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2 S. Khoroshkin and O. Ogievetsky

1 Introduction

This paper completes the work [7]: it contains a derivation of basic relations for the diagonal
reduction algebras of gl type, their low dimensional examples and properties.

Let g be a Lie algebra, ¢ C g its reductive Lie subalgebra and V an irreducible finite-
dimensional g-module, which decomposes, as an £-module, into a direct sum of irreducible ¢-
modules V; with certain multiplicities m;,

Va) VoW (1.1)

Here W; = Homg(V;, V) are the spaces of multiplicities, m; = dim W;. While the multiplici-
ties m; present certain combinatorial data, the spaces W; of multiplicities itself may exhibit
a ‘hidden structure’ of modules over certain special algebras [4]. The well-known example is the
Olshanski centralizer construction [9], where g = gl,,,,,,, £ = gl,, and the spaces W; carry the
structure of irreducible Yangian Y (gl,,)-modules.

In general, the multiplicity spaces W; are irreducible modules over the centralizer U(g)*
of ¢ in the universal enveloping algebra U(g) [8]. However, these centralizers have a rather
complicated algebraic structure and are hardly convenient for applications. Besides, under
the above assumptions, the direct sum W = @;W,; becomes a module over the reduction (or
Mickelsson) algebra. The reduction algebra is defined as follows. Suppose £ is given with
a triangular decomposition

tE=n_+bH+n (1.2)

Denote by I the left ideal of A := U(g), generated by elements of n, I, := An . Then the
reduction algebra S"(A), related to the pair (g, ), is defined as the quotient Norm(I;)/I; of
the normalizer of the ideal I over I,. It is equipped with a natural structure of the associative
algebra. By definition, for any g-module V the space V" of vectors, annihilated by n, is a module
over S"(A). Since V is finite-dimensional, V" is isomorphic to @;W;, so the latter space can
be viewed as an S"(A)-module as well; the zero-weight component of S*(A), which contains
a quotient of the centralizer U(g)é, preserves each multiplicity space W;. The representation
theory of the reduction algebra S"(A) is closely related to the theory of branching rules g | ¢ for
the restrictions of representations of g to &.

The reduction algebra simplifies after the localization over the multiplicative set generated
by elements h. + k, where 7 ranges through the set of roots of ¢, k¥ € Z, and h, is the coroot
corresponding to 7. Let U(h) be the localization of the universal enveloping algebra U(h) of the
Cartan subalgebra b of £ over the above multiplicative set. The localized reduction algebra Z"(A)
is an algebra over the commutative ring U(h); the principal part of the defining relations is
quadratic but the relations may contain linear or degree 0 terms, see [10, 6].

Besides, the reduction algebra admits another description as a (localized) double coset space
n_A\A/An endowed with the multiplication map defined by means of the insertion of the
extremal projector [6] of Asherova-Smirnov-Tolstoy [3]. The centralizer A* is a subalgebra
of Z"(A).

It was shown in [7] that the general reduction algebra Z"(A) admits a presentation over U(h)
such that the defining relations are ordering relations for the generators, in an arbitrary order,
compatible with the natural partial order on h*. The set of ordering relations for the general
reduction algebra Z"(A) was shown in [7] to be “algorithmically efficient” in the sense that any
expression in the algebra can be ordered with the help of this set.

The structure constants of the reduction algebra are in principle determined with the help
of the extremal projector P or the tensor J studied by Arnaudon, Buffenoir, Ragoucy and
Roche [1]. However the explicit description of the algebra is hardly achievable directly.
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In the present paper, we are interested in the special restriction problem, when g is the direct
sum of two copies of a reductive Lie algebra a and £ is the diagonally embedded a. The resulting
reduction algebra for the symmetric pair (a @ a,a) we call diagonal reduction algebra DR(a)
of a. The theory of branching rules for a ® a | a is the theory of decompositions of the tensor
products of a-modules into a direct sum of irreducible a-modules.

We restrict ourselves here to the Lie algebra a = gl, of the general linear group. In this
situation finite-dimensional irreducible modules over g are tensor products of two irreducible gl -
modules, the decomposition (1.1) is the decomposition of the tensor product into the direct sum
of irreducible gl,,-modules, and the multiplicities m; are the Littlewood-Richardson coefficients.

The reduction algebra DR(gl,,) for brevity will be denoted further by Z,.

In [7] we suggested a set R of relations for the algebra Z,,. We demonstrated that the set R
is equivalent, over U(h), to the set of the defining ordering relations provided that all relations
from the set R are valid.

The main goal of the present paper is the verification of all relations from the system R. There
are two principal tools in our derivation. First, we use the braid group action by the Zhelobenko
automorphisms of reduction algebras [10, 6]. Second, we employ the stabilization phenomenon,
discovered in [7], for the multiplication rule and for the defining relations with respect to the
standard embeddings gl,, < gl,,; stabilization provides a natural way of extending relations
for Z,, to relations for Z,,+1 (Z, is not a subalgebra of Z,,11). We perform necessary calculations
for low n (at most n = 4); the braid group action and the stabilization law allow to extend the
results for general n.

As an illustration, we write down the complete lists of defining relations in the form of
ordering relations for the reduction algebras DR(sl3) and DR(slz). Although for a finite n the
task of deriving the set of defining (ordering) relations for DR(sl,,) is achievable in a finite time,
it is useful to have the list of relations for small n in front of the eyes.

We return to the stabilization and cut phenomena and make more precise statements con-
cerning now the embedding of the Lie algebra gl,, ®gl; into the Lie algebra gl,, ,; (more generally,
of gl,, ®gl,, into gl,,,,,). As a consequence we find that cutting preserves the centrality: the cut
of a central element of the algebra Z,,, is central in the algebra Z, ® Z,,. We also show that,
similarly to the Harish-Chandra map, the restriction of the cutting to the center is a homomor-
phism. As an example, we derive the Casimir operators for the algebra DR(slz) by cutting the
Casimir operators for the algebra DR(sl3).

The relations in the diagonal reduction algebra have a quadratic and a degree zero part.
The algebra, defined by the homogeneous quadratic part of the relations, tends, in a quite
simple regime, to a commutative algebra (the homogeneous algebra can be thus considered as
a “dynamical” deformation of a commutative algebra; “dynamical” here means that the left
and right multiplications by elements of the ring U(h) differ). This observation about the limit
is used in the proof in [7] of the completeness of the set of derived relations over the field of
fractions of U(h). We prove the completeness by establishing the equivalence between the set of
derived relations and the set of ordering relations.

The stabilization law enables one to give a definition of the reduction “algebra” Z., related
to the diagonal embedding of the inductive limit gl of gl,, into gl @ gl (strictly speaking,
Zoo 18 not an algebra, some relations have an infinite number of terms).

We also discuss the diagonal reduction algebra for the special linear Lie algebra sl,; it is
a direct tensor factor in Z,.

Such a precise description, as the one we give for Z,, is known for a few examples of the
reduction algebras: the most known is related to the embedding of gl,, to g, [10]. Its repre-
sentation theory was used for the derivation of precise formulas for the action of the generators
of gl, on the Gelfand-Zetlin basic vectors [2]. The reduction algebra for the pair (gl,,gl, )
is based on the root embedding gl,, C gl,,; of Lie algebras. In contrast to this example, the



4 S. Khoroshkin and O. Ogievetsky

diagonal reduction algebra DR(a) is based on the diagonal embedding of a into a @ a, which is
not a root embedding of reductive Lie algebras.

2 Notation

Let &;j, 4,5 =1,...,n, be the standard generators of the Lie algebra gl,,, with the commutation
relations

(€, Erl = djiEa — 0uj,

where d;; is the Kronecker symbol. We shall also use the root notation Hq, £a, E—q, ... for

elements of gl,,.
Let €i(J-1) and 51(3'2)7 1,7 = 1,...,n, be the standard generators of the two copies of the Lie
algebra gl,, in g := gl,, @ gl,,

[g(a)

b a a
ij 7521)] = dab (5jkgi(l /- 5ilglgj))'

Set

PO g _ g
eij =& +EF,  Ey=60 -l

The elements e;; span the diagonally embedded Lie algebra £ ~ gl,, while E;; form an adjoint

t-module p. The Lie algebra ¢ and the space p constitute a symmetric pair, that is, [¢,€] C ¢,
[&,p] C p, and [p,p] C &

leij, ext] = djreqa — duer;, leijs Er] = 0k B — 6uEy;j, [Eij, Er] = djkea — dier;-

In the sequel, h, means the element e,, of the Cartan subalgebra b of the subalgebra ¢ € gl,, ®gl,,
and hgp the element e,, — epp.

Let {e,} be the basis of h* dual to the basis {hg} of b, €q(hs) = dap. We shall use as well the
root notation hg, €4, €_o for elements of ¢, and H,, FE,, F_, for elements of p.

The Lie subalgebra n in the triangular decomposition (1.2) is spanned by the root vectors e;;
with ¢ < j and the Lie subalgebra n_ by the root vectors e;; with ¢ > j. Let by and b_ be
the corresponding Borel subalgebras, by = h @& n and b_ = h @& n_. Denote by Ay and A_
the sets of positive and negative roots in the root system A = AL UA_ of & A, consists of
roots €; — €; with ¢ < j and A_ consists of roots €; —¢; with i > j. Let Q be the root lattice,

Q:={v€b"[v=2ea, n.ez Naa}. It contains the positive cone Q,
Q= {766*!7— > naa}.
QEA L NQEZL, N6 >0
For A, € h*, the notation
A>p (2.1)

means that the difference A — p belongs to Q4+, A — p € Q4. This is a partial order in h*.
We fix the following action of the cover of the symmetric group S,, (the Weyl group of the
diagonal €) on the Lie algebra gl,, @ gl,, by automorphisms

él($) = Adexp(ei,¢+1)Adexp(fehul’i)Adexp(ei’i+1)(x)’
so that

Gilerr) = (1) ile, @y GilEw) = (=1 U E, 00
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Here 0; = (i,i4 1) is an elementary transposition in the symmetric group. We extend naturally
the above action of the cover of S, to the action by automorphisms on the associative algebra
A=A, :=U(gl,) ®U(gl,). The restriction of this action to h coincides with the natural action
o(hk) = ho(r), 0 € Sy, of the Weyl group on the Cartan subalgebra.

Besides, we use the shifted action of S,, on the polynomial algebra U(h) (and its localizations)
by automorphisms; the shifted action is defined by

o0 hg = hopy +k —o(k), E=1,...,n; o €S, (2.2)
It becomes the usual action for the variables

l(iL;C = h, — k, hzj = h; — iLj; (2.3)
by (2.2) for any o € S,, we have

ool —hogrs 00 hy = hoge.

It will be sometimes convenient to denote the commutator [a,b] of two elements a and b of
an associative algebra by

a(b) := [a, b]. (2.4)

3 Reduction algebra Z,

In this section we recall the definition of the reduction algebras, in particular the diagonal
reduction algebras of the gl type. We introduce the order for which the ordering relations
for the algebra Z, will be discussed. The formulas for the Zhelobenko automorphisms for the
algebra Z,, are given; some basic facts about the standard involution, anti-involution and central
elements for the algebra Z,, are presented at the end of the section.

1. Let U(h) and A be the rings of fractions of the algebras U(h) and A with respect to the
multiplicative set, generated by elements

hij +1, leZ, 1<i<ji<n.

Define Z,, to be the double coset space of A by its left ideal I, := An, generated by elements
of n, and the right ideal I_ := n_A, generated by elements of n_, Z, := A/(I; +1_).
The space Z,, is an associative algebra with respect to the multiplication map

aob:=aPb. (3.1)

Here P is the extremal projector [3] for the diagonal gl,,. It is an element of a certain extension of
the algebra U(gl,,) satisfying the relations e;j P = Pej; = 0 for all i and j such that 1 <i < j <n.

The algebra Z, is a particular example of a reduction algebra; in our context, Z, is defined
by the coproduct (the diagonal inclusion) U(gl,,) — A.

2. The main structure theorems for the reduction algebras are given in [7, Section 2].

In the sequel we choose a weight linear basis {px} of p (p is the -invariant complement to ¢
in g, g = £+ p) and equip it with a total order <. The total order < will be compatible with the
partial order < on h*, see (2.1), in the sense that ux < pur = px < pr. We shall sometimes
write I < J instead of p; < p;. For an arbitrary element a € A let a be its image in the
reduction algebra; in particular, px is the image in the reduction algebra of the basic vector

Pk € ).
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3. In our situation we choose the set of vectors F;;, 7,5 = 1,...,n, as a basis of the space p.
The weight of E;; is €; — ;. The compatibility of a total order < with the partial order < on h*
means the condition

Eij'<Ekl if 1—7>k—1L

The order in each subset {F;j|i — j = a} with a fixed a can be chosen arbitrarily. For instance,
we can set

Eij‘<Ekl if i—j>k—l or i—j:k—l and 17 > k. (32)

Denote the images of the elements F;; in Z, by z;. We use also the notation ¢; for the
elements z;; and t;; := t; —t; for the elements z;; — z;;. The order (3.2) induces as well the order
on the generators z;; of the algebra Z,:

Zij X 2kl = Eij < Ekzl-

The statement (d) in the paper [7, Section 2] implies an existence of structure constants
Blab), (ca),(ij),(kt) € U(h) and D(ap) (cqy € U(h) such that for any a,b,c,d =1,...,n we have

Zab©Zea = D Bap)(ed) i) (kD) Zis © 2kt + Diav),(ea)- (3.3)

1,9,k,li205 X2

In particular, the algebra Z, (in general, the reduction algebra related to a symmetric pair (&, p),
g:= €+ p) is Zy-graded; the degree of 2z, is 1 and the degree of any element from U(h) is 0.
The relations (3.3) together with the weight conditions

[h’ Za,b] = (5a - 5b)(h)zab

are the defining relations for the algebra Z,,.

Note that the denominators of the structure constants B(ap), (cd),(ij),(kt) @0d D(ap),(ca) are pro-
ducts of linear factors of the form hzy + 4, i < j, where £ > —1 is an integer, see [7].

4. The algebra Z,, can be equipped with the action of Zhelobenko automorphisms [6]. Denote
by q; the Zhelobenko automorphism q; : Z,, — Z, corresponding to the transposition o; € S,,.
It is defined as follows [6]. First we define a map ¢; : A — A/I; by

k

Ny 1)k . - -
Qi(z) := Z (k')ef’iﬂ(m(m))efﬂ’i H(hi,i+1 —a+1)7" mod L. (3.4)
E>0 ’ a=1

Here é; ;41 stands for the adjoint action of the element e; ;1 1, see (2.4). The operator ¢; has the
property

Gi(he) = (03 0 h)dq(x) (3.5)

for any x € A and h € b; o o h is defined in (2.2). With the help of (3.5), the map ¢; can
be extended to the map (denoted by the same symbol) ¢; : A — A/I_ by setting ¢;(a(h)z) =
(07 0 a(h))q;(z) for any x € A and a(h) € U(h). One can further prove that ¢;(I;) = 0 and
q:(I1-) C (I_ +1;)/1, so that §; can be viewed as a linear operator ¢; : Z, — Z,. Due to [6],
this is an algebra automorphism, satisfying (3.5).

The operators ¢; satisfy the braid group relations [10]:

QiQi+1G = Qi+19%i+1,
Gidy; = 454, i —g| > 1,
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and the inversion relation [6]:

1 2
2@ hie + 1), 7., .
hroet 10 (z)(hiit1 +1) x € (3.6)

a; (z) =
In particular, (]12(37) = x if x is of zero weight.
5. The Chevalley anti-involution € in U(gl,, ® gl,,), €(eij) = €ji, €(Eyj) := Ej;, induces the
anti-involution € in the algebra Z,,:

€(zij) = zji,  e(ln) = hy. (3.7)

Besides, the outer automorphism of the Dynkin diagram of gl, induces the involutive automor-
phism w of Z,,

w(zij) = (1) zj, wlhe) = —hp, (3.8)

where i/ = n + 1 — 7. The operations € and w commute, ew = we.

Central elements of the subalgebra U(gl,) ® 1 C A, generated by n Casimir operators of
degrees 1,...,n, as well as central elements of the subalgebra 1 ® U(gl,,) C A project to central
elements of the algebra Z,,. In particular, central elements of degree 1 project to central elements

100 by g (39)
and
I = 4.4t (3.10)

of the algebra Z,. The difference of central elements of degree two projects to the central element

n

> (hi — 20t (3.11)

=1

of the algebra Z,,. The images of other Casimir operators are more complicated.

4 Main results

This section contains the principal results of the paper. We first give preliminary information
on the new basis in which the defining relations for the algebra Z, can be written down in an
economical fashion. The braid group action on the new generators is then explicitly given in
Subsection 4.2. The complete set of the defining relations for the algebra Z, is written down
in Subsection 4.3. The regime for which both the set of the derived defining relations and the
set of the defining ordering relation have a controllable “limiting behavior” is introduced in
Subsection 4.4. Subsection 4.5 deals with the diagonal reduction algebra for sl,; the quadratic
Casimir operator for DR(sl,,) as well as for the diagonal reduction algebra for an arbitrary
semi-simple Lie algebra ¢ is given there. Subsection 4.6 is devoted to the stabilization and cut
phenomena with respect to the embedding of the Lie algebra gl,, ®gl,, into the Lie algebra gl,, .,
the theorem about the behavior of the centers of the diagonal reduction algebra under the cutting
is proved there.
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4.1 New variables

We shall use the following elements of U(h):

Chy—1 hy—1 hy—2 hy—3

the variables hzy are defined in (2.3). Note that AijA;j = BijBZ’»j =1.
Define elements t1, ..., ¢, € Zn by
tii=t, b=ai(t), ft3:=qdq(t1), ..., tn:=dn-1-Gdi(t1).

Using (3.4) we find the relations

1 hiit1 hiiia 1
qi(ts) = —= i+ w—— Lit1, Qi(tig1) = —— t; — 3 tit1,
hiiv1 —1 hiiy1—1 hiiv1—1 hiiv1 —1 (4.1)

which can be used to convert the definition (4.1) into a linear over the ring U(h) change of
variables:

-1 -1 =
tl:tlHAjl_Ztko IT 4,
i — hi — 1 =1
(4.2)
tl_tlHA,Jthk—H
J#k’
For example,
, 1 h 1 hig —1.
fy = —- b 22 by = iy 2T
hi2 —1 hia —1 hi2 hia
} 1 h hish
fy = — t— — s ty 4 02 ts,

. 1 2
hiz —1 (h1s — 1)(hos — 1) (h1s — 1)(hos — 1)
h12 +1; h12 —1; (s = 1)(has = 1);
t1 + to + R t3
hiohis hi2has hizha3

In terms of the new variables #’s, the linear in ¢ central element (3.10) reads

hza+1
=30 I

a:a#i

4.2 Braid group action

Since (112(:1:) = z for any element z of zero weight, the braid group acts as its symmetric group
quotient on the space of weight 0 elements. It follows from (4.1) and q;(t1) = ¢; for all ¢ > 1
that

o (ti) = Lo (4.3)

for any o € S,,.
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The action of the Zhelobenko automorphisms, see Section 3, on the generators zy; looks as
follows:

Gi(zik) = —2zit1,pAiit1, Qi(2ki) = —2hjit1, k#4,0+1,

Gi(Zig1,k) = Zik, Gi(Zhyit1) = 2kiAiiv1, k#4041, (4.4)
Gi(2ii+1) = —2zit1,i4ii+1Biiv1, Gi(Zit1,i) = —Ziit1s

Ai(Zjk) = Zjgs  Jok # 10+ 1.

Denote i = n + 1 — 1, as before. The braidogroup action (4.4) is compatible with the anti-
involution € and the involution w (note that w(h;;) = hj), see (3.7) and (3.8), in the following
sense:

i =q e, (4.5)

wqi = qi/_lw. (4

Let wg be the longest element of the Weyl group of gl,,, the symmetric group S,. Similarly
to the squares of the transformations corresponding to the simple roots, see (3.6), the action
of q%uo is the conjugation by a certain element of U(h).

Lemma 1. We have

qio (x) = S~1zsS, (4.7)
where
S=I[ hi (4.8)
1,7:1<j

The proof shows that the formula (4.7) works for an arbitrary reductive Lie algebra, with
S =Tlaca, ha-
Proposition 2. The action of Qu, on generators reads
Guo (2i5) = (=1 ziy [] Aarr [ Ases (4.9)
a:a<i’ b:b>j’
Gy (1) = Lt (4.10)

The proofs of Lemma 1 and Proposition 2 are in Section 5.

4.3 Defining relations

To save space we omit in this section the symbol ¢ for the multiplication in the algebra Z,,. It
should not lead to any confusion since no other multiplication is used in this section.

Each relation which we will derive will be of a certain weight, equal to a sum of two roots.
From general considerations the upper estimate for the number of terms in a quadratic relation
of weight A = av+ 3 is the number |A| of quadratic combinations z,/ zz with o/ 4+ 3" = X. There
are several types, excluding the trivial one, A = 2(g; — ¢j), |A| = 1:

1. X ==%(2¢; — ¢j — &), where 7, j and k are pairwise distinct. Then |\| = 2.
2. A =¢; —¢j + ¢, — g with pairwise distinct 4, j, k and [. Then |\| = 4.

3. X=¢;—¢j,1# j. For zy zp, there are 2(n—2) possibilities (subtype 3a) with o/ = ¢; — ¢y,
B =¢ep—¢gjord =¢ep—¢j, f =¢ —ep with k # 4, j and 2n possibilities (subtype 3b)
with o/ =0, 8/ =¢; —¢j or o« =¢; —¢j, f/ =0. Thus [A\| =4(n —1).
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4. X\ = 0. There are n? possibilities (subtype 4a) with o/ =0, 8’ = 0 and n(n— 1) possibilities
(subtype 4b) with o/ =¢; —¢j, B =¢; — €4, i # j. Here |\ =n(2n —1).

Below we write down relations for each type (and subtype) separately. The relations of the
types 1 and 2 have a simple form in terms of the original generators z;;. To write the relations
of the types 3 and 4, it is convenient to renormalize the generators z;; with ¢ # j. Namely, we
set

i—1
éij = Zij H Aki- (411)
k=1

In terms of the generators z;;, the formulas (4.4) for the action of the automorphisms ¢;
translate as follows:

(17,(20'7,16) = _éi—‘rl,ka qi(z("prl,k) = éi,kAi-i—l,ia k 75 2'7 i+ 17

(Zri) = =it Ai(Zhiv1) = ZhiAiirn = Afyyi2hi, k#0041,
Gi(Ziir1) = —Aj i, Ai(Zit10) = —Ziir14it1,

Ai(Zjk) = Zjk,  Jok Fi i+ 1

1. The relations of the type 1 are:
ZijZik = ZikZij Akj, ZjiZki = 2ki%jiAkjs for j <k, i#jk. (4.12)

2. Denote

1 1
Dijkl = B - 5 .
hit.  hj

Then, for any four pairwise different indices 4, j, & and [, we have the following relations of the
type 2:

[2ij, 2r1] = 2rjZa Dijkis i<k, j<l,

o o (4.13)

Zij 2kl — zklzijAﬂAlj = 2k 2 Dijiis 1<k, 3>1.
3a. Let i # k # [ # i. Denote
By = — ((toi - tok)f;;j 4;;1 + (I, — fz)f;l ;1) Gt Y falzc’m;lan-
ikl kthir wagikl ka +1
With this notation the first group of the relations of the type 3 is:

ZincrAly, — FZinBri = B, 1<k <l
Zinn Al Al Bur, — ZriZinBri = B, i<l <k,
ik Aki — ZuiZiBri = i, k<i<l, (4.14)
ik AriAuBl; — ZaZinBri = Ei, k<l<i,
kA Al Al B AuB); — 2% Bri = B, I <i<k,
Zincr Awi A B AuBl; — 2z Bri = Eina, I <k<i.

The relations (4.14) can be written in a more compact way with the help of both systems,
zi; and Z;j, of generators. Let now

.o ha+1 . . hy—1 . Bai
Eigy = — | (ti — tg) R (ty, — t;) o Zil + Z Zalziaoi.
hikhir hiihir wai kel hia +1
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Then

ZikZel ALy, — Zr12ikBri = Eigls k<, (4.15)
Zik 2 Al A Bik — Zk12ik Bri = Eigl I <k.

Moreover, after an extra redefinition: Zzj; = zy By for k > [, the left hand side of the second
line in (4.15) becomes, up to a common factor, the same as the left hand side of the first line,
namely, it reads (2, Zki Al — Zi 2ikBri) Aj.-

3b. Let i # j # k # i. The second group of relations of the type 3 reads:

o . . 1 1
st = 425 Cl — s ———— Y ujhia——
171 1)~ g 7<) hij 4 9 owr® aj~a hia + 27
C’. .
,?C:’Z'jtj = —tiéij ]Ol”iﬂ ! + tjéiinjA;iBji + E éajzo'iaAijA;'iBaihja +1, (416)
(/A a:a#i,j

(hij +3)Bji 35 (hij +1)Bji
(h2, — )(hje —1) 7 (hag, — 1) (hy — 1)2

Lo o o /
Zijte = 13245 + tkziinkAkiAjkBjk

hii + 1) By hii +1 Bui
— ZkjZik— (hij + o) B Z ZajZia it -
(hik - 1)(hjk - 1) a:ati,jk (hik - 1)(hjk: - 1) higa +1

4a. The relations of the weight zero (the type 4) are also divided into 2 groups. This is the
first group of the relations:

[ti, 1] = 0. (4.17)

As follows from the proof, the relations (4.17) hold for the diagonal reduction algebra for an
arbitrary reductive Lie algebra: the images of the generators, corresponding to the Cartan
subalgebra, commute.

4b. Finally, the second group of the relations of the type 4 is

: 1. . 1 1
[2ijs 2i) = hij — — (L — £ + ) ( Zaifia — ozaj,%ja> : (4.18)
hij aratij hja +1 hig +1

where ¢ # j.
Main statement. Denote by R the system (4.12), (4.13), (4.14), (4.16), (4.17) and (4.18)
of the relations.

Theorem 3. The relations R are the defining relations for the weight generators z;j and t; of
the algebra Z,. In particular, the set (3.3) of ordering relations follows over U(h) from (and is
equivalent to) fR.

The derivation of the system R of the relations is given in Section 5. The validity in Z, of
relations from the set R, together with the results from [7], completes the proof of Theorem 3
(Section 5.4).

4.4 Limit

Let R~ be the set of ordering relations (3.3). Denote by 2R the homogeneous (quadratic) part
of the system R and by R the homogeneous part of the system R~.

1. Placing coefficients from U(h) in all relations from Ry to the same side (to the right,
for example) from the monomials pr ¢ pys, one can give arbitrary numerical values to the
variables h, (a’s are roots of £).
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The structure of the extremal projector P or the recurrence relation (5.4) implies that the
system PRy admits, for an arbitrary reductive Lie algebra, the limit at ho, = c¢ih, h — oo
(c; ranges through the set of simple positive roots of £ and ¢; are generic positive constants).
Moreover, this homogeneous algebra becomes the usual commutative (polynomial) algebra in
this limit; so this limiting behavior of the system R, used in the proof, generalizes to a wider
class of reduction algebras, related to a pair (g, €) as in the introduction.

2. The limiting procedure from paragraph 1 establishes the bijection between the set of
relations and the set of unordered pairs (L, M), where L, M are indices of basic vectors of p.
The proof in [7] shows that over D(h) the system R can be rewritten in the form of ordering
relations for an arbitrary order on the set {pr} of generators. Here D(h) is the field of fractions
of the ring U(bh).

By definition, the relations from SR~ are labeled by pairs (L, M) with L > M. The above
bijection induces therefore a bijection between the sets R and R~.

4.5 sl,

1. Denote the subalgebra of Z,,, generated by two central elements (3.9) and (3.10), by Y,,; the
algebra Y, is isomorphic to Z;.

Since the extremal projector for sl, is the same as for gl,, the diagonal reduction algebra
DR(sl,) for sl, is naturally a subalgebra of Z,,. The subalgebra DR(sl,,) is complementary to Y,
in the sense that Z, =Y, ® DR(sl,).

The algebra DR(sl,,) is generated by z;;, 4,5 = 1,...,n, i # j, and t; ;41 = t; — tiy1, @ =
1,...,n—1 (and the Cartan subalgebra b, generated by h; 41, of the diagonally embedded sl,,).
The elements ¢; ;41 form a basis in the space of “traceless” combinations ) ety (traceless
means that > ¢, = 0), ¢, € U(B).

2. The action of the braid group restricts onto the traceless subspace:

] Iy 1 ) b 1
Qi(ti—1i) = tic1i + ————tiit1, Qi(tit1ite) = +————tiit1 + tit1,it2,
hiiy1—1 Qi+l —
. hiii1+1 . R
Ai(tiit1) = —=——tiit1, GQi(thjr1) = thpsr, k#i—14,1+ 1.
hiit1 —1

The traceless subspace with respect to the generators ¢; and the traceless subspace with
respect to the generators t; (that is, the space of linear combinations Y ¢y tm, ¢ € U(h), with
S ¢ = 0) coincide. Indeed, in the expression of ¢; as a linear combination of £3’s (the second line
in (4.2)), we find, calculating residues and the value at infinity, that the sum of the coefficients
is 1,

-1 1 -l
HAE'IJFZ;THA% =1
j=1 k=1 "kl j=1
J#k
Therefore, in the decomposition of the difference t; —¢; as a linear combination of i1’s, the sum
of the coefficients vanishes, so it is traceless with respect to ¢3’s; t1141 is a linear combination
of tig,t23,...,t;;+1 (and vice versa). It should be however noted that in contrast to (4.2), the

coefficients in these combinations do not factorize into a product of linear monomials, the lowest
example is t34:

; h . h 1 h
t1o = = = t12, to3 = < & - t1o+ = 1 tas |,
hia —1 hiz —1 hi2 — 1 hog — 1
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i34 =

5 —= 12 5 5 = tos + — S t
his —1 hiz —1 (h1s — 1)(hos — 1)(hos — 1) (hoa —1)(has — 1

hsa < L, hia(has — 1) + hag(hag — 1) hiahay 34)
)

3. One can directly see that the commutations between z;; and the differences t;, — ¢; close.
The renormalization (4.11) is compatible with the sl-condition and, as we have seen, the set
{tii+1} of generators can be replaced by the set {f;;11}. Therefore, one can work with the
generators Z;;, 4,j = 1,...,n, i # j, and gi,i+1 =t; —tig1, 4 = 1,...,n — 1. A direct look
at the relations (4.12), (4.13), (4.14), (4.16), (4.17) and (4.18) shows that the only non-trivial
verification concerns the relations (4.16); one has to check here the following assertion: when
z moves through toz-’iH, only traceless combinations of tol’s appear in the right hand side. Write
a relation from the list (4.16) in the form 2;;4; = > X%’j’l’m)fméij 4o, X%vjvl’m) € U(h), where
dots stand for terms with 2z. The assertion follows from the direct observation that for all 4, j
and [ the sum of the coefficients Xﬁf;’j’l’m) is 1, ., X%’j’l’m) =1.

4. With the help of the central elements (3.9), (3.10) and (3.11) one can build a unique linear
in t’s traceless combination:

n . 1 n n
;(hl —22)751' — (n;hl —n — 1) j;tj.

It clearly depends only on the differences h; — h; and belongs therefore to the center of the
subalgebra DR(sl,,).
One can write this central element in the form

n—1 n—1 n—1
Z Cuvhu,u+1tv,v+1 + Z(n — U)Utv,erl = Z Cuv(huﬂhq + 1)tvﬂ,+1, (4.19)
u,v=1 v=1 u,v=1

where C* is the inverse Cartan matrix of sl,,.

In general, let £ be a semi-simple Lie algebra of rank r with the Cartan matrix a;;. Let b;;
be the symmetrized Cartan matrix and ( , ) the scalar product on h* induced by the invariant
non-degenerate bilinear form on &, so that

ai; = d;b;j, bij = (a, aj), di = 2/(a, o).

For each i = 1,...,7 let o) be the coroot vector corresponding to the simple root «;, so that
aj(a)) = aij. Let d;j be the matrix, inverse to ¢;; = d;b;jd;. Let p € h* be the half-sum of all
positive roots. Write

1 r
1=

where n; are nonnegative integers. Let ¢,, be the images of H,, = 04;/(1) — ag/(g)
reduction algebra DR(¢) and h,, = oz;/(l)wLoz;/@) be the coroot vectors of the diagonally embedded
Lie algebra . The generalization of the central element (4.19) to the reduction algebra DR(¥)

reads

in the diagonal

T r
Z dijha;ta; + Zni(ai, a;)ta,;.
i=1

ii=1
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4.6 Stabilization and cutting

In [7] we discovered the stabilization and cut phenomena which are heavily used in our derivation
of the set of defining relations for the diagonal reduction algebras of gl-type. The consideration
in [7] uses the standard (by the first coordinates) embedding of gl,, into gl,,, ;. In this subsection
we shall make several more precise statements about the stabilization and cut considering now
the embedding of gl,, @ gl; into gl, ; (more generally, gl,, ® gl,, into gl,,,,). These precisions
are needed to establish the behavior of the center of the diagonal reduction algebra: namely we
shall see that cutting preserves the centrality.

Notation: b in this subsection denotes the Cartan subalgebra of gl ,,.

Consider an embedding of gl, ® gl,, into gl,,,,, given by an assignment e;; — e;;, i, =
1,...,n, and eq — €ptantss @b = 1,...,m, where ey in the source are the generators of
gl,, ® gl,, and target ey are in gl,,,,,. This rule together with the similar rule E;; — E;; and
Eab + Entantb defines an embedding of the Lie algebra (gl,, @ gl,,,) @ (gl,, @ gl,,,) into the Lie
algebra gl,,, ,,, ®gl,, ,,, and of the enveloping algebras A, ® A,,, = U(gl,, @ gl,,) @U(gl,, ®gl,,) into
Aptm = U(gl,pn @ 0l,4,,). This embedding clearly maps nilpotent subalgebras of gl,, @ gl,,
to the corresponding nilpotent subalgebras of gl,,,, and thus defines an embedding ¢y, :
Zy @ Ly — Znym of the corresponding double coset spaces. However, the map ¢y, is not
a homomorphism of algebras. This is because the multiplication maps are defined with the help
of projectors, which are different for gl,, ® gl,, and gl ,,,.

However, as we will explain now we can control certain differences between the two multi-
plication maps. Let V,, ,, be the left ideal of the algebra Z, ., generated by elements z;, with
i=1,....,nanda=n+1,...,n+m; let V;L’m be the right ideal of the algebra Z,1,, generated
by elements z,; withi=1,...,nanda=n+1,...,n+ m.

Write any element A € Q4 (the positive cone of the root lattice of gl,,,,) in the form
A =7 Arer. The element A can be presented as a sum

A=+ )\ (4.20)

where )\ is an element of the root lattice of gl, & gl,,,, and X" is proportional to the simple root
en —ens1: X =D 00 Noey with S50 AL =30 X, =0 and X' = c(en — ent).

Lemma 4. The left ideal Vym C Zptm consists of images in Zpim of sums Y, XiaEia with
Xia€Anym,i=1,....nanda=n+1,...,n+m.

The right ideal Vi, C Zptm consists of images in Zpym of sums Y . Fq;Ya; with Yo, € A,
t=1,....nanda=n+1,...,n+m.

Proof. Present the projector P for the Lie algebra gl as a sum of terms

n+m
R e VR €y, (4.21)

where ¢ € U(h), v1,...,v and 71, ... .7y are positive roots of gl .. For any A € Q4 denote
by Py the sum of above elements with 41 +--- 4+~ =] +---+7, = A. Then P = ZA6Q+ P.
For any X,Y € A define the element X ¢, Y as the image of X P\Y in the reduction algebra.
We have X oY = daeq, X Y.

For any X € Ajvm,i=1,...,nanda=n+1,...,n 4+ m consider the product X oy z,.

The product X ¢y 2, is zero if X # 0 (the component \” is defined by (4.20)). Indeed, in this
case in each summand of Py one of ey, isequal tosome ej,, j =1,...,nand b =n+1,...,n+m.
Choose an ordered basis of ny which ends by all such ej;, (ordered arbitrarily); any element
of U(ny) can be written as a sum of ordered monomials, that is, monomials in which all such ey,
stand on the right. Since [ej, Eiq] = 0 for any 4,5 =1,...,nand a,b=n+1,...,n+ m, the
product ev;c/Em belongs to the left ideal Lr and thus X oy ziq = 0 in Zp4m.
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If A = 0 then generators of ny in monomials entering the decomposition of Py are among
the elements e;;, 1 <7 < j < n, and ey, n+1 < a < b < n+ m and thus their adjoint
action leaves the space, spanned by all Fy,, ¢t = 1,...,n, a = n+1,...,n + m invariant, so
X ©) ziq can be presented as an image of the sum Zjb XjpEjp, with Xy, € Apim,i=1,...,n,
b=n+1,...,n+m. Thus, the left ideal, generated by all z;, is contained in the vector space
of images in Z;, 1, of sums Zjb XipEjp.

Moreover, for any X € An+m the element X ¢z;, is the image of X Eia+zj b j<i. b>a x (4b) Ej
for some X and the double induction on i and a proves the inverse inclusion.
The second part of lemma is proved similarly. |

Corollary 5. We have the following decomposition of the free left (and right) U(h)-modules:
Zotm = Lnm ®UD) - tnm(Zn @ Zm), (4.22)
where Iy m = Viom + Vi,

Proof. The double coset space Z, 1, is a free left and right U(h)-module with a basis consisting
of images of ordered monomials on elements F;;, 7,7 = 1,...,n + m; recall that we always use
orders compatible with the partial order < on h* see (c) in Section 3, paragraph 2. We can
choose an order for which all ordered monomials are of the form XY Z, where X is a monomial

on Fy; withi=1,...,nanda=n+1,...,n+m, Z is a monomial on F;, withi=1,...,n and
a=n+1,...,n+m while Y is a monomial on F;; with¢,7 =1,...,noré,j=n+1,...,n+m.
Then we apply the lemma above. |

For a moment denote for each k£ > 0 the multiplication map in Zg by o4 : Zp ® Zx —
Zy (instead of the default notation o, see (3.1)); denote also for each k,I > 0 by o ;) the
multiplication map o) ® o) in Zg ® Z;.

Proposition 6. For any x,y € Zy ® Zy, we have

Ln,m(x) O(n+m) Ln,m(y) = me(l’ O(n,m) y) + 2,
where z is some element of Jp m = Vi m N V;Z7m.

Let b, and b, be the Cartan subalgebras of gl, and gl ,, respectively. Denote the space
Zn @y, U(h) OU(y) Lm by U(h) - (Zn ® Zp). The composition law o(, ,,) naturally extends
to the space U(h) - (Z, ® Zy,) equipping it with an associative algebra structure (we keep the
same symbol o(,, .,y for the extended composition law in U(h) - (Zn ® Zyy,)). Also, the map tnm
admits a natural extension to a map iy, : U(h) * (Zn ® Zm) — Zntm denoted by the same
symbol and defined by the rule ty (1) = @iy m(z) for any ¢ € U(h) and x € Zy,, @ Zp,.
The statement of Proposition 6 remains valid for this extension as well, that is, one can take
2,y € U(h) - (Zn, ® Zy,) in the formulation.

Proof of Proposition 6. Denote by P, ,, :== P,,®F,, the projector for the Lie algebra gl,,®gl,,.
It is sufficient to prove the following statement. Suppose X and Y are (non-commutative)
polynomials in F;; with ¢, = 1,...,n Then the product of  and y in Z,,1,,, coincides with the
image in Z;, 4, of X P, Y modulo the left ideal V,, ,,, and modulo the right ideal V%m)
Due to the structure of the projector the condition \” = 0, see (4.20), implies that the product
X o) Y related to gl,, @ gl,,, coincides with product X ¢y Y related to gl
Let now A" # 0. Then each monomial e ---e

n+m:

5, n the decomposition of Py, see (4.21),

contains generators e;, with ¢ € {1,... ,n}anda € {n+1,...,n+m}; these e;, can be assumed to
be right factors of the corresponding monomial (like in the proof of Lemma 4). The commutator
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of any such generator e;, with every factor in Y is a linear combination of the elements F;, with
je{l,...,n}and be {n+1,...,n+m}. Moving the resulting Ej;, to the right we see that the
product X o, Y is the image in Zj{, of an element of the form ) . X Y, where each Y, belongs
to the left ideal of A, 4., generated by Ej, with j € {1,...,n} and b€ {n+1,...,n+m} (one
can say more: each Y can be written in a form Zj,b YS(] b)Eﬂ, where each YS(J 2 € A, does
not involve generators E., with k € {1,...,n} and c€ {n+1,...,n+m}; we don’t need this
stronger form). Thus, due to Lemma 4, X 0\ Y € V,, .

Similarly, each X participating in the sum ) XY, see above, belongs to the right ideal
of Ap+m generated by the elements Ep; with j € {1,...,n} and b € {n+1,...,n+ m}. So,
again by Lemma 4, X o\ Y € V], .. [ ]

Suppose that we have a relation

Z Ak O(n,m) b =0, (4.23)
k

where all a; and by are elements of Z, ® Z,,. Then, due to Proposition 6, we have the following
relation in Zyqpm:

Z Ak ©(m-+n) Ek =z, (4.24)
k

where G = tnm(ar), b = tnm(bg) and z € Jym = Vim0 Vim-
On the other hand, suppose we have the following relation in Z,4y,:

Z ag O (m+n) Bk =u, (4.25)
k

where all aj and by are elements of Z,, ® Z,,, ar = tnm(ak), by = tnm(by), and u € Iy, =
Vom + V;l’m. Then the elements aj and by satisfy the relation (4.23) and u € J,, . Indeed,
suppose that the relation (4.25) is satisfied and }_; ax O, m) b = v for some v € Z;, ® Zyy,. It
follows from Proposition 6 that ) 3, @x0(y4-n) bk — ¥ belongs to Jy, ;; here ¥ = 1y, (v). Then (4.25)
implies that v € I,,,, and thus ¥ = 0 due to Corollary 5. Thus v = 0, since the map ¢, »,, is an
inclusion, and w € Jy, 1.

We refer to the implication (4.23) = (4.24) as stabilization. Call cutting the (almost inverse)
implication (4.25) = (4.23) which can be understood as a procedure of getting relations in
Zn @ Zny, from relations in Z,4n,; we say that (4.23) is the cut of (4.25). Clearly all relations in
Zy, ® Zy, can be obtained by cutting appropriate relations in Zi, 4.

Let mpm : Zntm — U(H) - (Zy, @ Zy,) be the composition of the projection 7, of Zy 1y, onto
nm(U(B) - Zn, @ Zin) = UD) « tnm(Zn @ Zp,) along I, m,, see (4.22), and of the inverse to the
inclusion ¢y, y,:

Togm = tym © Tnm-
We have the following consequence of Proposition 6 and Corollary 5.

Proposition 7. Let x be a central element of Zpim. Then mpm(x) is a central element of

U(b) : (Zn & Zm)-

Proof. Denote X = m,, y,(z). Then, by definition, z = i, (X) + 2, where z € I, ,,. Since z is
central, it is of zero weight; so X and z are of zero weight as well. Thus each monomial entering
the decomposition of z contains both types of generators, E,; and F;,, where i € {1,...,n} and
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a€{n+1,...,n+m}, which implies that z € Jym = Vim NV}, ,,. Take any YV € Z, ® Zp,.
We now prove that X o, ,,,) Y — Y ¢(;, ) X = 0. Denote y = tnm(Y). Due to Proposition 6,

Ln,m(X ©(n,m) Y-Y (n,m) X) = (LL’ - Z) C(m+n) Y = Y O(m+n) (SU - Z) + Z/, (4'26)

where 2" € Jpm = Vi N V;L’m. Since z is central in Zyyy,, the right hand side of (4.26) is
equal to

Y Om+n) # — ZC(m+n) Y + Z/,

which is an element of I, , = Vi m @© V3, ,,, since z, 2" € Jpm. On the other hand, the left hand
side of (4.26) belongs to U(h) * tnm(Zn ® Zp). Thus, by Corollary 5, both sides of (4.26) are
equal to zero and X o(;, ) Y — Y 0, ) X = 0 since the map ¢y, is injective. |

The map 7, obeys properties similar to those of the Harish-Chandra map U(g)" — U(h)
(U(g)" is the space of elements of zero weight). For instance, its restriction to the center of Z,
is a homomorphism. More precisely, if = is a central element of Z, 1, then

Wn,m(x O(m+n) y) = 7Tn,’rn(x) O(n,m) 7"-n,m(y) and

(4.27)
T, (Y C(m+n) ) = Tpm(Y) O(n,m) Tn,m (z)

for any y € Zp4m. Indeed, let X = 7, (2), Y = mpm(y). Then

T = tnm(X)— 2, y=tnm(Y)—u,

where u € I, ,,, while, as it was noted in the proof of Proposition 7, z € J,, ,,. Moreover, it is clear

. . - , f ] .
that z can be written in the form z = ) 2, z,, where 2, € Vy,, and z, € V], . (for instance,

use the order as in the proof of Corollary 5). Then (dropping for brevity the multiplication
symbol ©(,;,4.,)) we have

tnm(X)inm(Y) = (2 +2)(y +u) = (‘r +2 ZZﬂa) (y+7 +3)

=zy + Z iz, (y+ 7 +2) +zz+Fr=2y mod I, . (4.28)
a

Here Z € Vy, , and 2’ € V{n,m' In the last equality we used the centrality of z. Due to Proposi-
tion 6, (4.28) is precisely equivalent to the fist part of (4.27). The second part of (4.27) is proved
similarly.

5 Proofs

5.1 Tensor J

The multiplication map ¢ in Z, (we return to the original notation) is given by the prescrip-
tion (3.1), as in any reduction algebra. It can be formally expanded into a series over the root
lattice of certain bilinear maps as follows. Set

U(bs) == U(h) @y Ulbs), T (b) := U(b-) @, Ulbs).

All these are associative algebras. Besides, both algebras U(b.) are U(h)-bimodules. The alge-
bra Um(b) admits three commuting actions of U(h). Two of them are given by the assignments

XY®2)=XY®Z (Y®Z)X:=Y®ZX,
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for any X € U(h), Y € U(b_) and Z € U(b;). The third action associates to any X € U(h),
Y®Zc Um(b) the element YX ® Z =Y ® XZ € Ulz(b).
Present the projector P in an ordered form:

P = Z FyibyiHy = Z Hy i F i By (5.1)
V5t vt

the summation is over v € Q4 and i € Z>q; every Fw is an element of U(n_) of the weight —,
every E,; is an element of U(n;) of the weight v and H,; € U(h). Let J be the following

element of U'” (b):

J:= ZF'Y’i & E%ﬂ;’%i = ZH'y,iF’y,i ® E%i, v € Qy, @€ Z>o.
V5% V5%
Due to the PBW theorem in U(gl,,) the tensor J is uniquely defined by the projector P; it is of
total weight zero: hJ = Jh for any h € h. We have the weight decomposition of J with respect
to the adjoint action of b in the second tensor factor of Um(b):

I=p I

AEQ+

where J)y consists of all the terms, corresponding to FMEMHM in (5.1) (contributing to A € Q4
in the summation),

Jy = ZF)\71' ® EA,iH)\,i-
%

By definition of J, the multiplication ¢ in the double coset space Z, can be described by the
relation

acb=m((a®1)J(1®1D)), (5.2)

where m(}_; ¢; ®d;) is the image in Z,, of the element ), ¢;d;. Moreover, in (5.2) we can replace
EEH products Ew-b in the second tensor fac:cor by the adjoint action of ELYZ on b (in fact, for
Eyi = ey, ey, we can replace E, ;b by [E,;, ] or by €, -+ é,,(b), see (2.4)) and likewise all
products afF ; in the first tensor factor by the opposite adjoint action of F,; on a. We have
a decomposition of the product ¢ into a sum over Q:

aob= Z aoy b, where aoyb:=m((a®1)J\(1®D)). (5.3)
AEQ4+

If a and b are weight elements of Z,, of weights v(a) and v(b), then the product a o) b is the
image in Zj, of the sum ), a;b;, where the weight of each b; is v(b) + A, and the weight of each a;

is v(a) — A\
The tensor J satisfies the Arnaudon-Buffenoir-Ragoucy—Roche (ABRR) difference equa-
tion [1], see also [5] for the translation of the results of [1] to the language of reduction algebras.
To describe the equation, let ¥ = % py hi € U(h); for any positive root v € Ay, denote by T,

the following linear operator on the vector space ﬁm(b):
T(X®Y):=Xe_,®e,Y.

The ABRR equation means the relation [1, 5]:

Led,J=- Y T,J)

YEAL
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This relation is equivalent to the following system of recurrence relations for the weight compo-
nents Jy:

Iy <EA + (A’;)) == > T, (I, (5.4)

YEAL

where hy = >k Mohy for A = > & Meck- The recurrence relations (5.4) together with the initial
condition Jp = 1 ® 1 uniquely determine all weight components Jy.

It should be noted that the recurrence relations (5.4) provides less information about the
structure of the denominators (from U(h)) of the summands of the extremal projector P than
the information implied by the product formula (see [3]) for the extremal projector.

Using (5.4) we get in particular:

Jo = —(ha+1)""e o @ ea, Q= ¢&; — &y, (5.5)
Jotp = (hass+1)7 <—€—a—6 ® €arp + (ha +1)7'e_at s ® egea

+(hg+1) e ge_0® eaeg), a=¢ei_1—¢i, B=c¢i—¢cit, (5.6)
Jei—cjten—e = Jei—e; * Jep—eys i<j<k<l. (5.7)

5.2 Braid group action

The proof of the relations (4.1) and (4.4) consists of the following arguments, valid for any
reduction algebra. Let o be any simple root of gl,,, & = ¢; — ;41 and g, the corresponding sly
subalgebra of gl,. It is spanned by the elements e, = €;;41, e—a = €i414 and ho = h; — hiy1.
Let 6, = &; be the corresponding automorphism of the algebra A and §, = §; the Zhelobenko
automorphism of Z,. Assume that Y € A belongs, with respect to the adjoint action of g,, to
an irreducible finite-dimensional g,-module of dimension 2j + 1, 7 € {0,1/2,1,...}. Assume
further that Y is homogeneous, of weight 2m, [hq, Y] = 2mY . Identify YV with its image in Z,.
Then ¢, (Y) coincides with the image in Z,, of the element

j+m j+m
I ha+i+1)-6a(¥): [] (ha—i+1)7"
i=1 =1

This can be checked directly using [6, Proposition 6.5].
In the realization of irreducible sly-modules as the spaces of homogeneous polynomials in two
variables u and v,
— ho — 0 d —
e U—— U — V= an e v—,
¢ ov’ ¢ ou ov “ ou
the operator &, becomes (G4f)(u,v) = f(—v,u), or, in the basis |7, k) := 27T%y7=F (j labels the
representation; k =0,1,...,25),

Got g =i+ k)= (=1)F5,5 — k).

Proof of Lemma 1, Subsection 4.2. To see this, write a reduced expression for ¢, Guw, =
Aaiy = Aoy, with a;,, ..., o;,, simple roots. Then ., = Qaiy, oy, 38 well. Writing, for q%UO,
the second expression after the first one, we get squares of dq, ’s (which are conjugations by
iz;il ’s; they thus commute) one after another. Moving these conjugations to the left through
the remaining {’s, we produce, exactly like in the construction of a system of all positive roots
from a reduced expression for the longest element of the Weyl group of a reductive Lie group,
the conjugation by the product (4.8) over all positive roots. |
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Proof of Proposition 2, Subsection 4.2. Only formula (4.9) needs a proof (formula (4.10)
is a particular case of (4.3)).

For a moment, denote the longest element of the symmetric group S, by qg?. Let 1; =
d;dj—1---d1 (the product in the descending order). We have qﬁlf)“) = q&fg)zpn and q%ﬂ) =
P11 - - -1y, (the product in the ascending order).

For j < n it follows from (4.4) that 1j(2n411) = (=1)72p41,j41 (say, by induction on j). So,

Qbn(zn—i-l,l) = QTLwn—l(zn—i-l,j—i-l) = (_1)n_1Qn(zn+1,n) = (_l)nzn,n+1a

again by (4.4). Next, Yp¥rt1 - Yn—1(Znn+1) = Zkn+1 by induction on n — k and again (4.4).
Thus,

Auo (2n+1,1) = (=1)" 21041, (5.8)

establishing (4.9) for i = n+ 1 and j = 1. We now prove (4.9) for ¢ > j (positions below the
main diagonal) by induction backwards on the height i — j of a negative root; the formula (5.8)
serves as the induction base. Assume that (4.9) is verified for a given level i —j and i—j—1 > 0
(so that the positions (i,7 + 1) and (¢ — 1,j) are still under the main diagonal). By (4.4),
i j+1 = —q;(2i;), therefore

Quo (Zij+1) = —Guo (Q5(2i5)) = —Ajr—1(Guo (2i5))

= (=1 [ 205 [T Aar T] A

a:a<i! b:b>j5'
_ i+j+1
= (=1 094y ] Aer T] Aj—10
a:a<i’ b:b>j’
_ i+j+1
= (=17 2y 11y H Agir H A1) b
a:a<i’ b:b>(j+1)

In the second equality we used the identity §u.,dq; = {j/—1Gw, in the braid group; the third
equality is the induction assumption; in the fourth equality we used that i # j/ — 1 (since
i—j—1>0) and then (4.4); in the fifth equality we replaced ;' — 1 by (j +1)". The calculation
for Gug (zi—1,5) is similar; it uses z;—1; = q;—1(2i;). The proof of the formula (4.9) for positions
below the main diagonal is finished.

The proof of (4.9) for ¢ < j (positions above the main diagonal) follows now from Lem-
ma 1. |

5.3 Derivation of relations

The set of defining relations in Z,, divides into several different types, see Section 4.3. We prove
the necessary amount of relations of each type and get the rest by applying the transformations
from the braid group as well as the anti-involution €, see (3.7).

We never use the automorphism w, defined in (3.8), in the derivation of relations. However,
the involution w is compatible with our set of relations in the sense explained in Section 5.4.

In the following we denote by the symbol = the equalities of elements from A modulo the sum
(I_ +1;) of two ideals I_ and I, defined in the beginning of Section 3. Moreover, for any two
elements X and Y of the algebra A we may regard the expressions X ¢Y and X ¢, Y as the sums
of elements from A defined in (5.2) and (5.3). The sum X o, Y is finite. By the construction,
all but a finite number of terms in the product X oY belong to (I_ +1,). Unlike to the system
of notation adopted in Section 3, our proof of each relation in Z, will use equalities in A taken
modulo (I_ + I;).
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We also use the notation H; for the element E;; € A and H;; = H; — H; = Ey; — Ejj.
1. We first prove in Z,, the relation

];23
212 ¢ 213 = 2130 212 (5.9)

has +1

Elements z15 and z13 are images in Z, of Fs and Fy3. Consider the product Fis o) Fi3. Since
the adjoint action of gl,, preserves the space p, see Section 2, this product is the sum of such
monomials E;; Ey;, with coefficients in U(h), that (i): the weight e — &; of Ej; is equal to the
weight €1 — e3 of Ei3 plus A € Q, while (ii): the weight &; — €, of Ej; is equal to the weight
g1 — g of Fyo minus \. Assume that Ejo o) E13 # 0. By (i), A = —e1 + €3 + & — g and it can
be positive only if £ = 1 and [ > 3. So, the condition (i) implies that either A =0 or A = €3 — ¢;
with [ > 3. The possibility A = e3 —¢;, [ > 3, is excluded by the condition (ii). Therefore, A =0
and

E12 < E13 = E12E13. (510)

Similarly, for A € Q4, which can non-trivially contribute to the product E13¢ E12, the analogue
of the condition (i) on the weight X\ gives the restriction A = 0 or A = g9 —&y, k > 2; the analogue
of the condition (ii) further restricts \: A =0 or A = g2 — €3, so we have

1 1 1
E130c, 5 F12 = —Fi3e32e23 Eo = —Ei3espea3F1o+— = Eio B3+,
23 + 1 23 has3
since Jo,—eq = —€32 ® 623(;@3 +1)7! as it follows from the ABRR equation, see (5.5), or from

the precise explicit expression for the projector P, see [3]. Thus, since E12 and Ej3 commute in
the universal enveloping algebra

1
Ey30 By = Ei3Erg + i3 00y ey B2 = E1oEns (1 + h> ; (5.11)
23
Comparing (5.10) and (5.11) we find (5.9).
Applying to (5.9) the anti-involution ¢, see (3.7), we get the relation

;LQg +1
291 © 231 = 231 ¢ 221 — . (512)

23

The rest of the relations (4.12) are obtained from (5.9) and (5.12) by applying different
transformations ¢, from the Weyl group.
2. Now we prove in Z, the relation

1 1
21390 294 — 294 ¢ 213 = <Q — Q> 293 € 214. (5.13)
hi2  hs3a
We begin by the proof of this relation in Z4. We proceed in the same manner as for the derivation
of the relation (5.9),

Er3 0 By = F13F2 + E13 06—y Foy

1 1
= Fi3b94 — Fizezreins Eyy = Fi13Foy + Eoz g+,
his+1 hi2

Eo4 0 B3 = Eoy B3 + Eoy 0cy—¢, Fh3

1 1
= FEoyE13 — Easeqzess Eh3 = F13FEoy + Bz g+,
hss +1 h3a
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Eo3 0 14 = Eo3FEn4.

Combining the three latter equalities we obtain (5.13) in Za.

The difference of the left and right hand sides of (5.13) in Z, is a linear combination of
monomials in z;; of the total weight e1 +¢e2 —e3 —e4. The weight is non-trivial, so the monomials
can be only quadratic. Due to the stabilization phenomenon, each monomial should contain z;;
with ¢ > 4 or j > 4, but, by the weight arguments, there is no such non-zero possibility, which
completes the proof of the relation (5.13) in Z,.

The rest of relations (4.13) is then obtained by applications of the transformations from the
braid group.

3a. We continue and derive in Zy the relation (we remind the notation t;; := z;; — 2j;, see
Section 3, and Hij = En — Ejj)i

1 1 haa + 1
2930212 — 21290 223 = 11290 213+— + 1230 213+— — 2430 214 034 s . (5.14)
12 23 haahoy
Using (5.5)—(5.7), we calculate, to obtain the result for Zy4:
E19 0 Eog = F1oFo3 + E19 06y oy B3 + 12 0¢) —cptes—eq F23
1
= Eolbas — HigE13+—, (5.15)
12
Ea3 0 Fo = FozFio + E93 0cy—c3 B2 + F230c, ¢, E12
1 hos — 1
= Fo3E19 + HozsFi3+— — E43E14w7 (5.16)
has 23hoy4
Hip 0 E13 = HioE13+ Hi2 0c5—c, Er13 = Hi2E13, (5.17)
1
Haz ¢ Fh3 = HozFh3 + Hag 0cy oy B3 = HozFh3 + B3 B4+, (5.18)
34
E43 < E14 = E43E14. (5.19)

Combining the above equalities and taking into account that [E1a, Eas] = ej3 = 0, we get (5.14)
in Z4. We could apply here the stability arguments (as we shall do in the sequel) but we give
some more details at this point to give a flavor of how such derivations of relations work. For
the same, as (5.15)—(5.19), calculations for Z,, the analogues of the conditions (i) and (ii), see
paragraph 1 of this subsection, restrict A to be of the form e; — g9 + €3 — €k, k > 3 for (5.15);
g9 — €k, k > 2 for (5.16); e3 — ek, k > 3 for (5.17) and (5.18); 4 — &g, k > 4 for (5.19). It
follows, for, say, n = 5, that the right hand sides of (5.15)—(5.19) might be modified only by an
addition of the term proportional to F53F15; and this will be compensated by an addition of the
term, proportional to zs3 ¢ 215 to the right hand side of (5.14), since Es3 ¢ E15 = Es3FE5; the
proportionality coefficient is uniquely defined. This pattern clearly continues and we conclude
that there is a relation in Z,, of the form

1 1
2930 212 — 2120 293 = 1120 2135— + 1230 213+— — E 213 © 215Xk, (5-2())
12 23 >3

with certain, uniquely defined, coefficients X; € U(h), k = 4,...,n, and already known X4 =
(;L34—|—1);L§41;L2_41. To find X5, ..., X, we apply to (5.20) the automorphisms qx, k = 4,...,n—1,
which leave invariant the left hand side and the first two terms in the right hand side of (5.20).
The uniqueness of the relation of the form (5.20), together with the equality Qi (zxs © zolk) =
241,39 21 k1 (ke ot 1 + 1)h,;i+1, imply the recurrence relation Xy 11 = qi(Xg) - (hg g+1+ 1)h,;i+1
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and we find

1 5 b+t

o

Xk ==
h2k j=3 h]k

After the renormalization (4.11) and the change of variables (4.2), the derived relation be-
comes one of the relations in the first line of (4.14).

Applying the transformations from the braid group, we obtain the rest of the relations from
the list (4.14).

3b. We have the following equalities in Zs:

his + 2 1 hos + 1
2120751 :t1<>212012+ —t2<>2120 —23202’13#, (5.21)
hiza +1 hia +1 haz(hi3 + 1)
1 hia + 2 his + 2
2120ty = —t1212 + 190 219 12 + 2392 ¢ 21301;)7, (5.22)
hia +1 hia +1 haz(hi3 + 1)
and the equality in Z4:
hia + 1
2120ty =140 219 — 242 C 214— 12 1+ (523)

(hig + 1hag

Equalities (5.21) and (5.22) are the results of the following calculations for Zs, using (5.5)—(5.7),
and of the commutativity [Hi, E12] = e12 = 0, [Ha, E12] = —e12 = 0:

1 ;L12
Eip0 Hy = FioHy + HioFE2+ — B3 F13— - ;
hig+1 (hi2 +1)(h13+ 1)
1 1
Ei9 0 Hy = F1oHy — Hi9E12+ — B3 F13— s ;
hi2 +1 (12 +1)(h13 + 1)
1
Hy o Fyp = HiF1a, Hy o E19 = HyF19 — B3 F3+—, E3p ¢ F3 = E3oFq3.
23

The derivation of (5.23) can be done with the help of the following calculations for Zj:

Eip0 Hy = E1gHy + EggFEr4- ) (5.24)
his+1
1
Hyo Ei9g = HiFq2 + E42E14}0L*, Eyp 0 E14 = EgoFna.
24

We shall make a comment about the line (5.24) only. Here one might expect, by the ana-
logues of the conditions (i) and (ii), see paragraph 1 of this subsection, non-trivial contri-
butions to Fis ¢ Hy from the weights 0, €1 — g2, €1 — €3 and €1 — €4. So we need, in ad-
dition to (5.5)-(5.7), some information about J.,—.,. It follows from the ABRR equation
that Je, e, <h14 + 1) = -1, (J€2—€4) — Tei—es (J63—64) —Tey—y (JO) — Tey—es <J€1—€2+€3—€4) -
Tey—ey(Jei—ey) — Teg—ey(Joy—e5). Since ez and ejz commute with Hy, the parts To, o, (Jo,—c,)
and Tz, ¢, (Jz,—c5) do not contribute; eqo and eq3 commute with Ej9, so the parts Tz, ¢, (Jey—c,)
and T, -, (Je3—c,) do not contribute either; Jo, _cyyeq—c, = Jey—eyde;—e, does not contribute
again since eja commute with Hy. Thus the only contribution is from T, ., (Jo) and we quickly
arrive at (5.24).

Applying the automorphism s of the algebra Z4 to the relation (5.23), see (4.1) and (4.4),
we find
h3s(hi2 + 1)

z12 © t3ib34 —t4) = t3i134 —t4) 0212 — 2320 2133 .
( )= ) (h13 + 1)ha3
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We then add (5.23) to this relation and obtain the following relation in Zy4:

(hia +1) hia + 1
242 © 214 S 3 .
(h14 + 1)hoghsy

212 ¢ t3 =130 212 — 232 ¢ 213 (525)

(h13 + 1)523

The stabilization arguments for (5.21), (5.22) and (5.25) imply the existence of the following
relations in Z,,:

hig + 2 1
2120t =11 ¢ 212 12 — 120 2123 + Z Zk2 <© ZlkX]gl), (526)
12+1 hie+1 15
1 hio + 2
212 Oty = —1t1 ¢ 212 + 120 2123 12 + Z 2k © ZlkX]?), (5.27)
12+1 hiz+1 15
hia +1 3
z120t3 =130 212 — 232 © 2130(7> + Z 2k © zlkX,i ), (5.28)

(h13 + 1)%23 =3
where all X,ii) belong to U(h) and the initial X,gi) are known:

has + 1 hiz + 2 hiy + 1
X?El) _ ezt X§2) _ 13 + x® _ _ 12 +

has(hiz + 1)  hag(hs+ 1) * (hia + Dhoshss

By the braid group transformation laws, X,gi)rl = qx (X,gi)) . (lc’zk7k+1 + l)ﬁlziﬂ with k& > 2 for
i=1,2 and k > 3 for i = 3, so that

k—1 ¢ Q k—]. 7
KU _ _ 1 hji +1 @ _ hig +2 hjr +1
P 3 s ) k. — /¢ 7 7 )
hig + 155 hye (ha + Dhow 525 Dk
o k13
X(3) _ hig+1 hjk +1
@ _ )

(hag, + 1) horhay pator Bk

After the renormalization (4.11) and the change of variables (4.2), the relations (5.26)—(5.28)
turn into the relations (4.16) for i =1, j = 2 and k = 3.

Applying the transformations from the braid group, we obtain the rest of the relations from
the list (4.16).

4a. We now prove the relations (4.17) using the arguments similar to [10, Subsection 6.1.2].
Consider the products Hpoy H; and Hjoy Hp with A # 0. These products are linear combinations,
over U(h), of monomials

Ay = Hpe_ - ey ey, - ey H and .y = Hie_y - e ey, ey Hg,

respectively; here m > 0 and 7 := {71, ...,%m}. By construction, the coefficient, from U(h), of
the monomial ay;.y in Hy, o\ H; equals the coefficient of a5 in H; o) Hy. The expressions a5
and a5 are both equal in Z, to

(71, €x) (71, 5Z)E—W1e—72 R R S S

Thus Hy o) Hy = H; o)\ Hy, for any A # 0. In the zero weight part ¢g of the product ¢ we have
the equality HyH; = H;H}, as well. Therefore, Hy © H; = H; o Hy,.

4b. The last group (4.18) of relations is left. Like above, we first explicitly derive the
following relation in Zg:

1 hia — 1) (hig + 2
212 ¢ 291 = h12 —t120t12 + 291 ¢ Z12( 13 o)( 12 )
hia —1 hia(hi2 + 1)
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hia — 1)(his + 2 hos + 2
+ 231 ¢ 2’13( 012 S )o( 13 ) — 2329 22302370 (5.29)
hi2ho3(hi3 + 1) (haz + 1)hi3

(the first term in the right hand side is hj2, without hat). The relation (5.29) is a corollary of
the following calculations for Zs, together with the commutation relation [Ej2, Fo1] = hi2,

1 2
Fi90 Ey1 = E19FE9 — H12207 + By Fig———
(h12 — 1) (hiz — 1)h12
hiy — 2 hiy — 2
— EgpFyy—— " 4 By By~ (5.30)
(h12 — 1)hi3 (h12 — 1)hi2his
1
Hy o Hip = Hy — Fay1 E1g- — E39Fo3+
2 hia +1 hog +1
1 4 1
+ E51Fq3 (—1 + = + 3 ) 5 , (5.31)
hag+1  hi2+1/ hizg+1
1
Eo1 0 B9 = Eo1 B — E31 F13+—, (5.32)
23
1
E39 0 B9z = FE3oF93 — E31 13+, (5.33)
12
E31 0 B3 = Es1Eqs. (5.34)

Here only the calculation of Fi9 ¢ Fo1 deserves a little explanation; by the analogues of the
conditions (i) and (ii), see paragraph 1 of this subsection, non-trivial contributions to E13 ¢ Fa;
from the wgights 0,e1—e2,2(e1—¢2), e1—e3 and 261 —e9— €3 are p0551b1e By the ABRR equation,
J2(51—€2)(2h12 + 4) = _T€1—€2(J51 52) and Joe)—eo— 83(2h1 - h2 - h3 + 3) ! 62(J€1 83) -
Tey—es(Jey—en) = Tey—es(Jo(e,—ez))- We leave further details to the reader.

By the stabilization law in Z4 we have a relation

+ ) zioz; Xy, Xi; € U(h) (5.35)

1<i<j<n

212 © 291 = h12 — t12 0 t12 1

with n = 4, which differs from (5.29) by a presence of terms

243 © 234, 242 © 224, 241 © 214,

with coefficients in U(h). Consider in Z4 the products 2120291, t120t12 and 2jiozij, 1 <1< g < 4.
The weights (€3 — e4) — (¢; — €5) do not belong to the cone Q4 if 1 < i < j < 4. Thus in the
decomposition

Ejio Eij = ZElkEklakz, aw €Uh), 1<i<j<4,
k<l

the term with E43F34 has a zero coefficient, ag4 = 0. The same statement holds for the products
Ey1 0 E14 and Eyo ¢ Eay since the weights (e3 —e4) — (g, — €4) do not belong to Q4 for i = 1,2.
Consider the product Eq9 ¢ F91. Here tlge term witoh E43E34 is equal to E12 O¢) —cotes—eq Fo1.
By (5.7), Jey—epteq—cs = €a3ea1 @ e12e34(h12 + 1) (hga + 1)1 and

1
(h1a — 1)(hgs + 1)

E190c) —cotey—ey o1 = Ei2es3e21€12€34F01 — 0,

since [es4, E21] = 0 (and [E12, e43] = 0). In the similar manner, the term with Ey3F34 in H190Ho
equals Hia ¢¢,—-, H12 and vanishes since [ezq4, H12] = 0.
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On the other hand, the product E,3 ¢ F34 definitely contains Fy3F34 = F43 09 E34. We thus
conclude that the term z43 ¢ 234 is absent in (5.35), that is X34 = 0.

For n > 4, again by the stabilization law, we have a unique relation of the form (5.35).
By uniqueness, it is invariant with respect to the transformations s, q4,...,qn—1 Which do not
change the product 212 ¢ 221. Since X34 = 0, we find, applying d4,ds, ..., dn—1, that X3; = 0,
j > 3, wherefrom we further conclude, applying qs,d,...,q;—2, that X;; =0, 2 < < j. We
get finally the following relation in Z,:

1
2120 221 = h12 — tia o ty2 7 ! + Z 21 © 216 X1k + Z 22 © 2ok X2k (5.36)
12— k=2,...n k=3,....,n

with known

_ (ibm - 1)(iL12 +2) _ (il12 - 1)(iL13 +2) _ hos + 2
X12 - S S 5 X13 — ] ) S 5 X23 - =S 3% .
hi2(hi2 + 1) hi2ha3(hiz + 1) (ho3 4+ 1)h13

Applying to (5.36) the transformations ¢s, d4, - .., dn—1 we find by uniqueness

Mgt + 1 .
Xips1 = 2 qu(Xg), =12 k=34,...,n-1,
Pk k41
and thus
o . k-1 ¢ - k-1 s
X (h12 = 1)(hir +2) hak +1 hok + 2 har +1
k=~ : : , ok = ——s — - :
highor(hix +1) 55 hak (hor + Dhar 25 hak

for k > 2.
After the renormalization (4.11) and the change of variables (4.2), the relations (5.36) with
the obtained Xj; and Xk turns into the relation (4.18) for i = 1 and j = 2.

Applying the transformations from the braid group, we obtain the rest of the relations from
the list (4.18).

5.4 Proof of Theorem 3

For the proof of Theorem 3 we just apply the results of [7], which state that the system fR is
the system of defining relations once it is satisfied in the algebra Z,.

Remark 1. An attentive look shows that the system fR is closed under the anti-involution e;
that is, € transforms any relation from R into a linear over U(h) combination of relations from fR.
Moreover, R and €(R) are equivalent over U(h). Indeed, all relations in Section (5.3) were derived
in three steps: first we derive a relation in Z,, with n < 4; next by the stabilization principle we
extend the derived relation to Z, with arbitrary n; and then we find the whole list of relations
of a given (sub)type by applying the braid group transformations (products of the generators
Gi)- Due to (3.6) one could use 61;1 instead of ¢; equivalently over U(h). A straightforward
calculation establishes the equivalence of the extended to arbitrary n lists R and €(R) over U(h)
for Z,, with n < 4 (this verification is lengthy for some relations). Then with the help of (4.6)
we finish the check of the equivalence of R and €(9R) over U(h) for Z, with arbitrary n.
Similar arguments establish the equivalence of | and w(R) over U(h); here w is the invo-
lution defined in (3.8). In [7] this equivalence was obtained differently, as a by-product of the
equivalence, over U(h), of the system % and the system (3.3) of ordering relations.
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6 Examples: sl3 and sl,

In this section we write down the complete list of ordering relations for the diagonal reduction
algebras DR(sl3) and DR(sly). For completeness we include the formulas for the action of the
braid group generators and the expressions for the central elements.

We first give the list of relations for sls. It is straightforward to give the list for sls directly;
we comment however on how the list of relations and the expressions for the central elements
for s[(2) can be obtained by the cut procedure.

The list of relations for gl; follows immediately from the list for sls.

1. Relations for DR(sl3). We write the ordering relations for the natural set of genera-
tors z;;, without redefinitions. We use here the following notation for sls:

Za t= 212, 2B T 223, Za4B T 213,  R—a T 221, R—B = 223, R—a—-fB = 231,

to =112, tg:=t23, ho:=hia, hg:= hos.
The relations are given for the following order > (this order was used in the proof in [7] of the
completeness of the set of relations):

ZatB > Za = 28 =g =t = 2 > Zoq = Z_a-g. (6.1)

Due to the established in Theorem 3 and remarks in Section 4.4 bijection between the set R
and the set R~ of defining relations, one can divide the ordering relations into the types, in the
same way as we divided the defining relations from the list fR.

The relations of type 1 are immediately rewritten as ordering relations:

ZatB O Za = zaoza+5zgi, (6.2)

ZatB O 28 = 25<>za+5zz;|:i, (6.3)
ho +hg+3

20028 = z,gozahZ_FihZH, (6.4)

280 2—q = z_aozﬁm, (6.5)

ZeqOZqf = Z_q-3 O z_a};iﬁ, (6.6)

230 % qf =Z-q-BO%_8 ZZ i i (6.7)

The relations of type 2 are absent for sl3.
The ordering relations corresponding to the relations of type 3 we collect according to their
weights. For each weight there is one relation of subtype (3a) and two relations of subtype (3b).
Weight o + :
1
hg+1
o hah5+h%+2ha+6h5+9
Zot g Ot = z
B e e e T 4+ 2) (h + hg + 3)

1
ZQOZ/B = —ta02a+6m —tﬁozoﬁ_ﬁ —|—25<>za, (68)
(6%

h% + ho + 6hg +9 he + 2hs + 6

B (o B a+ ﬂ—’_

+t5¢ 24 — 28 Za , 6.9

Bt g+ 1) (hg + 2)(ha + hg +3) " (ha +2)(hs + 2) (6.9)
hs hg(hahs + b5 + 3ha + Thg + 11)

Zatp Olg =1a© Za+5( +150 201

h5+2)(ha+h5+3) (h5+1)(h5+2)(ha+h5+3)



28 S. Khoroshkin and O. Ogievetsky

Y20 2ha +hg +6
280 Za .
B (e + 2)(hg + 2)
Weight o
ot ty © o + 4 2_.302% ha+2hﬂ+6
Za fe% [e% a7 5 — R— « 9
ha+2 P s ¥ 1) (ha + b + 3)
ot t, o L e tzao 2ha + hy +6
Za = —lagC a7/ % o T 2= 2o y
A ha+2  F B2t (g £ 1) (ha + hg + 3)
. - hg — 1 e heo +2hg + 2
Za Z_g = —1tq ¢ 24 — Za
e ho(ha +hs+2) 77 "hg(ha +hg+2)

(hs +2)(hs — 1)

=+ 289 Za+B

hg(hg-i—l)
Weight S:
Oty =1q© tg o L o fia + 2hp + 6
a=lazZg — 27 & T A« a ’
6 BB e T T T R ) (ha + hg + 3)
I TR S e+ g + 6
VA = z Z_a 2y )
R YD) ™ (he + 1) (ha + hg + 3)
. foon 2hathyt2 he — 1
« —a = la z
Fatp @2 P halha+hs+2) 7 P ho(he + hs + 2)
(ha +2)(ha — 1)
T s et 1)
Weight —g:
to © ot ot 1 o o + 2hp + 3
o —B = ~— a T Z— 7 T R—a-— 2o )
BT h P s P75 ey + 2) (hey + g + 2)
o ot h5+2+ o 2ha +hg +6
—B — <= Z—a— Zo ’
BOEp=EHON8 P77 hey + 2) (he + hp + 2)
. op_ Phathgt2 ha
o —a—f8 = Z— o Z_
T A e e Y (hat hg + 1) P P (he + 1) (he + hp £ 1)
ha(ha + 3)

B O R Y (e + 2)

Weight —a:
to © ot fra + 2 z oz ha + 25 + 6
Zeq =2 — —Z_a- :
aF e st ley P75 (hg + 2)(ha + b + 2)
o ot 1 n ot o 2ha +hg +3
—a = R—alaT— —a —a— Z )
pos ‘ he | OB e O G 0 (he + g + 2)
o ot hs ot ha + 25 + 2
23O Z—q—p = TR—a Cla — Z-a
’ ’ (hg +1)(ha + hg+1) (g + 1) (ha + hg +1)
hg(hg + 3)
tZa-p 028 (hg +1)(hg + 2)’
Weight —a — 3:
1
Z.30%aq= "2 aq pOtlaT— —2Z_qpolg— t2 002 g,

ha hg

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)
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hohg + h% + ho + 3hg + 3 h% + ho + 4hg + 3
ta 02 q—8 = 2_aq-p3°tla b b b + 2z a-pots i o
(hg +1)(ha + hg+1) hg(hg +1)(ha + hg + 1)
ha +2hg +3
a0 , 6.24
T e+ D)(hg + 1) (6.24)
hg —1

t3o 2 _q-B=2%2_aq_8%ty
B Fmah = Fra B Ot T (ha + hp + 1)

(hg — 1)(hahg + h3 + 2ha + 4hg + 3)
hg(hg +1)(ha + hg + 1)

2ho +hg+3

(ho +1)(hg+ 1)

+ 2 a-pots

+2_ 0028 (6.25)

Finally, we rewrite the relations of the type 4, that is, of weight 0, in the form of ordering
relations. In addition to the general commutativity relation (subtype (4a))

tg oty =ty 0tg, (6.26)
we have three relations of subtype (4b):

halho +3) hs +3
T (hg + 2)(ha + hg + 2)

1
O 2eg=hgy =ty Oty — 0o
Fo® 2o = fla —ta oy 2ma O 2ol TN G T

ha(ha+h5+4)
ho +1)(hg + 1)(ha + hg +3)’

ho + 3 o on, halhs +3)
(ha+2)(ha+hs+2) " 77 Plhg+1)(hs +2)
hﬂ(ha-i-hg—i-ll)

+ 2 0B 2atp ( (627)

1
230 zZ_p :hlg—tﬁotﬁg—z,aoza

—a—B 9 Z%a , 6.28
T e O 2ot B G T (s 4 1) (ha & s 1 3) (6:28)
_ hahg(ha + hﬁ + 2)
B O manh T T ) (hp + 1)
hg he 1
—(taota 2, 2
(t ot h5+1+ t <>t5+t5<>t5ha+1> hot hy 1 (6.29)

ha(ha + 3) N hs(hs +3)
(ha + D)(ha +2)(hg+1) 27 P (g +1)(hs + 2)(ha + 1)
hahg(ha + hg +4)(h2hs + hah? + h2 + hohg + h3)
(ha + 1)%(hg + 1)2(ha + hg +2)(ha + hg +3)

—2_a 9 Za

+ 2_a—8 0 Za+pB

where in one factor in the numerator of the last coefficient we returned to the notation }ola =
ho +1 and iLﬁ = hg + 1 to make the expression fit into the line.

2. Relations for DR(gl3). The ordering relations for the reduction algebra DR(gl3) are
easily restored from the list (6.2)—(6.29): the gl(3) generators 1, t2 and t3, with t, = t; — 2 and
tg = to — t3, can be written as

1 1 1
t=3(2ta +15+ 16Dy g = S(tatts+ 16y, 4 = 5(—ta = 2t5+ 16:9),

where 13" is the image of the central generator of gl(3), I3 = t; + t5 4 t3. Since I3 is
central, one immediately writes relations for DR(gl;). We illustrate it on the example of relations
between the generator z, and the gl(3) generators t1, to and t3:

7ha+3—t271 — 2_8% g +2
hat2 hat2 TP hg+ 1)(ha + hs +3)

Zatl = tlza
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zt——tz7+tzw+z z ha+h5+4
a2 a2 P g2 O ) (he + hg + 3)
B, + 2

Zals = t3zq — 2_3% .
ot T e TRt B 1) (he + b + 3)

3. Braid group action. There are two braid group generators, q, and ¢g, for the diagonal
reduction algebra DR(sl3). Given the action of ¢, the action of gg on DR(sl3) can be recon-
structed by using the automorphism w, see (3.8), arising from the outer automorphism of the
root system of sl3, which exchanges the roots a and (3,

(vlﬁ = W(jaw_l-

The action of the automorphism w on the Cartan subalgebra (hq, hg) of the diagonal Lie alge-
bra sl3 and on the generators of the reduction algebra DR(sl3) reads

ho < hﬁ, to < t,@:
Zo 7 283, Z—a £ 23,
Za+pB 7 —Za+pB Z_q—B & —Z—a-8-

The action of the braid group generator ¢, on the Cartan subalgebra (hq, hg) of the diagonal
Lie algebra sl3 reads:

qa(ha) = —hy — 2, qa(hﬁ) = Ry + hﬁ + 1. (6.30)

This action reduces to the standard action of the Weyl group for the shifted generators iza =
ha—i—landfoLg:hg—i-l.

The action of g, on the zero weight generators {t,,ts} of the diagonal reduction algebra
DR(sl3) is given by:

5 ho +1
da(ts) = ta

ts. 6.31
ha ? ha + IB ( )

Finally, the action of {, on the rest of the generators is

ho +1

Cvla(za) = —Z-a By — 1 Qa(zfa) = —Za,

. . ho +1

da(28) = 2at8s da(zatp) = —28 ah ) (6.32)
(07

- L ho +1

Ga(2—a-p) = —2_8, Ga(2-8) = 2—a—p W

The set of ordering relations (6.2)—(6.29) is covariant with respect to the braid group gener-
ated by d, and gg. “Covariant” means that the elements of the braid group map a relation to
a linear over U(h) combination of relations. For example, the operator ¢, up to multiplicative
factors from U(h), transforms the relation (6.27) into itself and permutes the relations (6.28)
and (6.29). Due to the choice (6.1) of the order, the set of relations (6.2)—(6.29) is invariant
with respect to the anti-involution e. The set of relations (6.2)(6.29) is covariant under the
involution w as well.

4. Central elements of DR(sl3). The degree 1 and degree 2 (in generators z;;) central
elements of the reduction algebra DR(sl3) are:

CIPREBILY — ¢ (2hy 4 hg + 6) + t3(ha + 2D + 6),

1
C{DR(sb).2} — S(taota+tgots +taoty+ h% +h% + hohg)
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ho +3 hs +3
+z,a<>zam+z_5<>zghﬁ+2
ha +hg+4 1
(7

B e hy + 3 I

+z_

) + 2(ho + hg).

Both Casimir operators, C{PRG):1} and ¢{PRE6).2} arise from the quadratic Casimir opera-
tor C1%13:2} of the Lie algebra sls, whose ordered form is

1
6{5[3’2} - (gfaga + g—ﬁgﬁ + g—a—ﬁgoc—i—ﬁ) + g(Hi + 7‘[% + HQHB) + Hoz + Hﬁ

The operator CIPR(B):1} ig the image of C1¥5:2} @ 1 — 1 ® €12} and the operator C{PR(sl3).2}
is the image of C1¥%3:2t @ 1 + 1 @ ¢19%:2}, We calculate C1*%32} @ 1 4+ 1 @ ¢1*%8:2} and replace the
multiplication by the product ¢. Here one needs, in addition to (5.30)—(5.34), the expression
for Hag ¢ Ha3 which is obtained by applying the involution w to (5.31) and the equality (in the
notation of Section 5.3):

2 2
Hig 0 Hoz = HioHaz + Eo1 Fio + B39 Fo3
hia +1 hos + 1

2 2 1
— E31Fh3 <1+ - + 3 ) - .
hio +1 hog+1/ hig+1

The central elements C{PR(s!):1} and C{PR(6).2} are invariant with respect to the braid group:
qa (C{DR(E[g),i}) — C{]:)R(Slg)fi}7 qﬁ (C{DR(S[g),’L}) — C{DR(S[:;),Z'}’ Z — 1, 2.
The central elements C{PR(EB)1} and ¢{PR(s6).2} are invariant with respect to the anti-involution
€ and the involution w as well.

5. Diagonal reduction algebra DR(sly). For the diagonal reduction algebra of sly we use
the following notation:

24 1= 2, Z_ = Z g, t:=t,, h:= hg.

The cut provides the following description of the algebra Zo with generators zy, z_ and ¢:

h+4

z+<>t:t<>z+m, (6.33)

z+oz:h—tot}1l+zoz+m, (6.34)

toz_:z_oth;;Q. (6.35)
The Casimir operators for DR(sly) are

CIPRGR)L . — (4 2)t, (6.36)

CIPRER)2ZE .= 5 oz, EZ 1 ;; +to ti + h(h4+4). (6.37)

Both operators, C{PR(s2):1} and CIPR(s2):2} arise from the quadratic Casimir operator C15%2:2} of
the Lie algebra sls,

ctl2 —¢ g, ¢ EH(H +2),
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CIPR(sk).1} ig the image of C1#2:2} @ 1 — 1 @ 1522} and C{PR(R):2} ig the image of 1522 @ 1 +
1® C{5[272}'

The Casimir operators can be obtained by the cutting also, as explained in Subsection 4.6,
see Proposition 7. One replaces the sl3 generators by the gl; generators in the Casimir operators
for sl then cuts and rewrites, using the notation (3.9) and (3.10), the result according to the gl
formulas

)

(t + [(2,t))7 th) _ %( 4 _,(2,7&))7

R SN (I )

N

The cut of C{PR(sks).1} ig

3 L(DR(sl2) 1} |, L 7(2,0) o (7(2.h) (3) o (7(2,h) (2,t) 3)

5C o1 o (I®M 46) —t5” o (I*M +6) — I®Dhg + 2657 hy (6.38)
and the cut of CIPR(1).2} g

C{DR(sk) 2} % 1206 10 4 Lgem o (1em 4 19)

12
1 1 1
- 51000 - (31(27’1) + 2) hs + g(tg@ ots¥ +n2). (6.39)
As expected, the coefficients of (tgg))Oihg for all 4 and j in the expressions (6.38) and (6.39) are

central elements of the algebra Zs.
Due to (6.30), (6.31) and (6.32), the action of the braid group generator reads
h+2
—t—
h 9y

- h+1

A(z4) = —2-7—— a(z—) = —24.  (6.40)

Q) =—h-2  a(t) = .

It preserves the commutation relations of DR(slz). The Casimir operators (6.36) and (6.37) are
invariant under the transformation (6.40) and under the anti-involution e.

It should be noted that q can be included in a family of more general automorphisms of the
reduction algebra DR(sls).

Lemma 8. The most general automorphism of the reduction algebra DR(sly) transforming the
weights of elements in the same way as the operator q and linear over U(h) in the genera-
tors z4, z— and t 1s

1
RSO
z_ > zp(h+ 3)y(h + 2), (6.41)

h+2
h— —h—2, twﬁt%, Zy > 2o

where 8 = +1 is a constant and y(h) is an arbitrary function.

Proof. We are looking for an invertible transformation which preserves the relations (6.33)—
(6.35) and has the form

hes fih),  testh(h), oz 2 falh), 2o 2 fa(h) (6.42)

with f1(h), f2(h), f3(h), f1(h) € U(h). Applying the transformation (6.42) to the relations (6.33)
and (6.35), we find (after simplifications) the conditions:
(h+2)(fi(h) +4) fa(h = 2) — 2 (fi(h) +2) fa(h) = 0, (6.43)
(h+ ) (F1(h) +2) fal) — (& + 2)f1 (B) fallo + 2) = 0. (6.44)
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Replacing h by h — 2 in the second equation and then excluding fo from the system (6.43),
(6.44), we obtain the difference equation

fi(h) = fi(h —2) +2 =0,
whose general solution in U(h) is
fi(h) =—=h+c, (6.45)

where c is a constant.
Applying the transformation (6.42) to the relation (6.34) and collecting the free term and
the terms with t o ¢ and z_ ¢ z1, we find (after simplifications)

(h() 3)G(h)
R 2 (A + 1)
)

fa(h)? f1(h)(fi(h) 4+ 3)G(h)

=0, (6.46)

0 i D0+ o
(h+$1(ﬂ ()+$ _
G(h+2)+ B +2)(A1(h) +2) (fi( h)+1)G(h)—0, (6.48)
where G(h) := f3(h) fa(h — 2). Excluding G from the system (6.46), (6.47), we obtain
A2 =R pm? o () = p) (6.49)

h

with 5% = 1.
The substitution of (6.45) and (6.49) into (6.43) leads to

c=—2

and it then follows from (6.46) that

h+1
G(h) = ——.
(h) ==
The remaining relation (6.48) is now automatically satisfied. The proof is finished. |
The Casimir operator C{PR(2).2} i5 invariant under the general automorphism (6.41). The
Casimir operator C{PR(2).1} ig invariant under the automorphism (6.41) iff 3 = —1.
The map ¢ defined by (6.40) is a particular choice of (6.41), corresponding to = —1 and
¥(h) = — 557

The map (6.40) is not an involution (but it squares to the identity on the weight zero subspace
of the algebra). However, the general map (6.41) squares to the identity on the whole algebra
iff the function ~ is odd,
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