Symmetry, Integrability and Geometry: Methods and Applications SIGMA 7 (2011), 091, 12 pages
Symplectic Maps from Cluster Algebras*

Allan P. FORDY T and Andrew HONE %

T School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
E-mail: a.p.fordy@leeds.ac.uk
URL: http://www.maths.leeds.ac.uk/cnls/research/fordy/fordy.html

T School of Mathematics, Statistics and Actuarial Science, University of Kent,
Canterbury CT2 TNF, UK
E-mail: A.N.W.Hone@kent.ac.uk
URL: http://www.kent.ac.uk/IMS/staff/anwh/index.html

Received May 16, 2011, in final form September 16, 2011; Published online September 22, 2011
http://dx.doi.org/10.3842/SIGMA.2011.091

Abstract. We consider nonlinear recurrences generated from the iteration of maps that
arise from cluster algebras. More precisely, starting from a skew-symmetric integer matrix,
or its corresponding quiver, one can define a set of mutation operations, as well as a set
of associated cluster mutations that are applied to a set of affine coordinates (the cluster
variables). Fordy and Marsh recently provided a complete classification of all such quivers
that have a certain periodicity property under sequences of mutations. This periodicity
implies that a suitable sequence of cluster mutations is precisely equivalent to iteration
of a nonlinear recurrence relation. Here we explain briefly how to introduce a symplectic
structure in this setting, which is preserved by a corresponding birational map (possibly on
a space of lower dimension). We give examples of both integrable and non-integrable maps
that arise from this construction. We use algebraic entropy as an approach to classifying
integrable cases. The degrees of the iterates satisfy a tropical version of the map.

Key words: integrable maps; Poisson algebra; Laurent property; cluster algebra; algebraic
entropy; tropical
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1 Introduction

The purpose of this short note is to make a preliminary announcement of our recent results
on recurrence relations which arise in the context of cluster mutations. More details and many
more examples will be published in a later paper [7].

The theory of cluster algebras was introduced by Fomin and Zelevinsky [4]. One can start
with an N x N, skew-symmetric integer matrix B = (bj;) € Maty(Z), which defines a quiver @
with N nodes having no 1-cycles or 2-cycles. This is a directed graph specified by the rule
that bj;, = —by; denotes the number of arrows from node j to node k (with an overall minus
sign corresponding to reversing the direction of the arrows). Starting from the quiver @ and its
associated matrix B = B(Q) one can define a set of operations g, called mutations, associated
to the vertices of @ (labelled by & =1,...,N ), each of which produces a new quiver Q = u:Q,

together with its associated matrix B = B(Q), whose components are given by

P —bje, it j=Fk or (=k,
K = .
J bie + %(|bjk|bk£ + bji|bre|), otherwise.

*This paper is a contribution to the Proceedings of the Conference “Symmetries and Integrability of
Difference Equations (SIDE-9)” (June 14-18, 2010, Varna, Bulgaria). The full collection is available at
http://www.emis.de/journals/SIGMA /SIDE-9.html
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In this theory, an affine coordinate z;, j = 1,..., N, is associated to each vertex of the
quiver @), and the set of these N coordinates defines an initial cluster. Together with the quiver
mutations (and the above equivalent set of matrix mutations), there is an associated set of
cluster mutations, which replace the initial cluster (x1,...,zy) with a new cluster (Z1,...,Zn),
where the new variables are related to the old ones by a simple birational transformation:

N N
- br —bg i . .
T = ng kalt + ng kd”a Lj = Ty, J 7& k>

where the square bracket notation is defined by [b]4 = max(b,0). This map is an involution,
because applying the mutation g, once more restores the original cluster x = (z;) and also
sends B back to B. (Note that in this paper we do not consider the most general version of
cluster algebras, but only coefficient-free algebras for which the exchange matrix B is skew-
symmetric.)

The full set of cluster variables, obtained by all possible sequences of mutations, generates
the cluster algebra. However, in certain cases, which were classified recently by Fordy and
Marsh [8], the quiver has a special periodicity property, which means that a particular sequence
of mutations is equivalent to generating the cluster variables via iteration of a single recurrence
relation of the form

N-1
Tpenan = [ ] oot 4 H gl il (1.1)
j=1
where the exponents +b; . are the elements of the top row of the skew-symmetric integer mat-
rix B. The results of [8] imply that in order for this periodicity property to hold, the vector
(b12,...,b1n) of exponents in the top row must be palindromic, but is otherwise arbitrary, and
the rest of matrix B is completely determined from the these exponents.

By a theorem of Fomin and Zelevinsky [4], recurrences which are constructed in this way are
guaranteed to have the Laurent property, meaning that the iterates are Laurent polynomials in
the initial data z1,...,zy with integer coefficients (but see [5] for a more general treatment
of the Laurent phenomenon). One of the earliest examples of a rational (nonlinear) recurrence
having the Laurent property is known as Somos-5.

Example 1.1 (The Somos-5 recurrence). The Somos-5 recurrence is

Tn4+5Tn = Tn4dPnt1 T Tnt3Tn42- (12>

As shown in [8], this recurrence corresponds to the cluster exchange relation generated by the
node labelled by j = 1 in a quiver () with five nodes, that is equivalent to the skew-symmetric
5 X 5 integer matrix

0 -1 1 1 -1
1 0 -2 0 1

B=|-1 2 0o -2 1]|. (1.3)
-1 0 2 0 -1
1 -1 -1 1 0

The mutation p transforms this matrix to

0 1 -1 -1 1
-1 0 -1 1 1
B=mB=|1 1 0 -2 0
1 -1 2 0 =2
-1 -1 0 2 0

)
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which, in this case, turns out to be the permutation of indices (1,2,3,4,5) — (5,1,2,3,4). In

other words, B = pBp~!, where
00001
100 00
p=10 1 0 0 O
00100
00010

is the matrix representing this cyclic permutation. At the same time, the associated transfor-
mation of the cluster variables is (z1,x2, 3, 4, x5) — (Z1, T2, X3, T4, T5), where T is defined by
the exchange relation

T1T1 = Toxs5 + T3T4.

Because the first matrix mutation p; just corresponds to a cyclic permutation of the indices, it
follows that a subsequent mutation ps of the new matrix B produces the same formula for the
exchange relation (up to relabelling the variables). It is this property which allows an infinite
sequence of mutations to be considered as equivalent to the iteration of a single recurrence
relation (in this case, the recurrence (1.2) above).

Remark 1.2 (Laurent phenomenon). The Somos-5 recurrence is distinguished for several rea-
sons. It is one of the first known examples of a rational recurrence whose iterates are Laurent
polynomials in the initial values with integer coefficients, which for (1.2) means that

Ty € Z[w?l, xzﬂ,xgﬂ,wffl, x5ﬂ]
for all n. This Laurent phenomenon was noted by Michael Somos, who saw that it explained
his earlier observation that the recurrence (1.2) generates an integer sequence starting from the
initial data (z1,...,25) = (1,1,1,1, 1), that is

1,1,1,1,1,2,3,5,11, 37,83, 274, 1217, 6161, 22833, . . ..

The latter sequence also appears in a problem of Diophantine geometry, and Elkies and others
explained the connection with elliptic curves and theta functions (see [2]). Excellent accounts of
the earliest results on the Laurent property appear in the articles of Gale [9]. However, a more
complete picture did not begin to emerge until the work of Fomin and Zelevinksy, who were able
to treat a wide variety of examples of the Laurent phenomenon on the same footing [5].

Another reason to highlight the Somos-5 recurrence is the fact that it is connected to one
of the archetypal examples of a discrete integrable system, namely a member of the Quispel—-
Roberts—Thompson (QRT) family of maps of the plane [15]. This is described in Example 2.1
below.

The main motivation behind [7] (and the current announcement) is to explain the connection
between discrete integrable systems and cluster algebras, and try to understand to what extent
examples like Somos-5 are isolated rarities. However, in order to be able to talk about Liouville—
Arnold integrability in the finite-dimensional setting, it is necessary to have a symplectic (or
Poisson) structure to hand. In the next section we describe how this arises in the context of
cluster algebras, and use Somos-5 for illustration.

A further example that reduces to a map of the plane is introduced and evidence given for
its non-integrability. In the third section we consider recurrences of the form (1.1) from the
viewpoint of their algebraic entropy (as defined in [1]), and suggest that this leads to a very
sharp classification result for these systems.

The final section is reserved for some conclusions.
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2 Poisson and symplectic structures

Cluster transformations were considered in the setting of Poisson geometry by Gekhtman,
Shapiro and Vainshtein [10], who found Poisson structures of log-canonical type for the cluster
variables:

{zj, 21} = cjp xjap, (2.1)

for some constant skew-symmetric matrix C' = (c¢ji). Such Poisson brackets are compatible
with cluster mutations, in the sense that the new cluster obtained by mutation also satisfies
a log-canonical bracket:

{Zj, &1} = Cji T Ty

However, in general C' # C, so the mutation map from the variables x to % (which can be
considered as an involution of N-dimensional affine space) does not preserve the original Poisson
structure.

Nevertheless, the recurrences defined by the special sequence of mutations available in the case
of mutation-periodic exchange matrices do correspond to maps with an invariant Poisson bracket
of log-canonical form (perhaps on a lower-dimensional symplectic manifold). Theorem 2.4 below
describes how this works.

Given the recurrence (1.1), we define a birational map ¢ : CV — CV:

o 2 e Y IR ety
xo T3 1:[1 Ty + '1:[1 Tiy
@ : — : , where zyy1 = = mlj_ . (2.2)
ITN-1 TN
TN TN+1

It is possible to seek a skew-symmetric matrix C' = (c;i) such that the Poisson bracket (2.1)
is invariant. The nature of the map (being of the form Z; = x;41) means that this matrix has
a banded structure, so only the top row needs to be determined.

Example 2.1 (Invariant Poisson bracket for the Somos-5 map). The Somos-5 map is

T L2
9 3
X
p: a3 | — 4 : (2.3)
Ts
xr
4 I2Xy + 34
Ty -

T
which preserves the log-canonical Poisson bracket
{zj, 2} = (4 — k)xjzy, (2.4)

in the sense that {¢*F, p*G} = ¢*{F,G} for any pair of functions F', G. The corresponding
matrix

0 -1 -2 -3 4
1 0 -1 -2 -3
c=12 1 0 -1 -2
3 2 1 0 -1
4 3 2 1 O
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has rank 2, and the three independent null vectors
m; = (1,-2,1,0,0)7, my = (0,1,-2,1,0)7, m3 = (0,0,1,-2,1)7

provide three independent Casimir functions for the bracket, f; = x™/ for j = 1,2, 3:

13 ToX4
flz ) f2: ) f3:

2 2 2
T T3 Ty

L3T5

However, under the action of ¢, as in (2.3), the Casimirs transform as

_ fafs 41
hisfs

This induced action of ¢ on the variables f; was written in terms of a third-order recurrence
in [12].

0 f1 = f2, ©* fa = f3, 0" f3

Remark 2.2 (Non-invariance of symplectic leaves). We see that ¢ does not preserve the sym-
plectic leaves of the bracket because the Casimirs are not invariant under the map. It follows
that the log-canonical bracket on the cluster variables x; is not relevant to the integrability of
the map (1.2).

In fact, the variables

y = p = 2278 (2.5)

) Y
T2T3 T34

which are themselves Casimirs of this bracket, since y; = fifs and yo = fafs, transform as
a map of the plane, given by

P <ly/;> ~ ((y2 + 1?/)2/(y1y2)> ' (2:6)

This is a particular case of the QRT map [15] and possesses an invariant Poisson bracket of
log-canonical type:

{y1, 92} = 1y (2.7)
Moreover, the quantity

1 1 1
H=yi+yp+—+—+—
Y Y2 Y1y2
is an invariant of the map, which means that (2.6) is integrable in the Liouville-Arnold sense [17].
The smooth level curves of H have genus one, which explains the connection with elliptic curves
and leads to the explicit solution of the initial value problem for (1.2) in terms of the Weierstrass
sigma function [12].

2.1 Symplectic form from the B matrix

The above construction of the Poisson brackets (2.4) and (2.7) was presented in an ad hoc way.
The matrix C' = (c;j) for the map of the coordinates x;, as well as the bracket between the y;,
can be derived purely from the assumption that a log-canonical bracket exists for each of the
maps ¢ and ¢. Furthermore, these calculations start from the map and have no connection with
the cluster construction. We now explain how to derive the relevant Poisson brackets from the
exchange matrix B.



6 A.P. Fordy and A. Hone

We define the log-canonical two-form associated to B, by

b
w= Z gk dz; A dag; (2.8)

this two-form was first introduced in [11], and was also considered in [3]. Let ¢ be the map (2.2),
associated with the matrix mutation p; of B. Then we have the following:

Lemma 2.3. Let B be a skew-symmetric integer matriz. The following conditions are equivalent.

1. The matriz B defines a cluster mutation-periodic quiver with period 1.

2. The matriz elements B satisfy the relations
bj,N:bl,j-i-l) ]: ]-7"'7N_17 (29)
and

bit1 k1 = bjk + b1 j+1[—b1 k1]+ — b1 [—b1j+1]+, (2.10)

for1 <j k<N -—1.

3. The two-form w is preserved by the map ¢, i.e. P w = w.

The above result follows from a direct calculation, which will be presented in [7]; it can
also be understood in the light of Theorem 2.1 in [11], which shows that the two-form (2.8)
is covariant with respect to general cluster transformations. We emphasise that in the case of
period 1 quivers, this two-form is invariant.

Note that the relations (2.9) and (2.10) mean that the vector (b12,...,b1n) = (a1,...,an—1)
must be palindromic, i.e. a; = ay—_; for all j, and the matrix B can be completely reconstructed
from these exponents in the first row (see Theorem 6.1 of [8]).

The case where B is degenerate is more delicate, but the general situation is described by
the following.

Theorem 2.4. The map ¢ is symplectic whenever B is nondegenerate. In the degenerate case
that rank B = 2K < N, there is a rational map m and a symplectic birational map ¢ with
symplectic form @ such that the diagram

cN —— ¢V
| |
2K L 2K
is commutative, and the symplectic form & on C*K satisfies 70 = w.

The latter result can be viewed as a special case of the symplectic reduction of the form (2.8)
presented in [11].

Example 2.5 (Somos-5 map). We consider the 2-form (2.8) with matrix B given by (1.3).
Written in terms of the variables z; = log z;, we have

w = Z bjrdz; N dzy,.
j<k

The rank of matrix B is 2, since it has three independent null vectors

w = (1,1,1,1,1)7, u = (1,2,3,4,5)7, ug = (1,-1,1,-1,1)7.
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Im B is spanned by

vi=(1,-1,-1,1,0)7, vo = (0,1,-1,-1,1)7T,
and u; - v; = 0, for all 4, j. This means that

w = (dzg — dzs — dzqg + dz5) N (dz1 — dzo — dz3 + dzy),

which, in z-coordinates, gives

Tox 1T dys AN d xr1x Tox
w = dlog (“)/\dlog( ! 4>: y2 yl, where y; = ! 4, Yo = 225
T3T4 T2T3 Y1y2 X223 X324

We see that on the two-dimensional space with coordinates i, yo, this gives a form @ which is
non-degenerate, so defines an invariant symplectic form.

We are thus led directly to the variables (2.5), which satisfy the QRT map (2.6), and to
the Poisson bracket (2.7), which is defined through the inverse of the symplectic form. In the
general case, the analogues of the variables (2.5) correspond to particular choices of the so-called
T-coordinates introduced in [10].

Example 2.6 (A sixth-order recurrence). The recurrence

Tnt6Tn = Tni5Tni3Tni1 T (Tnpatns2)’, (2.11)
comes from the degenerate exchange matrix
0o -2 6 -4 6 -2

2 0 -14 6 -16 6

-6 14 0 10 6 —4
B= 4 -6 —-10 0 -—-14 6 |~ (2.12)

-6 16 -6 14 0 =2
2 -6 4 -6 2 0
Clearly, iteration of this recurrence is equivalent to iterating the map ¢ : C® — C° given by

) x%mi:ng +mg:ﬂg
@ (551,&72,.’17371134715'5,336) — (:1:271"371"435857:6673:7)7 Ty = .1,‘—7
1

and this map preserves the degenerate two-form given by the expression (2.8) with coefficients by,
as in (2.12).
Written in terms of the variables z; = log x;, we have

w = Z bjdej A dzg.
i<k

The rank of matrix B is 2, since it has four independent null vectors

u = (1,0,-1,0,1,00,  uy=(0,1,0,-1,0,1)7T,
uz = (3,1,0,0,0,-1)T,  u3=(-1,0,0,0,1,3)T.

Im B is spanned by
vi=(1,-3,2-3,1,00",  vy=(0,1,-3,2-3,1)",
and u; - v; = 0, for all 4, j. This means that

w = 2(dzg — 3dz3 + 2dzg — 3dz5 + dzg) N (dz1 — 3dze + 2dz3 — 3dz4 + dzs),
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which, in z-coordinates, gives

2 2
w = 2dlog <m2334x6> Adlog <m1333:r5> = 27dy2 A d,y17
T

3.3 3.3
3.’E5 Loy Y1y2
where
.%1.73%:135 x2$421$6
1= "3 3> Y2= "3 3 -

We see that on the 2 dimensional space with coordinates y1, y2, w is non-degenerate, so defines
a symplectic form, which is invariant under the induced map

i (l:@ - <(y§ + 1y>2/(y1y5’)> ' (2.13)

However, in this case we know of no first integral and, furthermore, numerical plots indicate the
presence of chaos.

In the next section we discuss algebraic entropy and show that the algebraic entropy of this
particular map is non-zero.

3 Algebraic entropy

Bellon and Viallet [1] proposed a suitable measure of entropy for rational maps. This counts the
degree d, of the nth iterate of such a map in dimension N, defined as the maximum degree of
the iterates, considered as rational functions of the N coordinates corresponding to the initial
data. The algebraic entropy £ of the map is defined as

£ = lim llogdn.
n—oo n
For a generic map of degree d, the entropy is logd > 0, but for special maps cancellations of
factors from the numerators and denominators of the rational functions can occur upon iteration,
so that the entropy is smaller than expected.

It has been observed (see [1] for a discussion) that rational maps which are Liouville-Arnold
integrable have zero algebraic entropy and it is conjectured that zero algebraic entropy implies
integrability. In any case, it appears to be a reliable indicator of integrability. In the setting of
this paper, Liouville-Arnold integrability would require the existence of K independent functions
of the variables y1, ..., y2x, which are invariant under the action of the map ¢ and in involution
with respect to the Poisson bracket defined by .

In general it can be difficult to calculate the entropy of a rational map explicitly. Even
numerical calculations become difficult if the dimension is large, since it is necessary to perform
a symbolic computation of the rational functions generated by the map and count their degrees.
However, for the family of maps of the form (2.2) (or equivalently the recurrences (1.1)), there
is a considerable simplification. From the Laurent property of the associated cluster algebra [4],
it follows that the iterates x,, are Laurent polynomials in the initial conditions 1, ..., zx. Thus
it is sufficient to count the degrees of the monomials that appear as the denominators of the
iterates.

Upon writing each iterate in lowest terms as x,, = D), (x)/M,(x) (where, as before, the vector
x = (z;) denotes the variables of the initial cluster, and z; { D,(x) for any j = 1,...,N), the
denominator is a monomial M,, = x9», with d,, = (dg), cee £LN))T being the vector of degrees.
Substituting this form of the Laurent polynomials into (1.1) and comparing denominators on
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each side, it is apparent that (for sufficiently large n) the degrees d%j ) satisfy the same recurrence

for all j, namely

N N

dp+N + dp = max Z[bl,jhdnﬂ'*l» Z[—bl,jhdnﬂfl : (3.1)
= =

The above equation is precisely the ultra-discrete version of (1.1) (an example of tropical ma-
thematics [16], where the ordinary field operations are replaced by the max-plus algebra). The
entropy of these maps is measured by the growth of the degrees of the denominators, and

N
generically the total degree, deg M,, = >_ dgf ), grows exponentially at the same rate as each
j=1

component dg ), which is controlled by the tropical version of the map, as in (3.1).

Example 3.1 (Tropical Somos-5). For the Somos-5 recurrence, the ultra-discrete analogue of
the bilinear equation (1.2) is

dn+5 + dn = Imax (dn+4 + dn+1, dn+3 + dn+2) . (32)

The singularity analysis of ultra-discrete maps has been considered quite recently [13]. For this
particular example, it is possible to describe the general solution quite explicitly. Indeed, the
tropical analogue of the quantity y,, (for the recurrence version of the QRT map (2.6)) is

Yn == dn+3 + dn - dn+2 - dn+17
which satisfies the second order relation
Yot2 +Yn = [Yoq1l+ — Yoy (3.3)

The latter is the tropical version of the QRT map defined in (2.6). Although in the context
described above d,, counts the degree of a monomial, so that only non-negative integer values
of d,, arise, which lead to Y,, taking integer values only, the recurrence (3.3) can be considered
more generally as defining a piecewise linear map R? — R2. For this map it can be verified
directly that all the orbits are periodic with period 7, from which it follows that d, satisfies
a linear recurrence of order 10 with constant coefficients, namely

(8" — 1) (dpss + dn — dp2 — dny1) =0, (3.4)

where we have used S to denote the shift operator, defined by Sf,, = fn41 for any function f
of n € Z. (Note that the periodicity of orbits in ultradiscrete QRT maps was proved by Nobe
in [14].)

For the sequence of degrees of the tropical Somos-5 recurrence (3.2), in each variable z; the
denominator has four steps of degree zero, say di = dy = d3 = d4 = 0, before the first non-zero
degree ds = 1, and these five initial conditions generate a sequence beginning

0,0,0,0,1,1,1,2,3,3,4,5,6,6,8,9,10,11, 13,14, 15, 17, 19, 20, 22, 24, 26, 27, 30, . . .,

which has quadratic growth with n, indicating that the algebraic entropy is zero. To see that
d, = O(n?), it is enough to note that the above sequence satisfies the tenth order linear recur-
rence (3.4), whose characteristic polynomial is (A7 — 1)(A* — A2 — XA 4 1), and all of the roots of
the latter have modulus 1, with A = 1 being a triple root.
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Example 3.2 (Tropical sixth-order recurrence). The example of the recurrence (2.11) is quite
different, in that the sequence of degrees, which begins

0,0,0,0,0,1,2,6,16,42,110,287,754,1974, 5168, 13530, 35422, 92737, 242788, 635628, . . .,
grows exponentially with n. In this case, the degrees satisfy the tropical recurrence
dpi6 + dp = max (2dn+5 +4d, 13 + 2dy 41, 6(dn+4 + dn+2)) s

while the analogue of (2.13) is the piecewise linear map on R? given by

@) - (2 [¥al, W Y1> ’ (3.5)

where
Y, = dn+4 + 2dn+2 + dn - 3dn+5 - 3dn+1-

The particular orbit of the map for Y,, corresponding to the degree sequence has initial data
(Y1,Y2) = (0,1), and the sequence of Y;, begins 0,1,—1,2,—1,1,0,—1,3,—2,3, —1; thereafter
it is periodic with period 12, which implies that the degrees d, satisfy a linear recurrence of
order 16 with constant coefficients, that is

(812 - 1)(dn+4 + an+2 +dp — 3dn+3 - 3dn+1) =0.

(However, note that the general orbit of the map (3.5) is not periodic.) The right hand bracket
above contributes a factor of A* —3X3 +2X2 —3XA+1 = (A\2+1)(A? =3\ +1) to the characteristic
polynomial, and this contains the root of largest magnitude, namely Apax = (3 + +/5)/2. This
implies that logd, ~ nlogAnax as n — oo, giving a positive value to the algebraic entropy,
& = log Amax-

Although we are not aware of any theorems that directly connect algebraic entropy to the
Liouville-Arnold notion of integrability for maps, the fact that a map has £ > 0 is a strong
indicator of non-integrability. For each of the recurrences (1.1), the degrees of each variable
appearing in the denominators of the sequence of Laurent polynomials satisfy the same tropical
recurrence (3.1), which means that any set of N 4 1 adjacent degrees always satisfies one of the
two linear relations

N

dpyN +dn = Z[ibl,j]ernJrjfl-
=

Empirically we have observed that for large enough n the degrees d,, actually switch periodically
between the latter two linear recurrences. This suggests that the growth of the degrees is
controlled by whichever of the two characteristic polynomials

N-1

Pi()\) = )\N +1-— Z [:l:bl,jJrl]Jr)\j
j=1

has the root Apax of largest magnitude. It is fairly easy to show that |Amax| > 1 provided that

N N

max | Y [bijle, > [=bisls | =3, (3.6)

j=2 j=2
and in that case the entropy should be £ = log Anax > 0. Thus we are led to the
Conjecture. The condition (3.6) is sufficient for positive algebraic entropy.

More detailed evidence for this conjecture will be described in [7].
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4 Conclusions

In this paper we have briefly discussed the recurrences (1.1) (and corresponding maps (2.2)),
which arise naturally in the context of cluster mutations of mutation-periodic quivers [8]. Our
main interest is to understand the integrability or otherwise of the resulting maps. To this end,
we have shown that the cluster exchange matrix B defines a 2-form (2.8), which is invariant
under the action of the corresponding map. Furthermore, since, for an even number of nodes, the
matrix B (corresponding to a generic, period 1 quiver) is non-singular, this 2-form is generically
symplectic, so the inverse matrix defines a non-degenerate, invariant Poisson bracket of log-
canonical type. However, for any quiver with an odd number of nodes and for some special (but
important) examples with an even number, the 2-form (2.8) is degenerate. However, as we have
seen in the two examples presented here, it is possible to reduce the map to a lower-dimensional
manifold with an invariant symplectic form; this is the Weil-Petersson form introduced in [11].
Again, we emphasise that in our context, this symplectic form is invariant, not just covariant.

Finding the invariant symplectic form (and hence the Poisson bracket) is only part of the
task. For K degrees of freedom we need K invariant functions which are in involution with
one another. When K = 1 it is enough to find a single invariant function (as with the QRT
map (2.6)). For K > 1 it can be much more difficult. The simplest period 1 quivers are
the primitives (see [8] for the definition), which are linearisable. In this case it is possible [6]
to construct a bi-Hamiltonian ladder to prove complete integrability. In [7] we present other
linearisable examples which can also be shown to be completely integrable, although this requires
a different construction.

We have used algebraic entropy arguments to show that complete integrability will be rare
for the maps obtained through cluster mutation. A non-integrable example is provided by the
map (2.11), which was reduced to a symplectic map with one degree of freedom, but this was
shown to have positive entropy, and we have numerical results indicating chaotic behaviour.

The conjectured criterion (3.6) for the maps to have positive algebraic entropy leads to
a sharp classification of the integrable maps that can arise from recurrences of the form (1.1).

From this criterion it follows that systems with vanishing entropy must satisfy S+ < 2, where
N
St = Y [£b1]+ are the sums of the positive and negative entries, respectively. By the symmetry

j=2
B — — B, which does not change the recurrence, one can take S; > S_ without loss of generality.

It then follows that the sums of the positive and negative entries are restricted to take the values
(S—H S—) = (17 0)7 (27 0)7 (27 1)7 (27 2)

only. Each of these four cases can be subjected to further analysis, to verify that they correspond
to symplectic maps (perhaps on a reduced manifold) that are integrable in the Liouville-Arnold
sense (see [7] for further details).
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