL (32)

− µ
(
A1 φIJ

IJ +A2φIJKLε
IJKL − λ

)
+K1BIJ ∧BIJ +K2BIJ ∧∗ BIJ

]
,

where the constants A1 and A2 are given by equation (18) and

K1 = l1
(
b21 + σb22

)
+ 2l2b1b2σ, K2 = l2

(
b21 + σb22

)
+ 2l1b1b2. (33)

Note that the last two terms of equation (32) come from the analogous terms that appear in
equation (31). These terms could still be removed by doing a redefinition of the Lagrange
multiplier φIJKL → ϕIJKL but this would imply a transformation ψIJKL → ϕIJKL different
from the one given in (13). Such a transformation would be an example of how we can choose
the transformation depending on the action principles we want to relate. Nevertheless, in this
section we are only interested in an application of the transformation introduced in Section 3,
therefore we will continue with the original transformation (13).

Notice that λ can be written in terms of K1 and K2 as

λ = 12A1K1 + 4!σA2K2 +
Λa1

β
.

Let us now take the particular transformation b1 = 1 and b2 = 1
γ used in Section 3.1.1. In this

case, the action (32) takes on the form

S[B,A, φ, µ] =

∫
M4

[(
BIJ +

1

γ
∗BIJ

)
∧ FIJ [A]− 1

2
φIJKLB

IJ ∧BKL (34)

− µ
(
A1φIJ

IJ +A2φIJKLε
IJKL − λ

)
+K1BIJ ∧BIJ +K2BIJ ∧∗ BIJ

]
,

where now A1 and A2 are given by (21), and (33) reduces to

K1 = l1
(γ2 + σ)2

γ2
+ 2l2

σ

γ
, K2 = l2

(γ2 + σ)2

γ2
+ 2l1

1

γ
.
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It is important to note that, at this stage, the action principle (34) is completely equivalent to
action (31) because the coefficients of the transformation b1 and b2 satisfy the condition (11).

In order to eliminate the term with φIJ
IJ in the action (34), a1 and a2 must satisfy the

condition (22) which fixes the constants A1 and A2 to

A1 = 0, and A2 =
a1γσ

4
,

while the constants K1 and K2 do not get modified. Using the values for A1 and A2 the action
principle (34) takes the form

S[B,A, φ, µ] =

∫
M4

[(
BIJ +

1

γ
∗BIJ

)
∧ FIJ [A]− 1

2
φIJKLB

IJ ∧BKL

− µ
(a1γσ

4
φIJKLε

IJKL − λ
)

+K1BIJ ∧BIJ +K2BIJ ∧∗ BIJ

]
, (35)

and λ becomes

λ = a1

[
3!γK2 +

Λ

β

]
. (36)

Because of the restriction (22), the action principle (35) is a particular case of (34) and thus
a particular case of (31).

In order to write the action principle (35) in terms of the tetrad and a connection we can
follow two approaches. In the first, we simply use the form for the B’s obtained in (27) and the
value of λ given in (36) and insert them into (35) to get

(i) S[e,A] = α

∫
M4

[(
∗ (eI ∧ eJ)+

σ

γ
eI ∧ eJ

)
∧ FIJ [A]− Λ

12
εIJKLe

I ∧ eJ ∧ eK ∧ eL
]
,

(ii) S[e,A] = α

∫
M4

[( ∗ (eI ∧ eJ)+ γeI ∧ eJ
)
∧ FIJ [A]− Λ

12
εIJKLe

I ∧ eJ ∧ eK ∧ eL
]
,

which is the Holst action principle with cosmological constant. Note that each solution involves
a different Immirzi parameter.

In the second approach, we start from the action principle (35) where now λ is not fixed
and we simply solve the constraint on the B’s that comes from (35). The relation of λ with
the cosmological constant will be obtained at the end of the procedure. The equation of motion
that comes from the variation of (35) with respect to the field φIJKL implies

1

2
BIJ ∧BKL = −µa1γσ

4
εIJKL,

and therefore

BIJ ∧BIJ = 0, BIJ ∧∗ BIJ = −3!µa1γ. (37)

From which we obtain the two-forms B’s given by

(i) BIJ = κ1
∗ (eI ∧ eJ) and (ii) BIJ = κ2

(
eI ∧ eJ

)
. (38)

Using equations (37) and (38) we obtain

(i) S[e,A] = κ1

∫
M4

[(
∗ (eI ∧ eJ)+

σ

γ
eI ∧ eJ

)
∧ FIJ [A]

+
κ1σ

2

(
K2 −

1

3!γ

λ

a1

)
εIJKLe

I ∧ eJ ∧ eK ∧ eL
]
,
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(ii) S[e,A] =
κ2

γ

∫
M4

[ (∗ (eI ∧ eJ)+ γ eI ∧ eJ
)
∧ FIJ [A]

+
κ2γ

2

(
K2 −

1

3!γ

λ

a1

)
εIJKLe

I ∧ eJ ∧ eK ∧ eL
]
.

These actions have the form of the Holst’s action principle with cosmological constant Λ given
in each case by

(i)
Λ

12
= −κ1σ

2

(
K2 −

1

3!γ

λ

a1

)
, (ii)

Λ

12
= −κ2γ

2

(
K2 −

1

3!γ

λ

a1

)
.

They fix the relationship among the constants λ, γ, and a1 that appear in the action princip-
le (35), and the coefficients of the solutions given in (38). It is easy to see that, for each case,
λ has the form

(i) λ = a1

[
3!γK2 +

Λσγ

κ1

]
, (ii) λ = a1

[
3!γK2 +

Λ

κ2

]
,

respectively. Note that in order for these values of λ match the value of λ given in (36) (i.e. the
two approaches give the same result), it is required that κ1 = σγβ and κ2 = αγ, respectively.
These are the same values obtained for κ1 and κ2 in the analysis after equation (27).

5 Conclusions

It has been shown that by performing an invertible transformation of the fields of the BF
formulation for general relativity given by Capovilla, Montesinos, Prieto, and Rojas [12], it is
possible to obtain the action principle (19) which includes the two BF terms BIJ ∧ FIJ and
∗BIJ ∧FIJ and still involves the two Lorentz invariants φIJKLε

IJKL and φIJ
IJ generically. One

of the results of the analysis is to clearly show the relationship of the two parameters a1 and a2 of
the CMPR action principle and of the two parameters b1 and b2 involved in the transformation
with the Immirzi parameter.

From the analysis is clear that the freedom in the choice of the parameters a1, a2, b1, and b2
can be used to handle the two Lorentz invariants φIJKLε

IJKL and φIJ
IJ that appear in the

transformed action principle. In particular, a suitable combination of these parameters can
result in that one of these invariants is missing in the transformed action principle as it is
shown in the Section 3.1. As an application of this fact, the action used in [17] is obtained in
Section 3.1.1.

Finally, and as another application of the transformation discussed in this paper, the coupling
of the cosmological constant to the action principle used in [17] is obtained from the coupling of
the cosmological constant to the CMPR action principle studied in [18].
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