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Abstract. A Hopf algebra with four generators among which an involution (reflection)
operator, is introduced. The defining relations involve commutators and anticommutators.
The discrete series representations are developed. Designated by sl−1(2), this algebra en-
compasses the Lie superalgebra osp(1|2). It is obtained as a q = −1 limit of the slq(2)
algebra and seen to be equivalent to the parabosonic oscillator algebra in irreducible repre-
sentations. It possesses a noncocommutative coproduct. The Clebsch–Gordan coefficients
(CGC) of sl−1(2) are obtained and expressed in terms of the dual −1 Hahn polynomials.
A generating function for the CGC is derived using a Bargmann realization.

Key words: parabosonic algebra; dual Hahn polynomials; Clebsch–Gordan coefficients

2010 Mathematics Subject Classification: 17B37; 17B80; 33C45

1 Introduction

On the one hand, algebraic structures are natural descriptors of symmetries. On the other, the
exact solutions of the dynamical equations of physical systems, when they exist, are typically
presented in terms of special functions and orthogonal polynomials. Not surprisingly hence, the
relations between solvable models, special functions, symmetries and their algebraic translations
is of considerable interest.

The presence of reflection operators has been seen to arise in many contexts, physical and
mathematical, related in particular, to the first two of the above areas. To give some examples,
recall that in integrable many-body problems of the Calogero type, operators with reflections
play a key role in expressing the constants of motion that are in involution [10, 2]. There is
currently much activity also in the study of Dunkl harmonic analysis [17].

Recently, we have examined univariate polynomials that are eigenfunctions of operators of
Dunkl type, that is of operators that are first order in the derivative and involve reflections.
We have thus discovered certain families of “classical” orthogonal polynomials that had hitherto
escaped notice [23, 24].

It has been found that these polynomials can be identified as a q → −1 limits of some
q-orthogonal polynomials, the simplest among them being the little −1 Jacobi polynomials
introduced in [22].

In [18] and [19] this approach was generalized to Dunkl shift operators. This provided a theo-
retical framework for the Bannai–Ito and the dual −1 Hahn polynomials.
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With this perspective, it is thus natural to examine algebraic structures involving reflection
operators and it is the purpose of this paper to contribute to such a study. For related investi-
gations see, e.g. [1, 8, 6, 7].

2 Definition of the sl−1(2) algebra and its relation
with the osp(1|2) Lie superalgebra

We define sl−1(2) as the algebra which is generated by the four elements J0, J± and R subject
to the relations

[J0, J±] = ±J±, [R, J0] = 0, {J+, J−} = 2J0, {R, J±} = 0, (2.1)

where [A,B] = AB − BA and {A,B} = AB + BA. The operator R is an involution operator,
i.e. it satisfies the property

R2 = I.

The Casimir operator Q, which by definition commutes with all the generators (R, J0, J±),
is

Q = J+J−R− (J0 − 1/2)R. (2.2)

Like the ordinary sl(2) or its quantum analogue slq(2), the algebra sl−1(2) possesses a non-
trivial discrete series representation.

Indeed, let en, n = 0, 1, 2, . . . denote the basis vectors, and define the action of the operators
by the formulas

J0en = (n+ µ+ 1/2)en, J−en = ρnen−1, J+en = ρn+1en+1,

where µ is a constant and ρn are the positive matrix elements of the representation. Moreover,
demand that ρ0 = 0 in order to obtain the standard discrete series bounded from below and
with n = 0, 1, 2, . . . .

The operator R commutes with J0 and hence can be diagonalized in the basis en. A simple
analysis based on the properties of R, leads to the conclusion that

Ren = ε(−1)nen, n = 0, 1, 2, . . . , (2.3)

where ε = ±1 is a fixed parameter in a given representation.
Expressing the commutation relations in the basis en gives the following equation for ρn

ρ2n + ρ2n+1 = 2(n+ µ+ 1/2)

with general solution

ρ2n = n+ µ+ κ(−1)n,

where κ is an arbitrary constant.
The condition ρ0 = 0 means that κ = −µ and we thus have

ρ2n = n+ µ(1− (−1)n).

The Casimir operator (2.2), as should be, is a multiple of the identity operator

Qen = −εµen

on the module with the basis {en}.
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The matrix elements can be presented in the form

ρ2n = n+ µ(1− (−1)n) = [n]µ,

in terms of the “mu-numbers”

[n]µ = n+ µ(1− (−1)n). (2.4)

We define also the “mu-factorials” by

[n]µ! = [1]µ[2]µ[3]µ · · · [n]µ.

If we assume that

µ > −1/2

then ρ2n > 0 for n = 1, 2, 3, . . . , and we thus obtain a unitary infinite-dimensional representation
of the algebra sl−1(2). The value of the Casimir operator is Q = −εµ in this representation.

Thus, the discrete series representation is fixed by two parameters ε = ±1 and µ > −1/2.

Let us now indicate the connection that sl−1(2) has with the simplest Lie superalgebra
osp(1|2). Consider the elements K± = J2

±. It is easy to verify that J0, K+ and K− satisfy
together the commutation relations of the sl(2) algebra

[K−,K+] = 4J0, [J0,K±] = ±2K±.

Hence, J0, J±, K± form a basis for the Lie superalgebra osp(1|2) [4]. The operators J0, K±
belong to the even part of this algebra, while the operators J± belong to the odd part.

The Casimir operator (2.2) of the sl−1(2) algebra contains the involution operator R which
commutes with the operators J0 and J+J−. Hence the square Q2 of the Casimir operator will
commute with all the generators of the sl−1(2) algebra. However its expression will contain only
the operators J0, J± and not R:

Q2 = (J0 − 1/2)2 − J2
+J

2
− − J+J− = (J0 − 1/2)2 −K+K− − J+J−.

This operator coincides with the Casimir operator of the Lie superalgebra osp(1|2) [4]. We see
that the Casimir operator Q of the algebra sl−1(2) can be considered as a “square root” of the
Casimir operator for the algebra osp(1|2).

In the next section we show that the algebra sl−1(2) can be obtained as a q → −1 limit of
the algebra slq(2). This justifies the name of the algebra.

3 The sl−1(2) algebra as a limit of the slq(2) algebra

Consider the algebra generated by three operators J0, J±, with commutation relations [3]

[J0, J±] = ±J±, J−J+ − qJ+J− = 2
q2J0 − 1

q2 − 1
, (3.1)

where q is a real parameter.

The Casimir operator Q, commuting with J0 and J± is

Q = J+J−q
−J0 − 2

(q2 − 1)(q − 1)

(
qJ0−1 + q−J0

)
.
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In what follows we restrict ourselves to discrete series representations of the algebra (3.1). This
means representations that have bases en, n = 0, 1, . . . such that

J0en = (n+ ν)en, J−en = rnen−1, J+en+1 = rn+1en+1.

As usual, the condition r0 = 0 is assumed. It is easily verified that

r2n =
2(1− qn)(1− qn+2ν−1)

(q + 1)(q − 1)2
.

The parameter ν is related to the value of the Casimir operator

Q =
2(qν−1 + q−ν)

(1− q)(q2 − 1)

in these representations. The Fock–Bargmann realization of the algebra (3.1) can be defined on
the space of polynomials in the variable z by the formulas:

J0 = z∂z + ν, J+ = z, J− = αzD2
q + βDq, (3.2)

where

α =
2q2ν

1 + q
, β =

2(1− q2ν)

1− q2

and Dq is the standard q-derivative operator

Dqf(z) =
f(zq)− f(z)

z(q − 1)
.

In this realization the basis vectors en(z) are the monomials en(z) = γnz
n, where

γn =
1

√
r1r2 · · · rn

is the normalization coefficient.
When 0 < q < 1, the algebra defined by (3.1) is equivalent to the quantum slq(2) algebra

defined by the relations

[A0, A±] = ±A±, [A−, A+] = 2
qA0 − q−A0

q − q−1
.

Indeed, under the identifications

J+ = A+q
(A0−1)/2, J− = q(A0−1)/2A−, J0 = A0, (3.3)

the commutation relations (3.1) are transformed into the commutation relations (3.3).
When q → 1 the algebra slq(2) with the defining relations (3.1) becomes the sl(2) algebra:

[J0, J±] = ±J±, [J−, J+] = 2J0.

There is also a nontrivial limit when q → −1. It is obvious that the commutation rela-
tions (3.1) become the commutation relations (2.1) when q = −1. The limit process for the
matrix coefficients rn is more subtle however.

Assume that ν = j = 1, 2, 3, . . . is a positive integer. Let q = −eτ , then the limit q → −1 is
equivalent to the limit τ → 0.
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Assume first that n = 0, 2, 4, . . . is even. Then

r2n =
2(1− (−1)neτn)(1− (−1)n+2ν−1eτ(n+2ν−1))

(1− eτ )(1 + eτ )2
=

2(1− eτn)(1 + eτ(n+2ν−1))

(1− eτ )(1 + eτ )2
.

Hence

lim
q→−1

r2n = lim
τ→0

1− eτn

1− eτ
= n.

When n is odd, we have

r2n =
2(1 + eτn)(1− eτ(n+2ν−1))

(1− eτ )(1 + eτ )2
,

hence

lim
q→−1

r2n = lim
τ→0

1− eτ(n+2ν−1)

1− eτ
= n+ 2ν − 1,

and

lim
q→−1

r2n = n+ µ(1− (−1)n) = [n]µ = ρ2n

where ν = µ+ 1/2.
Thus, for integer values of the parameter ν the limit q → −1 of the matrix elements rn gives

the expected matrix elements ρn of the discrete series of the sl−1(2) algebra.
When ν is not an integer, the limit of rn is not well defined. In this case we can assume that

the limiting matrix element ρ2n is obtained by a linear interpolation from the integer ν case.
If ν = j is integer, the involution operator R can also be obtained in the limit q → −1

R = lim
q→−1

qJ0 .

Indeed, we have

qJ0en = qn+jen.

So, in the limit

Ren = ε(−1)nen,

where

ε = lim
q→−1

qj = (−1)j = ±1.

This uniquely characterizes the involution operator with the property R2 = I.
We thus see that the generators J0, J±1 and R of sl−1(2) can be obtained from the al-

gebra (3.1) when the representation parameter is a positive integer ν = µ = 1, 2, 3, . . . . If ν is
a real positive parameter, then the limiting process is not well defined and we postulate that in
the limit q → −1 the matrix elements ρn correspond to the matrix elements rn with ν real and
positive.

Note that the q → −1 limit considered here is different from the well known special case
of slq(2) for q a root of unity [15]. In the latter case the operators J± are nilpotent JN± = 0,
where N is the order of the root of unity and hence all irreducible representations are restricted
to be of dimension N . In our case we have infinite-dimensional representations.
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4 Relation with the parabosonic oscillator
and the Fock–Bargmann realization

Consider the commutator [J−, J+]. We have

[J−, J+] = {J−, J+} − 2J+J− = 2J0 − 2J+J−.

Remembering the expression (2.2) for the Casimir operator, we find that

[J−, J+] = 1− 2QR.

For representations with a fixed value ε = ±1, we have Q = −εµ and hence

[J−, J+] = 1 + 2εµR. (4.1)

This relation, (4.1), defines the parabosonic oscillator algebra [20, 12, 11, 16] with operators J−,
J+, R satisfying the commutation relations (4.1) and {R, J±} = 0 together with the condi-
tion R2 = I.

Conversely, assume that the operators J−, J+, R form a representation of the parabosonic
oscillator algebra. We can define the operator J0 as J0 = {J+, J−}/2. Then it is easily verified
that the operators J0, J+, J−, R satisfy the relations (2.1) defining the sl−1(2) algebra.

Thus, if one restricts to irreducible representations with a fixed value of the Casimir operator
Q = −εµ, the algebra sl−1(2) is equivalent to the parabosonic oscillator algebra.

For definiteness, in what follows we will use representations for which ε = 1.
We can construct the Fock–Bargmann representation of the sl−1(2) algebra in terms of first

order differential-difference operators. Indeed, one can use the well known realization of the
parabosonic operators [12, 16]

R = Rx, J+ = x, J− = ∂x +
µ

x
(1−Rx), J0 = x∂x + µ+ 1/2, (4.2)

where Rx is the reflection (parity) operator defined by Rf(x) = f(−x) for every function f(x).
The operator J− coincides in this realization with the standard Dunkl operator [2].
Note that when ν is integer, the realization (4.2) can be obtained as a limit q → −1 from the

realization (3.2).
The basis en(x) is here realized by the monomials

en(x) = γnx
n,

with some constants γn. If we take

γn =
1√
[n]µ!

,

we reproduce the canonical formulas of the previous section

J−en(x) = ρnen−1, J+en(x) = ρn+1en+1(x).

Sometimes it will be convenient to take γn = 1, i.e. en(x) = xn. In this case we have

J0en(x) = (n+ µ+ 1/2)en(x), J−en(x) = [n]µen−1(x), J+en(x) = en+1(x).

Of course, the Casimir operator reduces (up to a constant factor) to the identity operator

Qen(x) = −µen(x).

Note that similar relations were investigated in [5, 13]. Our approach is different, because we
start from the algebra sl−1(2) with 4 generators which is observed to be a limiting case of
the slq(2) algebra. The relation (in irreducible representations) with the parabose algebra is
obtained a posteriori.
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5 Coproduct and the Clebsch–Gordan coefficients

The most important property of the sl−1(2) algebra is that it admits an “addition rule”, or
a coproduct which can be inferred from the well known coproduct of the quantum algebra slq(2).

Assume that we have two independent representations of the algebra (3.1) on the linear
spaces S1 and S2. Let S1 ⊗ S2 be the direct product of these spaces. We will denote by A⊗B,
the direct products of operators acting on the spaces S1 and S2, A ∈ End(S1), B ∈ End(S2). It
is readily verified that the elements

J̃0 = J0 ⊗ I + I ⊗ J0, J̃± = J± ⊗ qJ0 + I ⊗ J±

again satisfy the commutation relations (3.1) of the slq(2) algebra [3]. (Here I stands for the
identity operator).

Assuming that the representation parameter ν is a positive integer, we have a well-defined
q → −1 limit from slq(2) to sl−1(2). The operator qJ0 in this limit becomes εR with ε = ±1.
It is thus natural to expect that for arbitrary representation parameter µ > −1/2, the sl−1(2)
algebra admits a coproduct rule.

It can be defined as follows. For two independent representations of the sl−1(2) algebra with
the Casimir parameters µ1, µ2, let us introduce the following operators J̃0, J̃±, R̃ that act on
the direct product of the spaces S1, S2:

J̃0 = J0 ⊗ I + I ⊗ J0, J̃± = J± ⊗R+ I ⊗ J±, R̃ = R⊗R. (5.1)

Then the operators J̃0, J̃±, R̃ satisfy the commutation relations (2.1), i.e. they are again gene-
rators of the algebra sl−1(2). The verification of this statement is elementary.

Note that a similar coproduct was proposed in [1, 8] for the parabosonic oscillator algebra,
in the identification of its Hopf algebra structure.

In what follows we restrict ourselves to representations with ε1 = ε2 = 1 and µ1 > −1/2,
µ2 > −1/2.

In the Fock–Bargmann realization, S1 and S2 are spaces of polynomials in the arguments,
say, x and y. We define representations with the parameters µ1 and µ2 on these spaces by the
formulas

J
(x)
0 = x∂x + µ1 + 1/2, J

(x)
+ = x, J

(x)
− = ∂x +

µ1
x

(1−Rx)

and

J
(y)
0 = y∂y + µ2 + 1/2, J

(y)
+ = y, J

(x)
− = ∂y +

µ2
y

(1−Ry).

The Casimir operators take the constant values Q1 = −µ1, Q2 = −µ2 on these representations.
Following (5.1), the operators of the coproduct are given as

J̃0 = x∂x + y∂y + µ1 + µ2 + 1, J̃+ = xRy + y,

J̃− =
(
∂x + µ1x

−1(1−Rx)
)
Ry + y∂y + µ2y

−1(1−Ry).

The corresponding Casimir operator

Q̃ = J̃+J̃−R̃−
(
J̃0 − 1/2

)
R̃

commutes with the “local” Casimir operators Q1 and Q2 and with the operators J̃0, J̃± but not

with the operators J
(x)
0 , J

(y)
0 .

Hence we can posit the Clebsch–Gordan problem as follows.
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In view of (5.1), the operator J̃0 can take the eigenvalues µ1+µ2+N+1, where N = 0, 1, 2, . . . .
We denote by ΦN,q, the eigenstate with fixed eigenvalues of the total Casimir operator and of J̃0:

Q̃ΦN,k = qkΦN,k, J̃0ΦN,k = (µ1 + µ2 +N + 1)ΦN,k.

This state can be decomposed as a linear combination of direct product of states:

ΦN,k =
N∑
s=0

Ws;N,kes ⊗ eN−s, (5.2)

with coefficients Ws;N,k that can be called the Clebsch–Gordan coefficients of the sl−1(2) al-
gebra.

It is not difficult to see that the Casimir eigenvalue qk has the expression

qk = (−1)k+1(µ1 + µ2 + 1/2 + k), k = 0, 1, . . . , N. (5.3)

Indeed, the eigenvalues of the operator J0 are n+ µ+ 1/2 = n− εQ+ 1/2 (recall that Q = −εµ
in the given representation). Hence, if the eigenvalue λ > 0 of J0 is fixed, then the possible
eigenvalues of the Casimir operator in absolute value are:

|Q| = |λ− 1/2|, |λ− 3/2|, . . . . (5.4)

When considering the coproduct of two sl−1(2) algebras, we know that the eigenvalues of J̃0
have the form λ̃ = µ1 + µ2 + N + 1. Hence, from (5.4) we have for the set of absolute values
(recall that the total number of eigenvalues should be equal to N + 1)

|Q̃| = µ1 + µ2 +N + 1/2, µ1 + µ2 +N − 1/2, . . . , µ1 + µ2 + 1/2.

The state with the maximal absolute value |qN | = µ1 +µ2 +N + 1/2 of the Casimir operator Q̃,
corresponds to the state ẽ0 satisfying the conditions:

J̃0ẽ0 = (µ1 + µ2 +N + 1)ẽ0, J̃−ẽ0 = 0.

In order to determine the sign of the eigenvalue qN , we notice that

R̃ΦN,k = (R1 ⊗R2)ΦN,k = (−1)NΦN,k. (5.5)

This means on the one hand that

R̃ẽ0 = (−1)N ẽ0.

On the other hand, by (2.3) R̃ẽ0 = ε̃ẽ0 and hence ε̃ = (−1)N , where ε̃ stands for the eigenvalue
of the parity operator R̃ on the state ẽ0. We thus have

qN = (−1)N+1(µ1 + µ2 +N + 1/2).

Taking into account the parity of the coproduct states we arrive at formula (5.3).

In order to find the coefficients Ws;N,k we shall derive a 3-term recurrence relation for them.

Taking into account relation (5.5), we see that the eigenvalue equation Q̃ΦN,k = qkΦN,k can
be presented in the form

Q0ΦN,k = (−1)NqkΦN,k,
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where

Q0 = J̃+ ⊗ J̃− − J̃0 + 1/2.

From the expression for the Casimir operator it is seen that Q0 is tri-diagonal in the basis
es⊗eN−s. Hence, the Clebsch–Gordan coefficients Ws;N,k satisfy the 3-term recurrence relation

As+1Ws+1;N,k +AsWs−1;N,k +BsWs;N,k = (−1)NqkWs;N,k,

where the recurrence coefficientsAs, Bs are easily expressed in terms of the known representation
matrix elements for sl−1(2):

As = (−1)s
√

[s]µ1 [N − s+ 1]µ2

and

Bs = (−1)N ([s]µ1 + [N − s]µ2 −N − µ1 − µ2 − 1/2) ,

where we adopt the notation (2.4).
Note that the expression for the coefficient Bs can be simplified to:

Bs =

{
−1

2 − (−1)s(µ1 + µ2) if N even,
1
2 + (−1)s(µ1 − µ2) if N odd.

Thus the CGC are expressed in terms of some orthogonal polynomials Ps(x)

Ws;N,k = W0;N,kPs(qk;N). (5.6)

These orthogonal polynomials satisfy the 3-term recurrence relation

As+1Ps+1(x) +AsPs−1(x) +BsPs(x) = xPs(x)

with initial conditions P−1 = 0, P0 = 1. From the above expressions for As, Bs we can conclude
that the polynomials Ps(x) coincide with the generic dual −1 Hahn polynomials [19].

Indeed, it is convenient to present the polynomials Pn(x) in monic form

Pn(x) =
P̂n(x)

A1A2 · · ·An
.

Then the polynomials P̂n(x) = xn +O(xn−1) satisfy on the one hand

P̂n+1(x) + unP̂ (x) +BnP̂n(x) = xP̂n(x),

where

un = A2
n = [n]µ1 [N − n+ 1]µ2 .

Note that un > 0, n = 1, 2, . . . , N and uN+1 = 0.

On the other hand, the dual −1 Hahn polynomials [19] R
(−1)
n (x;α, β;N) depend on 3 para-

meters α, β and N = 1, 2, . . . and obey the recurrence relation

R
(−1)
n+1 (x) + u(−1)n R

(−1)
n−1 (x) + b(−1)n R(−1)

n (x) = xR(−1)
n (x),

where the recurrence coefficients are [19]

un = 4[n]ξ[N + 1− n]η, bn = 2([n]ξ + [N − n]η) + ζ.
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The parameters ξ, η, ζ are related to the parameters α, β, N . When N is even

ξ =
β −N − 1

2
, η =

α−N − 1

2
, ζ = 1− α− β. (5.7)

When N is odd

ξ = α/2, η = β/2, ζ = −2N − 1− α− β. (5.8)

Comparing the recurrence coefficients of the polynomials P̂n(x) with the corresponding coeffi-
cients of the dual −1 Hahn polynomials we conclude that

P̂n(x) = 2−nR(−1)
n (2(x− x0);α, β,N),

where the parameters α, β are found from formulas (5.7) and (5.8) with ξ = µ1, η = µ2. The
shift parameter x0 can also be expressed in terms of µ1, µ2 in an obvious way.

We thus expressed the Clebsch–Gordan coefficients of the sl−1(2) algebra in terms of the

dual −1 Hahn polynomials R
(−1)
n (x;α, β;N).

The remaining problem is to find an explicit expression for the coefficient W0;N,k in (5.6).
This can be done using the following observation. The vectors ψs = es ⊗ eN−s form an or-
thonormal basis in the N + 1-dimensional linear space. There is thus a scalar product such
that

(ψs, ψt) = δst.

The vectors ΦN,k form another orthonormal basis on the same space and so:

(ΦN ;k,ΦN ;l) = δkl.

Hence, the matrix Ws;N,k is orthogonal, i.e. it obeys

N∑
k=0

Wn;N,kWm;N,k = δnm.

Taking into account formula (5.6) we thus have on the one hand

N∑
k=0

W 2
0;N,kPn(qk)Pm(qk) = δnm.

On the other hand, the orthonormal dual −1 Hahn polynomials Pn(x) satisfy the orthogonality
property [19]

N∑
k=0

wkPn(qk)Pm(qk) = δnm,

where wk are positive discrete weights (concentrated masses) localized at the spectral points qk.
(The positivity property wk > 0 follows from the positivity of the recurrence coefficients un > 0,
n = 1, 2, . . . , N [19].)

We thus have

W0;N,k =
√
wk.

Explicit expressions for the weights were found in [19]. This solves the problem of finding the
Clebsch–Gordan coefficients Ws;N,k up to sign factors ±1.
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The result is not surprising. We have seen that the sl−1(2) algebra is a q → −1 limit of the
slq(2) algebra and for the latter algebra, the CGC are expressed in terms of the dual q-Hahn
polynomials [9].

Also, when µ1 = µ2 = 0 the dual −1 Hahn polynomials coincide with the ordinary Kraw-
tchouk polynomials. This result is also expected: the case µ1 = µ2 = 0 corresponds to the case
when both sl−1(2) algebras in the product are equivalent to oscillator algebras whose Clebsch–
Gordan coefficients are expressed in terms of Krawtchouk polynomials [21]. Note nevertheless,
that even if we start with pure oscillator algebras (i.e. µ1 = µ2 = 0), the addition rule is non-
standard: it involves the reflection operator. Hence even in this simplest case the composed
algebra will not be a pure oscillator algebra.

6 The Clebsch–Gordan problem in the Fock–Bargmann picture

The Clebsch–Gordan problem can be considered also in the Fock–Bargmann picture. This leads
to a generating function for the Clebsch–Gordan coefficients.

The representation space for the coproduct is the space of polynomials in two variables f(x, y)
which are homogeneous of degree N :

f(x, y) = yNΦ(x/y), (6.1)

where Φ(z) is a polynomial of degree N in the variable z.
For fixed N the action of the operator operator J̃0 is diagonal: it has the eigenvalue N +

µ1 + µ2 + 1 (due to Euler’s theorem on homogeneous polynomials).
Using the representation (6.1), we obtain the eigenvalue equation

Q̃f(x, y) = qkf(x, y), (6.2)

where the eigenvalues qk are given by (5.3).
Substituting f(x, y) expressed as in (6.1) into (6.2) we obtain a differential-difference equation

for the function Φ(z):

LΦk(z) = qkΦk(z), (6.3)

where the operator L is

L = (−1)N (z2 + 1)∂zR+
(

(−1)N
µ1
z
− (−1)N (µ2 +N)z − µ1 − (−1)Nµ2

)
R

+

(
µ2z −

1

2
− (−1)N

µ1
z

)
I, (6.4)

and where R acts according to RΦ(z) = Φ(−z) and I is the identity operator.
The operator L preserves the linear space of polynomials of degree ≤ N and belongs to a class

of Dunkl type operators of the first order considered in [22, 23, 24]. More precisely, the opera-
tor L is a linear combination (with coefficients depending on z) of the operators I, R and ∂zR.
The main difference with respect to the Dunkl type operators used in the papers mentioned
above is that the operator (6.4) does not preserve the whole space of polynomials of a given
arbitrary degree. Moreover, it is seen that the operator (6.4) is 3-diagonal in the monomial
basis zn, n = 0, 1, . . . , N .

Using the decomposition of the function Φ(z) = Φe(z) + Φo(z) into its even Φe(z) and
odd Φo(z) parts we can reduce the equation (6.3) to standard hypergeometric equations for Φe(z)
and Φo(z).

The explicit form of the solution will depend on the parity of the integers N and k.
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When both N and k even, we have

Φk(z) = 2F1

(
−k

2 ,−µ2 −
k
2 + 1

2

µ1 + 1
2

;−z2
)(

1 + z2
)N−k

2

+
kz

2µ1 + 1
2F1

(
1− k

2 ,−µ2 −
k
2 + 1

2

µ1 + 3
2

;−z2
)(

1 + z2
)N−k

2 ,

when N is even and k is odd

Φk(z) = 2F1

(
−k+1

2 ,−µ2 − k
2

µ1 + 1
2

;−z2
)(

1 + z2
)N−k−1

2

− 2µ1 + 2µ2 + k + 1

2µ1 + 1
z 2F1

(
−k−1

2 ,−µ2 − k
2

µ1 + 3
2

;−z2
)(

1 + z2
)N−k−1

2 ,

for N odd and k even we have

Φk(z) = 2F1

(
−k

2 ,−µ2 −
k+1
2

µ1 + 1
2

;−z2
)(

1 + z2
)N−k−1

2

+
2µ1 + k + 1

2µ1 + 1
z 2F1

(
−k

2 ,−µ2 −
k−1
2

µ1 + 3
2

;−z2
)(

1 + z2
)N−k−1

2 ,

finally for N and k odd

Φk(z) = 2F1

(
−k−1

2 ,−µ2 − k
2

µ1 + 1
2

;−z2
)(

1 + z2
)N−k

2

− 2µ2 + k

2µ1 + 1
z 2F1

(
−k−1

2 , 1− µ2 − k
2

µ1 + 3
2

;−z2
)(

1 + z2
)N−k

2 .

(All these functions Φk(z) are defined up to a common normalization factor.)
The solutions Φk(z) are polynomials of degree N in z. It is clear from the definition (5.2)

and (6.1) that the series expansion

Φk(z) =

N∑
s=0

C(k)
s zs

gives the Clebsch–Gordan coefficients

C(k)
s = Ws;N,k.

The polynomials Φk(z) are thus generating functions for the Clebsch–Gordan coefficients of the
sl−1(2) algebra and hence for the dual −1 Hahn polynomials.
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