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Abstract. We show some symmetry relations among the correlation functions of the in-
tegrable higher-spin XXX and XXZ spin chains, where we explicitly evaluate the multiple
integrals representing the one-point functions in the spin-1 case. We review the multiple-
integral representations of correlation functions for the integrable higher-spin XXZ chains
derived in a region of the massless regime including the anti-ferromagnetic point. Here we
make use of the gauge transformations between the symmetric and asymmetric R-matrices,
which correspond to the principal and homogeneous gradings, respectively, and we send
the inhomogeneous parameters to the set of complete 2s-strings. We also give a numerical
support for the analytical expression of the one-point functions in the spin-1 case.
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1 Introduction

The correlation functions of the spin-1/2 XXZ spin chain has attracted much interest during
the last decades in mathematical physics, and several nontrivial results such as their multiple-
integral representations have been obtained explicitly [1, 2, 3]. The Hamiltonian of the XXZ
spin chain under the periodic boundary conditions (P.B.C.) is given by

HXXZ =
L∑
j=1

(
σXj σ

X
j+1 + σYj σ

Y
j+1 + ∆σZj σ

Z
j+1

)
.

Here σaj (a = X,Y, Z) are the Pauli matrices defined on the jth site and ∆ denotes the anisotropy
of the exchange coupling. The P.B.C. are given by σaL+1 = σa1 for a = X,Y, Z.

The XXZ Hamiltonian shows the quantum phase transition: the ground state of the XXZ
spin chain depends on ∆. For |∆| > 1 the low-lying excitation spectrum at the ground state has
a gap, while for |∆| ≤ 1 it has no gap. Here we remark that the quantum phase transition that
we have discussed is associated with the behavior of the XXZ spin chain in the thermodynamic
limit: L → ∞. In terms of the q parameter of the quantum group Uq(sl2), we express ∆ as
follows

∆ =
1

2

(
q + q−1

)
.
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It is often convenient to define parameters η and ζ by q = exp η with η = iζ. Here we have
∆ = cosh η = cos ζ. In the massive regime ∆ > 1, we set η > 0. In the massless regime
−1 < ∆ ≤ 1, we set η = iζ where ζ satisfies 0 ≤ ζ < π. Here, the XXX limit is given by
η → +0 or ζ → +0. Here we remark that the XXZ Hamiltonian can be derived from the
R-matrix of the affine quantum group with q parameter, Uq(ŝl2): we derive the R-matrix by
solving the intertwining relations, construct the XXZ transfer matrix from the product of the R
matrices, and then we derive the XXZ Hamiltonian by taking the logarithmic derivative of the
XXZ transfer matrix. Thus, the q parameter of the affine quantum group is related to the
ground state of the XXZ spin chain through ∆.

The multiple-integral representations of the XXZ correlation functions were derived for the
first time by making use of the q-vertex operators through the affine quantum-group symmetry
in the massive regime for the infinite lattice at zero temperature [4, 2]. In the massless regime
they were derived by solving the q-KZ equations [5, 6]. Making use of the algebraic Bethe-
ansatz techniques [7, 1, 8, 9, 10], the multiple-integral representations were derived for the
spin-1/2 XXZ correlation functions under a non-zero magnetic field [11]. Here, they are derived
through the thermodynamic limit after calculating the scalar product for a finite chain. The
multiple-integral representations were extended into those at finite temperatures [12], and even
for a large finite chain [13]. Interestingly, they are factorized in terms of single integrals [14]. We
should remark that the multiple-integral representations of the dynamical correlation functions
were also obtained under finite-temperatures [15]. Furthermore, the asymptotic expansion of
a correlation function of the XXZ model has been systematically discussed [16]. Thus, the
exact study of the XXZ correlation functions should play an important role not only in the
mathematical physics of integrable models but also in many areas of theoretical physics.

Recently, the form factors of the integrable higher-spin XXX spin chains and the multiple-
integral representations of correlation functions for the integrable higher-spin XXX and XXZ
chains have been derived by the algebraic Bethe-ansatz method [17, 18, 19, 20, 21] (see also [22]).
The spin-1 XXZ Hamiltonian under the P.B.C. is given by the following [23]:

Hspin-1 XXZ = J

Ns∑
j=1

{
~Sj · ~Sj+1 − (~Sj · ~Sj+1)2 − 1

2
(q − q−1)2[SzjS

z
j+1 − (SzjS

z
j+1)2 + 2(Szj )2]

− (q + q−1 − 2)[(Sxj S
x
j+1 + Syj S

y
j+1)SzjS

z
j+1 + SzjS

z
j+1(Sxj S

x
j+1 + Syj S

y
j+1)

}
. (1.1)

Furthermore, the multiple-integral representations have been obtained for the correlation func-
tions at finite temperature of the integrable spin-1 XXX chain [24]. The solvable higher-spin
generalizations of the XXX and XXZ spin chains have been derived by the fusion method in
several references [25, 26, 27, 28, 29, 30, 31, 32]. In the region: 0 ≤ ζ < π/2s, the spin-s ground-
state should be given by a set of string solutions [33, 34]. Furthermore, the critical behavior
should be given by the SU(2) WZWN model of level k = 2s with central charge c = 3s/(s+ 1)
[35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 31, 45, 46, 47]. For the integrable higher-spin XXZ spin
chain correlation functions have been discussed in the massive regime by the method of q-vertex
operators [48, 49, 50, 23, 51, 52].

The purpose of this paper is to show some symmetry relations among the correlation functions
of the integrable spin-s XXZ spin chain by explicitly calculating the multiple-integral representa-
tions for the spin-1 one-point functions. Associated with the quantum group Uq(sl(2)) symmetry,
there are several relations among the expectation values of products of the matrix elements of
the monodromy matrices. For the spin-1 case, we confirm some of them by evaluating the
multiple integrals analytically and explicitly. Here we should remark that the derivation of the
multiple-integral representations for the spin-s XXZ correlation functions given in the previous
papers [19, 20, 21] was not completely correct: the application of the formulas of the quantum
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inverse-scattering problem was not valid [53, 54]. We thus review the revised derivation [53, 54]
in the paper. The spin-s correlation function of an arbitrary entry is now expressed in terms of
a sum of multiple integrals, not as a single multiple integral. Furthermore, we show numerical
results which confirm the analytical expressions of the spin-1 one-point functions.

Let us express by 〈E00〉, 〈E11〉 and 〈E22〉, the expectation values of SZ1 = 1, SZ1 = 0 and
SZ1 = −1, respectively, where SZ1 denotes the Z-component of the spin operator defined on the
first site. Then, we have the following:

〈E22〉 = 〈E00〉 =
ζ − sin ζ cos ζ

2ζ sin2 ζ
, 〈E11〉 =

cos ζ(sin ζ − ζ cos ζ)

ζ sin2 ζ
.

We shall show the derivation of 〈E00〉, 〈E11〉 and 〈E22〉, in detail. Here we remark that the
expressions of 〈E22〉, the emptiness formation probability, and 〈E11〉 have been reported in [20]
without an explicit derivation. In fact, although the derivation was not completely correct, the
expressions of the spin-1 one-point functions are correct [53, 54]. Here, the quantum group
symmetry as well as the spin inversion symmetry play an important role, as we shall show
explicitly in the present paper.

It is nontrivial to evaluate the multiple integral representations of the XXX and XXZ models
analytically or even numerically. Let us now return to the spin-1/2 case. Boos and Korepin
have analytically evaluated the emptiness formation probability P (n) of the XXX spin chain for
up to n = 4 successive lattice sites [55]. Performing explicit evaluation of the multiple integrals,
they successfully reproduced Takahashi’s result that was obtained through the one-dimensional
Hubbard model [56]. The method was applied to all the density matrix elements for up to
n = 4 successive lattice sites in the XXX chain [57] and also in the XXZ chain [58, 59, 60].
Furthermore, the algebraic method to obtain the correlation functions of the XXX chain based
on the qKZ equation has been developed [61] and the two-point functions up to n = 8 have been
obtained so far [62, 63, 64, 65]. At the special anisotropy ∆ = 1/2, some further results have
been shown for the correlation functions through explicit evaluation [66, 67, 68, 69].

The paper consists of the following. In Section 2 we review the Hermitian elementary matri-
ces [20], and give the basis vectors and their conjugate vectors in the spin-1 case as an illustrative
example. We also show a formula for expressing higher-spin local operators in terms of spin-1/2
local operators in the spin-1 case, which plays a central role in the revised method [53, 54]. In
Section 3 we summarize the notation of the fusion transfer matrices and the quantum inverse
scattering problem for the spin-s operators. For an illustration, in Section 4, we show some
relations among the expectation values of the Hermitian elementary matrices in the spin-1 XXX
case and then in the spin-1 XXZ case. In particular, we show the spin inversion symmetry. We
also show the transformation which maps the basis vectors of the spin-1 representation V (2)

constructed in the tensor product of the spin-1/2 representations V (1)⊗ V (1) to the basis of the
three-dimensional vector space C3. The former basis is related to the fusion method, while the
spin-1 XXZ Hamiltonian (1.1) is formulated in terms of the latter basis. In Section 5, we review
the revised multiple-integral representations of correlation functions for the integrable spin-s
XXZ spin chain [53, 54]. Here we remark that necessary corrections to the previous papers [19]
and [20] are listed in references [20] and [21] of the paper [54], respectively. In Section 6, we ex-
plicitly calculate the multiple integrals of the one-point functions for the spin-1 XXZ spin chain
for a region in the massless regime. We show some details of the calculation such as shifting the
integral paths. In Section 7 we show that the numerical estimates of the spin-1 one-point func-
tions obtained through exact diagonalization of the spin-1 XXZ Hamiltonian (1.1) are consistent
with the analytical expressions of the spin-1 one-point functions. Thus, we shall conclude that
the analytical result of the spin-1 one-point functions should be valid.
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2 The quantum group invariance

We construct the basis vectors of the finite-dimensional spin-`/2 representation of the quantum
group Uq(sl2) in the tensor product space of the spin-1/2 representations, and introduce their
conjugate vectors. In terms of the basis and conjugate basis vectors we formulate the spin-`/2
elementary matrices which have only one nonzero element 1 with respect to entries of the basis
and conjugate basis vectors. We then illustrate an important formula for reducing the spin-`/2
elementary matrices into a sum of products of the spin-1/2 elementary operators.

2.1 Quantum group Uq(sl2)

Let us introduce the quantum group Uq(sl2) in order to formulate not only the R-matrix of
the integrable spin-s XXZ spin chain algebraically but also the higher-spin elementary matrices,
by which we introduce correlation functions. Here we remark that the correlation functions of
the spin-s XXZ spin chains are given by the expectation values of products of the higher-spin
elementary matrices at zero temperature.

The quantum algebra Uq(sl2) is an associative algebra over C generated by X±, K± with
the following relations [70, 71, 72]:

KK−1 = K−1K = 1, KX±K−1 = q±2X±, [X+, X−] =
K −K−1

q − q−1
.

The algebra Uq(sl2) is also a Hopf algebra over C with comultiplication

∆(X+) = X+ ⊗ 1 +K ⊗X+, ∆(X−) = X− ⊗K−1 + 1⊗X−, ∆(K) = K ⊗K,

and antipode: S(K) = K−1, S(X+) = −K−1X+, S(X−) = −X−K, and coproduct: ε(X±) = 0
and ε(K) = 1.

2.2 Basis vectors of spin-`/2 representation of Uq(sl2)

We introduce the q-integer for an integer n by [n]q = (qn − q−n)/(q − q−1). We define the
q-factorial [n]q! for integers n by

[n]q! = [n]q[n− 1]q · · · [1]q.

For integers m and n satisfying m ≥ n ≥ 0 we define the q-binomial coefficients as follows[
m
n

]
q

=
[m]q!

[m− n]q![n]q!
.

Let us denote by |α〉 for α = 0, 1, the basis vectors of the spin-1/2 representation V (1). Here
we remark that 0 and 1 correspond to ↑ and ↓, respectively. In the `th tensor product space
(V (1))⊗` we construct the basis vectors of the (` + 1)-dimensional irreducible representation of
Uq(sl2), ||`, n〉 for n = 0, 1, . . . , `, as follows. We define the highest weight vector ||`, 0〉 by

||`, 0〉 = |0〉1 ⊗ |0〉2 ⊗ · · · ⊗ |0〉`.

Here |α〉j for α = 0, 1, denote the basis vectors of the spin-1/2 representation defined on the
jth position in the tensor product (V (1))⊗`. We define ||`, n〉 for n ≥ 1 and evaluate them as
follows [19]

||`, n〉 =
(
∆(`−1)(X−)

)n||`, 0〉 1

[n]q!
=

∑
1≤i1<···<in≤`

σ−i1 · · ·σ
−
in
|0〉qi1+i2+···+in−n`+n(n−1)/2.
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Here σ−j denotes the Pauli spin operator σ− acting on the jth component of the tensor product

(V (1))⊗`: we have σ−j = I⊗(j−1) ⊗ σ− ⊗ I⊗(`−j). We define the conjugate vectors explicitly by
the following:

〈`, n|| =
[
`
n

]−1

q

qn(`−n)
∑

1≤i1<···<in≤`
〈0|σ+

i1
· · ·σ+

in
qi1+···+in−n`+n(n−1)/2.

It is easy to show the normalization conditions [19]: 〈`, n|| ||`, n〉 = 1. Let us define F (`, n) by

F (`, n) =

[
`
n

]
q

q−n(`−n).

We have (||`, n〉)t ||`, n〉 = F (`, n), and hence 〈`, n|| = (||`, n〉)t /F (`, n). Here the superscript t
denotes the matrix transposition.

In the massive regime where q = exp η with real η, conjugate vectors 〈`, n|| are also Hermitian
conjugate to vectors ||`, n〉.

2.3 Affine quantum group Uq(ŝl2)

In order to define the R-matrix in terms of algebraic relations we now introduce the affine
quantum group Uq(ŝl2). It is an infinite-dimensional algebra generalizing the quantum group
Uq(sl2).

The algebra Uq(ŝl2) is an associative algebra over C generated by X±i ,K
±
i for i = 0, 1 with

the following defining relations:

KiK
−1
i = K−1

i Ki = 1, KiX
±
i K

−1
i = q±2X±i , KiX

±
j K

−1
i = q∓2X±j i 6= j,

[X+
i , X

−
j ] = δi,j

Ki −K−1
i

q − q−1
,

(X±i )3X±j − [3]q(X
±
i )2X±j X

±
i + [3]qX

±
i X

±
j (X±i )2 −X±j (X±i )3 = 0, i 6= j.

The algebra Uq(ŝl2) is also a Hopf algebra over C with comultiplication:

∆(X+
i ) = X+

i ⊗ 1 +Ki ⊗X+
i , ∆(X−i ) = X−i ⊗K

−1
i + 1⊗X−i , ∆(Ki) = Ki ⊗Ki,

and antipode: S(Ki) = K−1
i , S(Xi) = −K−1

i X+
i , S(X−i ) = −X−i Ki, and counit: ε(X±i ) = 0

and ε(Ki) = 1 for i = 0, 1.

The quantum group Uq(sl2) gives a Hopf subalgebra of Uq(ŝl2) generated by X±i , Ki with
either i = 0 or i = 1. Thus, the affine quantum group generalizes the quantum group Uq(sl2).

2.4 Evaluation representations with principal and homogeneous gradings

We shall introduce two types of representations of Uq(ŝl2): evaluation representations associa-
ted with principal grading and that with homogeneous grading. The former is related to the
symmetric R-matrix which leads to the most concise expression of the integrable quantum spin
Hamiltonian, while the latter is related to the asymmetric R-matrix R+(u) which we shall define
in Section 3.2 and suitable for an explicit construction of representations of the quantum group.
Here and hereafter we denote by X± and K the generators of Uq(sl2).

Let us now introduce a representation of Uq(ŝl2) associated with homogeneous grading [2].

With a nonzero complex number λ we define a homomorphism of algebras ϕ
(p)
λ : Uq(ŝl2) →

Uq(sl2), as follows.

ϕ
(p)
λ (X±0 ) = e±λX∓, ϕ

(p)
λ (X±1 ) = e±λX±, ϕ

(p)
λ (K0) = K−1, ϕ

(p)
λ (K1) = K. (2.1)
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Thus, from a given finite-dimensional representation (π(`), V (`)) of the quantum group Uq(sl2),

we derive a representation of the affine quantum group Uq(ŝl2) by π(`)(ϕ
(p)
λ (a)) for a ∈ Uq(ŝl2),

where ϕ
(p)
λ (·) is given by (2.1). We call it an evaluation representation of the affine quantum

group; more specifically, the spin-`/2 evaluation representation with evaluation parameter λ

associated with principal grading. We denote it by (π
(`p)
λ , V (`)(λ)) or V (`p)(λ).

Similarly in the case of principal grading, we now introduce a representation associated with
homogeneous grading [2]. With a nonzero complex number λ we define a homomorphism of

algebras ϕ
(+)
λ : Uq(ŝl2)→ Uq(sl2) by the following:

ϕ
(+)
λ (X±0 ) = e±2λX∓, ϕ

(+)
λ (X±1 ) = X±, ϕ

(+)
λ (K0) = K−1, ϕ

(+)
λ (K1) = K. (2.2)

From a given finite-dimensional representation (π(`), V (`)) of the quantum group Uq(sl2) we

derive a representation of the affine quantum group Uq(ŝl2) by π(`)(ϕ
(+)
λ (a)) for a ∈ Uq(ŝl2),

where ϕ
(+)
λ (·) is given by (2.2). We call it the spin-`/2 evaluation representation with evaluation

parameter λ associated with homogeneous grading. We denote it by (π
(`+)
λ , V (`)(λ)) or V (`+)(λ).

2.5 Defining relations of the R-matrix

Let us now define the R-matrix for any given pair of finite-dimensional representations of the
affine quantum group Uq(ŝl2). Let (π1, V1) and (π2, V2) be finite-dimensional representations

of Uq(ŝl2). We define the R-matrix R12 for the tensor product V1⊗V2 by the following relations:

π1 ⊗ π2 (τ ◦∆(a))R12 = R12π1 ⊗ π2 (∆(a)) , a ∈ Uq(ŝl2). (2.3)

Here τ denotes the permutation operator: τ(a⊗ b) = b⊗ a for a, b ∈ Uq(sl2).
For an illustration, let us write down relations (2.3) of the R-matrices associated with eva-

luation representations. We call them intertwining relations. Associated with principal grading
we have for a = X±0 , X±1 and K1, respectively, the following relations:

R
(p)
12 (λ1 − λ2)

(
eλ1X− ⊗ 1 + eλ2K−1 ⊗X−

)
=
(
eλ21⊗X− + eλ1X− ⊗K−1

)
R

(p)
12 (λ1 − λ2),

R
(p)
12 (λ1 − λ2)

(
e−λ1X+ ⊗K + e−λ21⊗X+

)
=
(
e−λ2K ⊗X++ e−λ1X+ ⊗ 1

)
R

(p)
12 (λ1 − λ2),

R
(p)
12 (λ1 − λ2)

(
eλ1X+ ⊗ 1 + eλ2K ⊗X+

)
=
(
eλ21⊗X+ + eλ1X+ ⊗K

)
R

(p)
12 (λ1 − λ2),

R
(p)
12 (λ1 − λ2)

(
e−λ1X− ⊗K−1 + e−λ21⊗X−

)
=
(
e−λ2K−1 ⊗X− + e−λ1X− ⊗ 1

)
R

(p)
12 (λ1 − λ2),

R
(p)
12 (λ1 − λ2)K ⊗K = K ⊗KR(p)

12 (λ1 − λ2). (2.4)

Associated with homogeneous grading we have

R
(+)
12 (λ1 − λ2)

(
e2λ1X− ⊗ 1 + e2λ2K−1 ⊗X−

)
=
(
e2λ21⊗X− + e2λ1X− ⊗K−1

)
R

(+)
12 (λ1 − λ2),

R
(+)
12 (λ1 − λ2)

(
e−2λ1X+ ⊗K + e−2λ21⊗X+

)
=
(
e−2λ2K ⊗X+ + e−2λ1X+ ⊗ 1

)
R

(+)
12 (λ1 − λ2),

R
(+)
12 (λ1 − λ2)

(
X+ ⊗ 1 +K ⊗X+

)
=
(
1⊗X+ +X+ ⊗K

)
R

(+)
12 (λ1 − λ2),

R
(+)
12 (λ1 − λ2)

(
X− ⊗K−1 + 1⊗X−

)
=
(
K−1 ⊗X− +X− ⊗ 1

)
R

(+)
12 (λ1 − λ2),

R
(+)
12 (λ1 − λ2)K ⊗K = K ⊗KR(+)

12 (λ1 − λ2). (2.5)
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Here λ1 and λ2 correspond to the “string centers” of the sets of the evaluation parameters
associated with the evaluation representations π1 and π2. We have λ1 = ξ1− (`− 1)η/2, if π1 is
given by the spin-`/2 evaluation representation derived from the tensor product (V (1))⊗` with

complete `-string w
(`)
j for j = 1, 2, . . . , `. Here we shall define complete strings in Section 3.6.

We can show that the solution of intertwining relations (2.3) is unique. We may therefore
define the R-matrix in terms of relations (2.3).

We remark that relations (2.4) for the evaluation representation associated with principal
grading are mapped into those of (2.5) associated with homogeneous grading through a similarity
transformation, which we call the gauge transformation. We shall formulate it in Section 3.4.

2.6 Conjugate vectors and Hermitian elementary matrices

In order to construct Hermitian elementary matrices in the massless regime where q is complex
and |q| = 1, we now introduce another set of dual basis vectors [20]. For a given nonzero integer `

we define 〈̃`, n|| for n = 0, 1, . . . , n, by

〈̃`, n|| =
(
`
n

)−1 ∑
1≤i1<···<in≤`

〈0|σ+
i1
· · ·σ+

in
q−(i1+···+in)+n`−n(n−1)/2.

They are conjugate to ||`, n〉: 〈̃`,m||||`, n〉 = δm,n. Here we have denoted the binomial coeffi-
cients for integers ` and n with 0 ≤ n ≤ ` as follows(

`
n

)
=

`!

(`− n)!n!
.

We now introduce vectors |̃|`, n〉 which are Hermitian conjugate to 〈`, n|| when |q| = 1 for

positive integers ` with n = 0, 1, . . . , `. Setting the norm of |̃|`, n〉 such that 〈`, n|||̃|`, n〉 = 1,

vectors |̃|`, n〉 are given by

|̃|`, n〉 =
∑

1≤i1<···<in≤`
σ−i1 · · ·σ

−
in
|0〉q−(i1+···+in)+n`−n(n−1)/2

[
`
n

]
q

q−n(`−n)

(
`
n

)−1

.

We have the following normalization conditions:

〈̃`, n|||̃|`, n〉 =

[
`
n

]2

q

(
`
n

)−2

for n = 0, 1, . . . , `.

In the massless regime where q is complex with |q| = 1, we define elementary matrices
Ẽm,n(`+) by

Ẽm,n(`+) = |̃|`,m〉〈`, n|| for m,n = 0, 1, . . . , `.

In the massless regime matrix ||`, n〉〈̃`, n|| is Hermitian: (||`, n〉〈̃`, n||)† = ||`, n〉〈̃`, n||. How-
ever, in order to define projection operators P̃ such that PP̃ = P , we have formulated vectors

|̃|`, n〉.
Associated with principal grading we define the spin-`/2 symmetric elementary matrices

Ẽi,j(`p) by [53, 54]

Ẽi,j(`p) = |̃|`, i〉〈`, j||

√
F (`, j)

F (`, i)
for i, j = 0, 1, . . . , `.
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2.7 Projection operators

We define the projection operator acting on from the 1st to the `th tensor-product spaces by

P
(`)
12···` =

∑̀
n=0

||`, n〉〈`, n||. (2.6)

We introduce another projection operator P̃
(`)
12···` as follows

P̃
(`)
12···` =

∑̀
n=0

|̃|`, n〉〈`, n||. (2.7)

The projector P̃
(`)
12···` is idempotent:

(
P̃

(`)
12···`

)2
= P̃

(`)
12···`. In the massless regime where q is complex

with |q| = 1, it is Hermitian:
(
P̃

(`)
12···`

)†
= P̃

(`)
12···`. From (2.6) and (2.7), we show the following

properties:

P
(`)
12···`P̃

(`)
12···` = P

(`)
12···`, (2.8)

P̃
(`)
1···`P

(`)
12···` = P̃

(`)
12···`. (2.9)

2.8 Spin-s elementary matrices in terms of the spin-1/2 elementary matrices

Let us denote by ea,b such 2-by-2 matrices that have only one nonzero matrix element 1 at the
entry (a, b) for a, b = 0, 1. We call them the spin-1/2 elementary matrices. We denote by ea,bj
the elementary matrices ea,b acting on the jth component of the tensor product (V (1))⊗`.

Let us introduce variables ε′α and εβ which take only two values 0 and 1 for α, β = 1, 2, . . . , `.

We define diagonal two-by-two matrices Φj by Φj = diag(1, exp(wj)) acting on V
(1)
j for j =

0, 1, . . . , L. Here wj (1 ≤ j ≤ L) are called the inhomogeneous parameters of the spin-1/2 XXZ
spin chain, and we set w0 = λ0 (see also Section 3.3). We define the gauge transformation
by a similarity transformation with respect to the matrix χ01···L = Φ0Φ1 · · ·ΦL. Here, we put

inhomogeneous parameters wj with the complete `-strings such as w`(k−1)+j = w
(`)
`(k−1)+j =

ξk − (j − 1)η for j = 1, 2, . . . , ` and k = 1, 2, . . . , Ns. Then, we can show the following relation.

Proposition 1 ([53, 54]). The spin-`/2 symmetric elementary matrices associated with principal
grading are decomposed into a sum of products of the spin-1/2 elementary matrices as follows

Ẽi,j(`p) =

([
`
i

]
q

[
`
j

]−1

q

)1/2

e−(i−j)(ξ1−(`−1)η/2)P̃
(`)
12···`

∑
{εβ}

χ12···`e
ε′1,ε1
1 · · · eε

′
`,ε`
` χ−1

12···`. (2.10)

Here the sum is taken over all sets of εβs such that the number of integers β satisfying εβ = 1
for 1 ≤ β ≤ ` is equal to j. We take a set of ε′αs such that the number of integers α satisfying
ε′α = 1 for 1 ≤ α ≤ ` is equal to i. The expression (2.10) is independent of the order of ε′αs with
respect to α.

The formula (2.10) plays a central role in the revised derivation of the spin-`/2 form factors
and the spin-`/2 XXZ correlation functions [53, 54]. We shall derive (2.10) in Appendix A.
We recall that the derivation of the multiple-integral representations of the integrable spin-s
XXZ spin chain given in the previous papers [19, 20, 21] was not completely correct [53, 54].
In fact, the transfer matrix becomes non-regular at λ = ξk [54], and hence the straightforward
application of the QISP formula was not valid.
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2.9 Example: spin-1 case

We shall show reduction formula (2.10) for the spin-1 case.
The spin-1 basis vectors ||2, n〉 (n = 0, 1, 2) are given by [19]

||2, 0〉 = |+ +〉, 〈2, 0|| = 〈+ + |,

||2, 1〉 = |+−〉+ q−1| −+〉, 〈2, 1|| = q

[2]q

(
〈+− |+ q−1〈−+ |

)
,

||2, 2〉 = | − −〉, 〈2, 2|| = 〈− − |.

Here |+−〉 denotes |0〉1 ⊗ |1〉2, briefly. The conjugate vectors |̃|2, n〉 (n = 0, 1, 2) are given by

|̃|2, 0〉 = |+ +〉, 〈̃2, 0|| = 〈+ + |,

|̃|2, 1〉 = (|+−〉+ q| −+〉) [2]q
2q

, 〈̃2, 1|| = 1

2

(
〈+− |+ q−1〈−+ |

)
,

|̃|2, 2〉 = | − −〉, 〈̃2, 2|| = 〈− − |.

Let us derive the projection operator P̃
(2)
12 . Explicitly we have

|̃|2, 1〉〈2, 1|| = (|+−〉+ q| −+〉) [2]q
2q
· q

[2]q

(
〈+− |+ q−1〈−+ |

)
=

1

2

(
|+−〉〈+− | + q−1|+−〉〈−+ | + q| −+〉〈+− |+ | −+〉〈−+ |

)
=

1

2

(
e0,0

1 e1,1
2 + q−1e0,1

1 e1,0
2 + qe1,0

1 e0,1
2 + e1,1

1 e0,0
2

)
. (2.11)

Here we remark that in the massless regime where q is complex with |q| = 1, operator |̃|2, 1〉〈2, 1||
is Hermitian while ||2, 1〉〈2, 1|| is not. As a four-by-four matrix we express P̃

(2)
12 by

P̃
(2)
12 = ||2, 0〉〈2, 0||+ ||2, 1〉〈2, 1||+ ||2, 2〉〈2, 2|| =


1 0 0 0
0 1/2 q−1/2 0
1 q/2 1/2 0
0 0 0 1


[1,2]

. (2.12)

Here the symbol [1, 2] at the bottom of the 4×4 matrix of (2.12) denotes that the matrix acts on

the tensor product space V
(1)

1 ⊗V (1)
2 . We note that operator |+−〉〈−+ | corresponds to e0,1

1 e1,0
2

in (2.11), which gives the entry of (1,2) in the four-by-four matrix of (2.12); i.e., the element in
the 2nd row and 3rd column.

For an illustration, let us show reduction formula (2.10) for the spin-1 case. With ε′1 = 0 and
ε′2 = 1, reduction formula (2.10) for i = j = 1 reads

Ẽ1,1(2p) = |̃|2, 1〉〈2, 1|| = P̃ (2)χ12

(
e0,0

1 e1,1
2 + e0,1

1 e1,0
2

)
χ−1

12 . (2.13)

First, it is straightforward to show

χ12e
0,0
1 e1,1

2 χ−1
12 = e0,0

1 e1,1
2 , χ12e

0,1
1 e1,0

2 χ−1
12 = q−1e0,1

1 e1,0
2 .

Then, in terms of the four-by-four matrix notation we have

e0,0
1 e1,1

2 + q−1e0,1
1 e1,0

2 =


0 0 0 0
0 1 q−1 0
0 0 0 0
0 0 0 0


[1,2]

. (2.14)

Here e0,0
1 e1,1

2 corresponds to the element in the 2nd row and 2nd column of the 4×4 matrix (2.14).
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Multiplying (2.12) by (2.14) and making use of (2.11), we have the following relation:

P̃
(2)
12

(
e0,0

1 e1,1
2 + q−1e0,1

1 e1,0
2

)
= |̃|2, 1〉〈2, 1||.

We have thus confirmed reduction formula (2.10) for ` = 2 and i1 = j1 = 1, as shown in (2.13).

3 Fusion transfer matrices and higher-spin expectation values

We construct the monodromy matrices of the integrable higher-spin XXZ spin chains through the
fusion method. We then evaluate the form factor of a given product of the higher-spin operators
by reducing them into a sum of products of the spin-1/2 operators and calculate their scalar
products of the spin-1/2 operators through Slavnov’s formula. When we reduce the higher-spin
operators, we make use of the fusion construction where all the elements are constructed from
a sum of products of the spin-1/2 operators multiplied by the projection operators.

3.1 Tensor product notation

Let s be an integer or a half-integer. We shall mainly consider the tensor product V
(2s)

1 ⊗ · · · ⊗
V

(2s)
Ns

of (2s + 1)-dimensional vector spaces V
(2s)
j with L = 2sNs. Here V

(2s)
j have spectral

parameters λj for j = 1, 2, . . . , Ns. We denote by Ea, b a unit matrix that has only one nonzero
element equal to 1 at entry (a, b) where a, b = 0, 1, . . . , 2s. For a given set of matrix elements
Aa, αb, β for a, b = 0, 1, . . . , 2s and α, β = 0, 1, . . . , 2s, we define operators Aj,k for 1 ≤ j < k ≤ Ns

by

Aj,k =

2s∑
a,b=1

∑
α,β

Aa,αb,β I
(2s0)
0 ⊗ I(2s)

1 ⊗ · · · ⊗ I(2s)
j−1

⊗ Ea,bj ⊗ I
(2s)
j+1 ⊗ · · · ⊗ I

(2s)
k−1 ⊗ E

α,β
k ⊗ I(2s)

k+1 ⊗ · · · ⊗ I
(2s)
r . (3.1)

In the tensor product space, (V (2s))⊗Ns , we define Ẽ
m,n(2sw)
i for i = 1, 2, . . . , Ns and w = +, p

by

Ẽ
m,n(2sw)
i =

(
I(2s)

)⊗(i−1) ⊗ Ẽm,n(2sw) ⊗
(
I(2s)

)⊗(Ns−i).

The elementary matrices Ẽn,n(2sw) for n = 0, 1, . . . , 2s and w = +, p, are Hermitian in the
massless regime.

3.2 Asymmetric and symmetric R-matrices

Let us introduce the R-matrix of the XXZ spin chain [1, 8, 9, 11]. Let V1 and V2 be two-
dimensional vector spaces. We define the R-matrix R+

12 acting on V1 ⊗ V2 by

R+
12(λ1 − λ2) =

∑
a,b,c,d=0,1

R+(u)abcde
a,c
1 ⊗ e

b,d
2 =


1 0 0 0
0 b(u) c−(u) 0
0 c+(u) b(u) 0
0 0 0 1


[1,2]

, (3.2)

where u = λ1 − λ2, b(u) = sinhu/ sinh(u+ η) and c±(u) = exp(±u) sinh η/ sinh(u+ η).

We remark that the R+(λ1 − λ2) is compatible with the homogeneous grading of Uq(ŝl2). In
fact, it is straightforward to see that the asymmetric R-matrix satisfies the intertwining relations
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associated with homogeneous grading (2.5) for the tensor product of the spin-1/2 representations

of Uq(sl2), V
(1)

1 ⊗ V (1)
1 .

We denote by R(p)(u) or simply by R(u) the symmetric R-matrix where c±(u) of (3.2) are
replaced by c(u) = sinh η/ sinh(u+ η) [19]. The symmetric R-matrix is compatible with evalua-

tion representation associated with principal grading for the affine quantum group Uq(ŝl2) [19].
Hereafter we express R+ and R(p) by R(1w) with w = + and p, respectively.

3.3 Monodromy matrix of type (1,1⊗L)

We now consider the (L+ 1)th tensor product of the spin-1/2 representations, which consists of

the tensor product of auxiliary space V
(1)

0 and the Lth tensor product of quantum spaces V
(1)
j

for j = 1, 2, . . . , L, i.e. V
(1)

0 ⊗
(
V

(1)
1 ⊗ · · · ⊗ V (1)

L

)
. We call it the tensor product of type (1, 1⊗L)

and denote it by the following symbol:

(1, 1⊗L) = (1,

L︷ ︸︸ ︷
1, 1, . . . , 1).

Applying definition (3.1) for matrix elements R(u)abcd of a given R-matrix such as R(1w) with
w = + and p, we define R-matrices Rjk(λj , λk) = Rjk(λj − λk) for integers j and k with
0 ≤ j < k ≤ L. For integers j, k and ` with 0 ≤ j < k < ` ≤ L, the R-matrices satisfy the
Yang–Baxter equations

Rjk(λj − λk)Rj`(λj − λ`)Rk`(λk − λ`) = Rk`(λk − λ`)Rj`(λj − λ`)Rjk(λj − λk).

We define the monodromy matrix of type (1, 1⊗L) associated with homogeneous grading by

T
(1,1+)
0,12···L(λ0;w1, w2, . . . , wL) = R+

0L(λ0 − wL) · · ·R+
02(λ0 − w2)R+

01(λ0 − w1).

Here we have set λj = wj for j = 1, 2, . . . , L, where wj are arbitrary parameters. We call
them inhomogeneous parameters. We have expressed the symbol of type (1, 1⊗L) as (1, 1) in
superscript. The symbol (1, 1+) denotes that it is consistent with homogeneous grading. We
express operator-valued matrix elements of the monodromy matrix as follows

T
(1,1+)
0,12···L(λ; {wj}L) =

(
A

(1+)
12···L(λ; {wj}L) B

(1+)
12···L(λ; {wj}L)

C
(1+)
12···L(λ; {wj}L) D

(1+)
12···L(λ; {wj}L)

)
.

Here {wj}L denotes the set of L parameters, w1, w2, . . . , wL. We also denote the matrix elements

of the monodromy matrix by [T
(1,1+)
0,12···L(λ; {wj}L)]a,b for a, b = 0, 1.

3.4 Gauge transformations

We derive the monodromy matrix consistent with principal grading, T
(1,1p)
0,12···L(λ; {wj}L), from

that of homogeneous grading via similarity transformation χ01···L as follows [19]

T
(1,1+)
0,12···L(λ; {wj}L) = χ012···LT

(1,1 p)
0,12···L(λ; {wj}L)χ−1

012···L

=

(
χ12···LA

(1 p)
12···L(λ; {wj}L)χ−1

12···L e−λ0χ12···LB
(1p)
12···L(λ; {wj}L)χ−1

12···L
eλ0χ12···LC

(1 p)
12···L(λ; {wj}L)χ−1

12···L χ12···LD
(1p)
12···L(λ; {wj}L)χ−1

12···L

)
.

Here we recall that χ01···L = Φ0Φ1 · · ·ΦL and Φj are given by diagonal two-by-two matrices

Φj = diag(1, exp(wj)) acting on V
(1)
j for j = 0, 1, . . . , L, and we set w0 = λ0. In [19] operator

A(1+)(λ) has been written as A+(λ).
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We now introduce the gauge transformation for the spin-s representation [54]. We define
diagonal matrix Φ(2s)(w) on the basis vectors ||2s, n〉 as follows:

Φ(2s)(w)||2s, n〉 = exp(nw)||2s, n〉 for n = 0, 1, . . . , 2s.

We denote by Φ
(2s)
j (w) the matrix Φ(2s)(w) defined on the jth component of the tensor product

V
(2s)

1 ⊗ · · · ⊗ V (2s)
Ns

. We define χ
(2s)
12···Ns acting on the quantum space V

(2s)
1 ⊗ · · · ⊗ V (2s)

Ns
by

χ
(2s)
12···Ns = Φ

(2s)
1 (Λ1) · · ·Φ(2s)

Ns
(ΛNs).

We express Λb as Λb = ξb − (2s− 1)η/2 for b = 1, 2, . . . , Ns. Here ξb denote the inhomogeneous
parameters of the spin-s XXZ spin chains, which will be given in equation (3.4) of Section 3.6. We
note that Λb corresponds to the string center of the 2s-string, ξb− (β−1)η with β = 1, 2, . . . , 2s,
for each b satisfying 1 ≤ b ≤ Ns.

3.5 Projection operators through fusion

Let V1 and V2 be the (2s+ 1)-dimensional vector spaces. We define permutation operator Π1,2

by

Π1,2v1 ⊗ v2 = v2 ⊗ v1, v1 ∈ V1, v2 ∈ V2.

In the case of spin-1/2 representations, we define operator Ř+
12(λ1 − λ2) by

Ř+
12(λ1 − λ2) = Π1,2R

+
12(λ1 − λ2).

We now introduce projection operators P
(`)
12···` for ` ≥ 2. We define P

(2)
12 by P

(2)
12 = Ř+

1,2(η).
For ` > 2 we define projection operators inductively with respect to ` as follows [71, 32]

P
(`)
12···` = P

(`−1)
12···`−1Ř

+
`−1,`((`− 1)η)P

(`−1)
12···`−1. (3.3)

The projection operator P
(`)
12···` gives a q-analogue of the full symmetrizer of the Young operators

for the Hecke algebra [71].

Applying projection operator P
(`)
a1a2···a` to the vectors in the tensor product V

(1)
a1 ⊗ V

(1)
a2 ⊗

· · · ⊗ V (1)
a` , we can construct the (` + 1)-dimensional vector space V

(`)
a1a2···a` associated with the

spin-`/2 representation of Uq(sl2). For instance, we have P
(2)
a1a2 | + −〉a = (q/[2]q)||2, 1〉a. Here

we have introduced | + −〉a = |0〉a1 ⊗ |1〉a2 . We denote V
(`)
a1a2···a` also by V

(`)
a or V

(`)
0 for short.

Similarly, we denote P
(`)
a1a2···a` by P

(`)
a1 for short.

Let us consider the tensor product V
(2s)

1 ⊗ · · · ⊗ V (2s)
Ns

, which gives the quantum space for

the higher-spin transfer matrices. We construct the bth component V
(2s)
b of the quantum space

from the 2sth tensor product of the spin-1/2 representations: V
(1)

2s(b−1)+1 ⊗ · · · ⊗ V
(1)

2s(b−1)+2s, for

b = 1, 2, . . . , Ns. We therefore define P
(2s)
12···L and P̃

(2s)
12···L by

P
(2s)
12···L =

Ns∏
i=1

P
(2s)
2s(i−1)+1, P̃

(2s)
12···L =

Ns∏
i=1

P̃
(2s)
2s(i−1)+1.

Here we recall L = 2sNs.
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3.6 Higher-spin monodromy matrix of type (`, (2s)⊗Ns)

Let us now introduce complete strings. For a positive integer ` we call the following set of
rapidities λj a complete `-string:

λj = Λ− (2j − `− 1)η/2 for j = 1, 2, . . . , `.

Here we call parameter Λ the string center.
Let us now set inhomogeneous parameters wj for j = 1, 2, . . . , L, as Ns sets of complete

2s-strings [19]. We define w
(2s)
2s(b−1)+β for β = 1, . . . , 2s, as follows

w
(2s)
2s(b−1)+β = ξb − (β − 1)η for b = 1, 2, . . . , Ns. (3.4)

We now introduce the massless monodromy matrix of type (1, (2s)⊗Ns) associated with ho-
mogeneous grading. We define it by

T̃
(1,2s+)
0,12···Ns(λ0; {ξb}Ns) = P̃

(2s)
12···LR

(1,1+)
0,1...L

(
λ0;
{
w

(2s)
j

}
L

)
P̃

(2s)
12···L

=

(
Ã(2s+)(λ; {ξb}Ns) B̃(2s+)(λ; {ξb}Ns)
C̃(2s+)(λ; {ξb}Ns) D̃(2s+)(λ; {ξb}Ns)

)
.

Here, the (0,0) element is given by Ã(2s+)(λ; {ξb}Ns) = P̃
(2s)
12···LA

(1+)(λ; {w(2s)
j }L)P̃

(2s)
12···L.

We shall now define the massless monodromy matrix of type (`, (2s)⊗Ns) associated with

homogeneous grading. Let us express the tensor product V
(`)

0 ⊗
(
V

(2s)
1 ⊗ · · · ⊗ V (2s)

Ns

)
, by the

following symbol

(
`, (2s)⊗Ns

)
= (`,

Ns︷ ︸︸ ︷
2s, 2s, . . . , 2s).

Here we recall that V
(`)

0 abbreviates V
(`)
a1a2...a` . For the auxiliary space V

(`)
0 we define the massless

monodromy matrix of type (`, (2s)⊗Ns) by

T̃
(`,2s+)
0,12···Ns = P̃

(`)
a1a2···a` T̃

(1,2s+)
a1,12···Ns(λa1)T̃

(1,2s+)
a2,12···Ns(λa1 − η) · · ·

× T̃ (1,2s+)
a2s,12···Ns(λa1 − (`− 1)η)P̃

(`)
a1a2···a` .

Here we remark that it is associated with homogeneous grading.
Let us now construct the higher-spin monodromy matrices associated with principal grading.

From the higher-spin monodromy matrices associated with homogeneous grading we derive them
through the inverse of the gauge transformation as follows [54]

T (`,2sp) =
(
χ

(`,2s)
a1···a`,12...Ns

)−1
T (`,2s+)(λ)

(
χ

(`,2s)
a1···a`,12...Ns

)
.

Here χ
(`,2s)
a1···a`,12...Ns

denote the following:

χ
(`,2s)
a1···a`,12...Ns

= Φ
(`)
a1···a`(Λ0)Φ

(2s)
1 (Λ1) · · ·Φ(2s)

Ns
(ΛNs),

where Λ0 denotes the string center, Λ0 = λa1 − (`− 1)η/2.
For an illustration, let us consider the case of ` = 1. For type (1, (2s)⊗Ns) the monodromy

matrix associated with homogeneous grading and that with principal grading are related to each
other as follows

T
(1,2s+)
0,12···Ns(λ; {ξb}Ns) = χ

(1,2s)
0,12···NsT

(1,2sp)
0,12···Ns(λ; {ξb}Ns)

(
χ

(1,2s)
0,12···Ns

)−1
.
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In terms of the operator-valued matrix elements we have(
A

(2s+)
12···Ns(λ) B

(2s+)
12···Ns(λ)

C
(2s+)
12···Ns(λ) D

(2s+)
12···Ns(λ)

)

=

 χ
(2s)
12···NsA

(2sp)
12···Ns(λ)

(
χ

(2s)
12···Ns

)−1
e−λχ

(2s)
12···NsB

(2sp)
12···Ns(λ)

(
χ

(2s)
12···Ns

)−1

eλχ
(2s)
12···NsC

(2sp)
12···Ns(λ)

(
χ

(2s)
12···Ns

)−1
χ

(2s)
12···NsD

(2sp)
12···Ns(λ)

(
χ

(2s)
12···Ns

)−1

 .

We shall now introduce the spin-1/2 monodromy matrices with special inhomogeneous pa-
rameters. Let us introduce a set of 2s-strings with small deviations from the set of complete
2s-strings

w
(2s;ε)
2s(b−1)+β = ξb − (β − 1)η + εr

(β)
b for b = 1, 2, . . . , Ns and β = 1, 2, . . . , 2s.

Here ε is a infinitesimally small generic number and r
(β)
b are generic parameters. We call the

set of rapidities w
(2s;ε)
2s(b−1)+β for β = 1, 2, . . . , 2s “almost complete 2s-strings”. We denote by

T (1,2s+;ε)(λ) the spin-1/2 monodromy matrix T (1,1+) with inhomogeneous parameters wj being

given by the set of almost complete 2s-strings: wj = w
(2s;ε)
j for j = 1, 2, . . . , L

T
(1,2s+;ε)
0,12···L (λ) = T

(1,1+)
0,12···L

(
λ;
{
w

(2s;ε)
j

}
L

)
.

We express the elements of T (1,2s+;ε)(λ) as follows

T (1,2s+;ε)(λ) =

(
A

(2s+;ε)
12···L (λ) B

(2s+;ε)
12···L (λ)

C
(2s+;ε)
12···L (λ) D

(2s+;ε)
12···L (λ)

)
.

Here we recall that A
(2s+;ε)
12···L (λ) denotes A

(1+)
12···L(λ; {w(2s;ε)

j }L). We also remark the following:

Ã
(2s+)
12···Ns(λ; {ξp}Ns) = lim

ε→0
P̃

(2s)
12···LA

(2s+;ε)
12···L

(
λ;
{
w

(2s;ε)
j

}
L

)
P̃

(2s)
12···L.

3.7 Series of commuting higher-spin transfer matrices

Suppose that |`,m〉 for m = 0, 1, . . . , `, are the orthonormal basis vectors of V (`), and their
dual vectors are given by 〈`,m| for m = 0, 1, . . . , `. We define the trace of operator A over the
space V (`) by

trV (`)A =
∑̀
m=0

〈`,m|A|`,m〉.

We define the massless transfer matrix of type (`, (2s)⊗Ns) by

t̃
(`,2s+)
12···Ns (λ) = trV (`)

(
T̃

(`,2s+)
0,12···Ns(λ)

)
=
∑̀
n=0

a〈`, n||T̃ (1,2s+)
a1,12···Ns(λ)T̃

(1,2s+)
a2,12···Ns(λ− η) · · · T̃ (1,2s+)

a`,12···Ns(λ− (`− 1)η)|̃|`, n〉a.

It follows from the Yang–Baxter equations that the higher-spin transfer matrices commute

in the tensor product space V
(2s)

1 ⊗· · ·⊗V (2s)
Ns

, which is derived by applying projection operator
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P
(2s)
12···L to V

(1)
1 ⊗ · · · ⊗ V (1)

L . For instance, for the massless transfer matrices, making use of (2.8)
and (2.9) we show

P
(2s)
12···L

[
t̃
(`,2s+)
12···Ns (λ), t̃

(m, 2s+)
12···Ns (µ)

]
= 0 for `,m ∈ Z≥0.

Consequently, for the massless transfer matrices, the eigenvectors of t̃
(1,2s+)
12···Ns (λ) constructed by

applying B̃(2s+)(λ) to the vacuum |0〉 also diagonalize the higher-spin transfer matrices, in

particular, the spin-s massless XXZ transfer matrix, t̃
(2s,2s+)
12···Ns (λ). Thus, we construct the ground

state of the higher-spin XXZ Hamiltonian in terms of operators B̃(2s+)(λ), which are the (0,
1)-element of the monodromy matrix T̃ (1,2s+).

3.8 Algebraic Bethe ansatz for higher-spin massless transfer matrices

In terms of the vacuum vector |0〉 where all spins are up, we define functions a(λ) and d(λ) by

A(1p)(λ; {wj}L)|0〉 = a(λ; {wj}L)|0〉, D(1 p)(λ; {wj}L)|0〉 = d(λ; {wj}L)|0〉.

We have a(λ; {wj}L) = 1 and

d(λ; {wj}L) =
L∏
j=1

b(λ,wj).

Here b(λ, µ) = b(λ − µ). For the homogeneous grading (w = +) and the principal grading
(w = p), it is easy to show the following relations:

A(2sw)(λ)|0〉 = Ã(2sw)(λ)|0〉 = a(2s)(λ; {ξb})|0〉,

D(2sw)(λ)|0〉 = D̃(2sw)(λ)|0〉 = d(2s)(λ; {ξb})|0〉,

where a(2s)(λ; {ξb}) and d(2s)(λ; {ξb}) are given by

a(2s)(λ; {ξb}) = a
(
λ;
{
w

(2s)
j

})
= 1,

d(2s)(λ; {ξb}) = d
(
λ;
{
w

(2s)
j

})
=

Ns∏
p=1

b2s(λ, ξp).

Here we have defined bt(λ, µ) by bt(λ, µ) = sinh(λ− µ)/sinh(λ− µ+ tη) . Here we recall b(u) =
b1(u) = sinhu/ sinh(u+ η).

In the massless regime, we define the Bethe vectors |{̃λα}
(2sw)

M 〉 for w = + and p, and their

dual vectors 〈{̃λα}
(2sw)

M | for w = + and p, as follows

|{̃λα}
(2sw)

M 〉 =
M∏
α=1

B̃(2sw)(λα)|0〉, 〈{̃λα}
(2sw)

M | = 〈0|
M∏
α=1

C̃(2sw)(λα). (3.5)

Here we recall B̃(2s+)(λα) = P̃
(2s)
1···LB

(1+)(λα, {w(2)
k }L)P̃

(2s)
1···L. The Bethe vector (3.5) gives an

eigenvector of the massless transfer matrix

t̃(1,2sw)(µ; {ξb}Ns) = Ã(2sw)(µ; {ξb}Ns) + D̃(2sw)(µ; {ξb}Ns)

for w = + and w = p with the following eigenvalue:

Λ(1,2sw)(µ) =

M∏
j=1

sinh(λj − µ+ η)

sinh(λj − µ)
+

Ns∏
p=1

b2s(µ, ξp) ·
M∏
j=1

sinh(µ− λj + η)

sinh(µ− λj)
,
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if rapidities {λj}M satisfy the Bethe ansatz equations

Ns∏
p=1

b−1
2s (λj , ξp) =

∏
k 6=j

b(λk, λj)

b(λj , λk)
, j = 1, . . . ,M.

Let us denote by |{λα(ε)}(2sw;ε)
M 〉 the Bethe vector of M Bethe roots {λj(ε)}M for w = +, p:

|{λα(ε)}(2sw;ε)
M 〉 =

M∏
γ=1

B(2sw;ε)(λγ(ε))|0〉 = B(2sw;ε)(λ1(ε)) · · ·B(2sw;ε)(λM (ε))|0〉,

where rapidities {λj(ε)}M satisfy the Bethe ansatz equations with inhomogeneous parameters

w
(2s;ε)
j as follows

a(λj(ε); {w(2s;ε)
k }L)

d(λj(ε); {w(2s;ε)
k }L)

=
M∏

k=1;k 6=j

b(λk(ε), λj(ε))

b(λj(ε), λk(ε))
.

It gives an eigenvector of the transfer matrix

t(1,1w)
(
µ;
{
w

(2s;ε)
j

}
L

)
= A(2sw;ε)

(
µ;
{
w

(2s;ε)
j

}
L

)
+D(2sw;ε)

(
µ;
{
w

(2s;ε)
j

}
L

)
with the following eigenvalue:

Λ(1,1w)
(
µ;
{
w

(2s;ε)
j

}
L

)
=

M∏
j=1

sinh(λj(ε)− µ+ η)

sinh(λj(ε)− µ)

+
L∏
j=1

b
(
µ,w

(2s;ε)
j

)
·
M∏
j=1

sinh(µ− λj(ε) + η)

sinh(µ− λj(ε))
.

Let us assume that in the limit of ε going to 0, the set of Bethe roots {λj(ε)}M ap-
proaches {λj}M . Assuming the continuity of the limiting procedure, we have

|{̃λj}
(2s+)

M 〉 = lim
ε→0

M∏
j=1

(
P̃

(2s)
12···LB

(2s+;ε)(λj(ε))P̃
(2s)
12···L

)
|0〉 = P̃

(2s)
12···L lim

ε→0

M∏
j=1

B(2s+;ε)(λj(ε))|0〉.

Thus, the expectation value with respect to the Bethe state of {λj}M is given by the limit of
that of {λj(ε)}M sending ε to zero. For the B operators associated with principal grading, we
have

|{̃λj}
(2sp)

M 〉 = lim
ε→0

M∏
j=1

(
eλj(ε)

(
χ

(2s)
12···Ns

)−1
P̃

(2s)
12···LB

(2s+;ε)(λj(ε))P̃
(2s)
12···Lχ

(2s)
12···Ns

)
|0〉

=
(
χ

(2s)
12···Ns

)−1
P̃

(2s)
12···Lχ12···L × lim

ε→0

M∏
j=1

B(2sp;ε)(λj(ε))|0〉.

Let us introduce symbols for the ground state of the integrable spin-s XXZ spin chain. We

denote it by |ψ(2sp)
g 〉 associated with principal grading. It is given by multiplying the projection

operator to such a product of the spin-1/2 B operators with inhomogeneous parameters being
given by the set of complete 2s-strings that acts on the vacuum:

|ψ(2sp)
g 〉 =

(
χ

(2s)
12···Ns

)−1
P̃

(2s)
12···Lχ12···L ·

M∏
γ=1

B(2sp;0)(λγ)|0〉.
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We denote by |ψ(2sp;0)
g 〉 the product of the spin-1/2 B operators with inhomogeneous parameters

given by complete 2s-strings w
(2s)
j which acts on the vacuum state:

|ψ(2sp;0)
g 〉 =

M∏
γ=1

B(2sp;0)(λγ)|0〉.

3.9 Commutation relations with projection operators

Let us discuss an application of the fusion construction of projection operators (3.3). Hereafter
we assume that rapidity λ does not take such discrete values at which the transfer matrix

becomes singular or non-regular, such as w
(2s)
j − η + nπ

√
−1 (1 ≤ j ≤ L) for n ∈ Z [54]. Here

we recall that w
(2s)
j are inhomogeneous parameters forming complete 2s-strings.

Lemma 1. Projection operators P
(2s)
12···L and P̃

(2s)
12···L commute with the matrix elements of the

monodromy matrix T
(1,1+)
0,12···L(λ; {w(2s)

j }L) such as A(2s+;0)(λ)

P
(2s)
12···LT

(1,1+)
0,12···L

(
λ;
{
w

(2s)
j

}
L

)
P

(2s)
12···L = P

(2s)
12···LT

(1,1+)
0,12···L

(
λ;
{
w

(2s)
j

}
L

)
, (3.6)

P
(2s)
12···LT

(1,1+)
0,12···L

(
λ;
{
w

(2s)
j

}
L

)
P̃

(2s)
12···L = P

(2s)
12···LT

(1,1)
0,12···L

(
λ;
{
w

(2s)
j

}
L

)
. (3.7)

For instance we have P
(2s)
12···LB

(2s+;0)(λ)P
(2s)
12···L = P

(2s)
12···LB

(2s+;0)(λ).

We show (3.6) and (3.7) by the Yang–Baxter equation. In fact, T
(1,1+)
0,12···L(λ; {w(2s)

j }L) com-

mutes with the projection operator P
(2s)
12···L thanks to the fusion construction of projection ope-

rators (3.3) [19]. We derive (3.7) making use of (2.8).

3.10 Quantum inverse scattering problem (QISP) for the spin-s operators

We can express any given spin-s local operator in terms of the spin-1/2 global operators such
as A,B,C and D; i.e. we have the QISP formulas for the spin-s local operators [54]. For an
illustration, we show the case of b = 1, i.e., we express one of the spin-s elementary matrices in
terms of the spin-1/2 global operators.

Lemma 2 ([53, 54]). For a pair of integers i and j satisfying 1 ≤ i, j ≤ `, the spin-`/2 elementary
matrix associated with principal grading is decomposed into a sum of products of the matrix
elements of the spin-1/2 monodromy matrix as follows

Ẽ
i,j(`p)
1 =

([
`
i

]
q

[
`
j

]−1

q

)1/2

e−(i−j)ξ1 q(i−j)(`−1)/2 · P (`)
1···` · χ12···`

×
∑
{εβ}

T
(1,`p;ε)
ε1,ε′1

(
w

(`;ε)
1

)
· · ·T (1,`p;ε)

ε`,ε
′
`

(
w

(`;ε)
`

) ∏̀
k=1

(
A(`p;ε)

(
w

(`;ε)
k

)
+D(`p;ε)

(
w

(`;ε)
k

))−1
χ−1

12···`.

Here the sum is taken over all sets of εβ such that the number of integers β satisfying εβ = 1
and 1 ≤ β ≤ ` is given by j. We take a set of ε′α such that the number of integers α satisfying
ε′α = 1 and 1 ≤ α ≤ ` is given by i. We have expressed the element of (α, β) in the monodromy

matrix T (1,`p;ε)(λ) by T
(1,`p;ε)
α,β (λ) for α, β = 0, 1.

For an illustration, let us consider the spin-1/2 formula [9, 11] (see also [10, 73]):

ein,jnn =
n−1∏
j=1

t
(1p)
12···L(wj) · tr0

(
ein,jn0 R

(1p)
0,12···L(wn)

) n∏
j=1

(
t
(1p)
12···L(wj)

)−1
. (3.8)
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Here we recall that the spin-1/2 transfer matrix t
(1p)
12···L(λ) is given by the trace of the monodromy

matrix of type (1, 1⊗L): t
(1p)
12···L(λ) = A(1p)(λ) + D(1p)(λ). We remark that the expression (3.8)

holds if inhomogeneous parameters wj (1 ≤ j ≤ L) take generic values. Multiplying the expres-
sions of formula (3.8) for n = 1, 2, . . . ,m, we have

ei1,j11 ei2,j22 · · · eim,jmm = tr0

(
ei1,j10 R

(1p)
0,12···L(w1)

)
tr0

(
ei2,j20 R

(1p)
0,12···L(w2)

)
· · ·

× tr0

(
eim,jm0 R

(1p)
0,12···L(wm)

) m∏
j=1

(
t
(1p)
12···L(wj)

)−1
. (3.9)

Here we note that we have R
(1p)
0n (0) = Π0,n from the normalization condition of the R-matrices,

where Π0,n denotes the permutation operator acting on the 0th and nth sites (see also Sec-
tion 3.5). Thus, we have

L∏
j=1

t
(1p)
12···L(wj) = I⊗L. (3.10)

We note that the QISP formulas (3.8) hold if the inhomogeneous parameters are generic. If

we send them to a set of complete 2s-strings such as w
(2s)
j , then the transfer matrix becomes

non-regular or singular, and relations such as (3.10) do not hold. Instead of complete 2s-strings,

we therefore put “almost complete 2s-strings”, w
(2s;ε)
j , into inhomogeneous parameters wj . Here

parameters w
(2s;ε)
j are generic, and hence the QISP formula (3.8) holds.

3.11 Expectation value of a local operator through the limit: ε→ 0

In the massless regime, we define the expectation value of product of operators
m∏
k=1

Ẽ
ik,jk(2sp)
k

with respect to an eigenstate |{̃λα}
(2sp)

M 〉 by

〈
m∏
k=1

Ẽ
ik,jk(2sp)
k 〉

(
{λα}(2s p)M

)
=

〈{̃λα}
(2s p)

M |
m∏
k=1

Ẽ
ik,jk(2sp)
k |{̃λα}

(2sp)

M 〉

〈{̃λα}
(2sp)

M |{̃λα}
(2sp)

M 〉
. (3.11)

In order to evaluate (3.11) we make use of the following formulas.

Proposition 2 ([53, 54]). Let us take a pair of integers i1 and j1 satisfying 1 ≤ i1, j1 ≤ `. For
arbitrary parameters {µα}N and {λβ}M with i1 − j1 = N −M we have

〈0|
N∏
α=1

C(` p)(µa) · Ẽi1,j1(`p)
1 ·

M∏
β=1

B(`p)(λβ)|0〉

=

√√√√[ `
i1

]
q

[
`
j1

]−1

q

∑
{εβ}

〈0|
N∏
α=1

C(`p;0)(µa) · e
ε′1,ε1
1 · · · eε

′
`,ε`
` ·

M∏
β=1

B(`p;0)(λβ)|0〉. (3.12)

Here we take the sum over all sets of εβ such that the number of integers β with εβ = 1 for
1 ≤ β ≤ ` is given by j1. We take a set of ε′α such that the number of integers α satisfying
ε′α = 1 for 1 ≤ α ≤ ` is given by i1. Each summand is symmetric with respect to exchange of ε′α;
i.e., the following expression is independent of any permutation π ∈ S`:

〈0|
N∏
α=1

C(`p;0)(µa) · e
ε′π1,ε1
1 · · · eε

′
π`,ε`
` ·

M∏
β=1

B(`p;0)(λβ)|0〉. (3.13)
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Here we remark that Sn denotes the symmetric group of n elements.

We evaluate the expectation value of a given spin-s local operator for a Bethe-ansatz eigen-

state |̃{λα}
(2s)

M 〉, as follows. We first express the spin-s local operators in terms of the spin-1/2
local operators via formula (2.10). Through Proposition 2 the expectation value of the spin-s
local operators is reduced into those of the spin-1/2 local operators. We now assume that the
Bethe roots {λα(ε)}M are continuous with respect to small parameter ε. It follows from the

assumption that each entry of the Bethe eigenstate |{λk(ε)}
(2s;ε)
M 〉 is continuous with respect

to ε. Then, we apply the spin-1/2 QISP formula with generic inhomogeneous parameters w
(2s;ε)
j

such as formula (3.9). We next calculate the scalar product for the Bethe state |{λk(ε)}
(2s;ε)
M 〉. It

has the same inhomogeneous parameters w
(2s;ε)
j as the global operators appearing in the QISP

formula, so that we can make use of Slavnov’s formula of scalar products for the spin-1/2 case.
Calculating explicitly the determinant of the scalar product with Slavnov’s formula, we can
show that the expression of the scalar product is continuous with respect to ε at ε = 0. Thus,
sending ε to 0, we obtain the expectation value of the spin-s local operator (3.11).

Corollary 1. Suppose that i1 and j1 are integers satisfying 1 ≤ i1, j1 ≤ `, and {µk}N are
arbitrary parameters. Let us assume that Bethe roots {λγ(ε)}M are continuous at ε = 0 and
lim
ε→0

λγ(ε) = λγ for γ = 1, 2, . . . ,M . We have the following:

〈0|
N∏
k=1

C(`p)(µk) · Ẽ
i1,j1(`p)
1 ·

M∏
γ=1

B(`p)(λγ)|0〉 =

√√√√[ `
i1

]
q

[
`
j1

]−1

q

φ`({λγ}M ; {w(`)
j }L)

×
∑
{εβ}

lim
ε→0
〈0|

N∏
k=1

C(`p;ε)(µk) · T
(`p;ε)
ε1,ε′1

(
w

(`;ε)
1

)
· · ·T (`p;ε)

ε`,ε
′
`

(
w

(`;ε)
`

)
·
M∏
γ=1

B(`p;ε)(λγ(ε))|0〉. (3.14)

Here we take the sum over all sets of εβs such that the number of integers β satisfying εβ = 1
for 1 ≤ β ≤ ` is given by j1. We take a set of ε′α such that the number of integers α satisfying
ε′α = 1 for 1 ≤ α ≤ ` is given by i1. We have defined φm({λγ}) by φm({λγ}M ; {wj}L) =
m∏
j=1

M∏
α=1

b(λα − wj) with b(u) = sinh(u)/ sinh(u+ η).

We can evaluate the form factors and the expectation values of a spin-`/2 operator through
Corollary 1 [54]. The corrections of the form factors given in the paper [19] are listed in referen-
ce [20] of the paper [54] (see also [53]). Corrections for the paper [20] are listed in reference [21]
of the paper [54].

For an illustration, let us consider the spin-1 case. We calculate the one-point function

〈Ẽ1,1(2p)
1 〉. Here we have i1 = j1 = 1. Setting ε′1 = 0 and ε′2 = 1, we have

〈ψ(2p)
g |Ẽ1,1(2p)

1 |ψ(2 p)
g 〉 = 〈ψ(2p;0)

g |e0,0
1 e1,1

2 |ψ
(2p;0)
g 〉+ 〈ψ(2p;0)

g |e0,1
1 e1,0

2 |ψ
(2p;0)
g 〉.

Here we have taken the sum over sets {εβ} such as {ε1 = 0, ε2 = 1} and {ε1 = 1, ε2 = 0}.
Making use of the spin-1/2 QISP formula we have

e0,0
1 e1,1

2 = A(2p;ε)
(
w

(2;ε)
1

)
D(2p;ε)

(
w

(2;ε)
2

) 2∏
j=1

(
t
(2p;ε)
12···L

(
w

(2;ε)
j

))−1
,

e0,1
1 e1,0

2 = C(2p;ε)
(
w

(2;ε)
1

)
B(2p;ε)

(
w

(2;ε)
2

) 2∏
j=1

(
t
(2p;ε)
12···L

(
w

(2;ε)
j

))−1
.
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Therefore we have

〈Ẽ1,1(2p)
1 〉 = φ2

(
{λγ};

{
w

(2)
j

}
L

)(
lim
ε→0

〈ψ(2p;ε)
g |A(2p;ε)(w

(2:ε)
1 )D(2p;ε)(w

(2:ε)
2 )|ψ(2p;ε)

g 〉
〈ψ(2p;ε)

g |ψ(2p;ε)
g 〉

+ lim
ε→0

〈ψ(2p;ε)
g |C(2p;ε)(w

(2:ε)
1 )B(2p;ε)(w

(2:ε)
2 )|ψ(2p;ε)

g 〉
〈ψ(2p; ε)

g |ψ(2 p; ε)
g 〉

)
.

4 Quantum group symmetry relations in the spin 1 case

We show some important topics. We derive symmetry relations among the expectation values
of products of the spin-1/2 operators from the spin inversion symmetry. In particular, we show
how to transform the basis vectors constructed in the 2sth tensor product space of the spin-1/2
representations to the 2s+ 1-dimensional vectors in C2s+1.

4.1 Rotation symmetry of the XXX spin chain and irreducible components
of operators

Let us consider the XXX case where the SU(2) symmetry holds for the total spin operators.
The tensor product of two spin-1/2 representations of sl(2) decomposes into the direct sum
of spin-1 and spin-0 representations; i.e., V (1) ⊗ V (1) = V (2) ⊕ V (0). Here we recall that
V (1)⊗ V (1) is four-dimensional, and the components V (2) and V (0) are three-dimensional and
one-dimensional, respectively. In the spin-1 representation V (2) we have the basis vectors and
basis covectors as follows

||2, 0〉 = ||+ +〉, 〈2, 0|| = 〈+ + ||,

||2, 1〉 = ||+−〉+ || −+〉, 〈2, 1|| = 1

2
(〈+− ||+ 〈−+ ||) ,

||2, 2〉 = || − −〉, 〈2, 2|| = 〈− − ||.

Here we recall that || −+〉 denotes |1〉1 ⊗ |0〉2.
In the spin-0 representation V (0) we have the basis vectors and basis covectors as follows

||0, 0〉 = |+−〉 − | −+〉, 〈0, 0|| = 1

2
(〈+− || − 〈−+ ||) .

In terms of the basis of the spin-1 irreducible representation we express the symmetric projection
operator as follows

P (2) = ||2, 0〉〈2, 0||+ ||2, 1〉〈2, 1||+ ||2, 2〉〈2, 2||.

In the spin-s XXX case we define elementary matrices by

Em,n(2s) = ||2s,m〉〈2s, n||.

In the tensor product V (1) ⊗ V (1) there are sixteen elementary matrices ej1,k11 ej2,k22 for
j1, j2, k1, k2 = ±. For an illustration we express the operator e+−

1 e−+
2 in terms of the basis

vectors and their covectors as follows

〈2, 1||e+−
1 e−+

2 ||2, 1〉 =
1

2
, 〈0, 0||e+−

1 e−+
2 ||2, 1〉 =

1

2
,

〈2, 1||e+−
1 e−+

2 ||0, 0〉 = −1

2
, 〈0, 0||e+−

1 e−+
2 ||0, 0〉 = −1

2
.
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In terms of the bases of vectors and covectors, we have

e+−
1 e−+

2 =
1

2

(
||2, 1〉〈2, 1||+ ||0, 0〉〈2, 1|| − ||2, 1〉〈0, 0|| − ||0, 0〉〈0, 0||

)
. (4.1)

Applying the projection operators to the right-hand-side of (4.1), we have

P (2)e+−
1 e−+

2 P (2) =
1

2
||2, 1〉〈2, 1|| = 1

2
E1,1(2).

Similarly, we have

e++
1 e−−2 =

1

2

(
||2, 1〉〈2, 1||+ ||0, 0〉〈2, 1||+ ||2, 1〉〈0, 0||+ ||0, 0〉〈0, 0||

)
.

We thus have

P (2)e++
1 e−−2 P (2) =

1

2
||2, 1〉〈2, 1|| = 1

2
E1,1(2+).

In terms of irreducible components, we have

P (2)e+−
1 e−+

2 P (2) = P (2)e−−1 e++
2 P (2).

We thus have

P (2)e−+
1 e+−

2 P (2) = P (2)e+−
1 e−+

2 P (2) = P (2)e++
1 e−−2 P (2) = P (2)e−−1 e++

2 P (2).

We shall evaluate the expectation values of spin-s local operators by reducing them into those
of the spin-1/2 local operators. Applying formula (2.10) to the case of ε′1 = 0 and ε′2 = 1, which
correspond to + and −, respectively, we have

〈ψ(2)
g |E1,1(2)|ψ(2)

g 〉 = 〈ψ(2;0)
g |e+−

1 e−+
2 |ψ

(2;0)
g 〉+ 〈ψ(2;0)

g |e++
1 e−−2 |ψ

(2;0)
g 〉.

Here we remark that the vector |ψ(2s;0)
g 〉 is given by |ψ(2s;0)

g 〉 =
M∏
γ=1

B(2s;0)(λγ)|0〉, while the vector

|ψ(2s)
g 〉 is given by multiplying the projection operator: |ψ(2s)

g 〉 = P
(2s)
12···L

M∏
γ=1

B(2s;0)(λγ)|0〉.

4.2 Spin inversion symmetry

For even L we may assume the spin inversion symmetry: U |ψ(2sp;0)
g 〉 = ±|ψ(2sp;0)

g 〉 for U =
L∏
j=1

σxj .

Here we recall that associated with the ground state of the integrable spin-s XXZ spin chain the

vector |ψ(2sp;0)
g 〉 is given by |ψ(2sp;0)

g 〉 =
M∏
γ=1

B(2sp;0)(λγ)|0〉.

We derive symmetry relations as follows [53, 54]

〈ψ(2sp;0)
g |eε

′
1,ε1

1 · · · eε
′
2s,ε2s

2s |ψ(2sp;0)
g 〉 = 〈ψ(2sp;0)

g |e1−ε′1,1−ε1
1 · · · e1−ε′2s,1−ε2s

2s |ψ(2sp;0)
g 〉. (4.2)

Applying the spin-inversion symmetry (4.2) we derive symmetry relations among the expec-
tation values of local or global operators [53, 54].

For an illustration, let us evaluate the one-point function in the spin-1 case with i1 = j1 = 1,

〈E1,1(2p)
1 〉. Setting ε′1 = 0 and ε′2 = 1 we decompose the spin-1 elementary matrix in terms of

a sum of products of the spin-1/2 ones

〈ψ(2p)
g |E1,1(2p)

1 |ψ(2p)
g 〉 = 〈ψ(2p;0)

g |e0,0
1 e1,1

2 |ψ
(2p;0)
g 〉+ 〈ψ(2p;0)

g |e0,1
1 e1,0

2 |ψ
(2p;0)
g 〉.
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Through the symmetry relations (3.13) with respect to ε′α we have the following equalities:

〈ψ(2p;0)
g |e0,0

1 e1,1
2 |ψ

(2p;0)
g 〉 = 〈ψ(2p;0)

g |e1,0
1 e0,1

2 |ψ
(2p;0)
g 〉,

〈ψ(2p;0)
g |e1,1

1 e0,0
2 |ψ

(2p;0)
g 〉 = 〈ψ(2p;0)

g |e0,1
1 e1,0

2 |ψ
(2p;0)
g 〉.

From spin-inversion symmetry (4.2) we have

〈ψ(2p;0))
g |e0,0

1 e1,1
2 |ψ

(2p;0))
g 〉 = 〈ψ(2p;0)

g |e1,1
1 e0,0

2 |ψ
(2p;0)
g 〉,

〈ψ(2,p;0))
g |e0,1

1 e1,0
2 |ψ

(2p;0)
g 〉 = 〈ψ(2p;0)

g |e1,0
1 e0,1

2 |ψ
(2p;0)
g 〉

and hence we have the equalities of the four terms. We therefore obtain the following:

〈ψ(2)
g |E

1,1(2p)
1 |ψ(2)

g 〉 = 2〈ψ(2p;0)
g |e0,0

1 e1,1
2 |ψ

(2p;0)
g 〉.

We thus derive the double-integral representation of the one-point function 〈E1,1(2p)
1 〉 of [20], as

we shall show in Section 6.

4.3 Transformation from V (2s) to the (2s+1)-dimensional vector space C2s+1

We shall express the spin-s massless XXZ transfer matrix as a (2s + 1)Ns × (2s + 1)Ns matrix
acting on the tensor product of the (2s + 1)-dimensional vector spaces C2s+1; i.e., acting on
(C2s+1)⊗Ns .

In Section 3.6 we have defined the spin-s XXZ transfer matrix through the fusion method.
It is expressed in terms of operators defined on the Lth tensor product space of the spin-1/2
representations, (V (1))⊗L, and given by a 2L×2L matrix. We have constructed them by applying
the projection operators to the spin-1/2 XXZ transfer matrix with inhomogeneous parameters

given by complete strings w
(2s)
j .

We now formulate the spin-s XXZ transfer matrix in terms of the basis of the (2s + 1)-
dimensional vector space C2s+1 such as |2s,m)) for m = 0, 1, . . . , 2s. As the basis vectors of the
(2s + 1)-dimensional representation of Uq(sl2) we introduce vectors |2s,m〉 with the following
normalization:

|2s,m〉 = ||2s,m〉/

√(
2s
m

)
for m = 0, 1, . . . , 2s.

We denote by 〈2s,m| the transposition of |2s,m〉

〈2s,m| = (|2s,m〉)t for m = 0, 1, . . . , 2s.

Let us denote the complex conjugate of a complex number z by z̄. We express the Hermitian
conjugate of a vector |2s,m〉 by

〈2s,m| = (|2s,m〉)† for m = 0, 1, . . . , 2s.

Let us introduce the transformation S: V (2s) → C2s+1. We define it by

S =
2s∑
m=0

|2s,m))〈2s,m|.

It maps the basis of the spin-s representation V (2s) constructed in the tensor product space

V
(1)

1 ⊗ · · · ⊗ V (1)
2s ; i.e., |2s,m〉 for m = 0, 1, . . . , 2s, to that of the (2s+ 1)-dimensional represen-

tation C2s+1; i.e., |2s,m)) for m = 0, 1, . . . , 2s. We can show the following relations:

SẼi,i(2sp)S
†

= Ei,j for i, j = 0, 1, . . . , 2s. (4.3)
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Here we recall that Ei,j denote the (2s+1)-by-(2s+1) unit matrices which have only one nonzero
element 1 at the entry of (i, j) for i, j = 0, 1, . . . , 2s.

For an illustration, let us consider the spin-1 case. The basis vectors of C3 are given by

|2, 0)) = (1, 0, 0)t, |2, 1)) = (0, 1, 0)t, |2, 2)) = (0, 0, 1)t.

In the spin-1 case the transformation S: V (2) → C3 is given by

S =

2∑
m=0

|2,m))〈2,m|.

In the massless regime where q is complex with |q| = 1, explicitly we have

S =

 1 0 0 0
0 1√

2

q√
2

0

0 0 0 1

 .

Taking the Hermitian conjugate of S we have

S† =
2∑

m=0

|2,m〉((2,m| =


1 0 0
0 1√

2
0

0 1√
2q

0

0 0 1

 .

It is straightforward to show the following:

SS† =

 1 0 0
0 1 0
0 0 1

 , S†S =


1 0 0 0
0 1

2
q
2 0

0 1
2q

1
2 0

0 0 0 1

 .

In terms of the bras and kets we have

SS† =
2∑

m=0

|2,m))〈2,m|
2∑

n=0

|2, n〉((2, n|

=

2∑
m=0

2∑
n=0

δ(m,n)|2,m))((2, n| =
2∑

m=0

|2,m))((2,m|.

Similarly, we have

S†S =

2∑
m=0

|2,m〉〈2,m|.

In order to transform the conjugate vectors |̃|2,m〉 it is also useful to introduce the complex
conjugates of transformations S and S†:

S =
2∑

m=0

|2,m))〈2,m| =

 1 0 0 0
0 1√

2
1√
2q

0

0 0 0 1

 ,
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S
†

=
2∑

m=0

|2,m〉((2,m| =


1 0 0
0 1√

2
0

0 q√
2

0

0 0 1

 .

They are related to the projection operator P̃ (2). We have

S
†
S =


1 0 0 0
0 1

2
1
2q 0

0 q
2

1
2 0

0 0 0 1

 =
2∑

m=0

|2,m〉〈2,m| = P̃ (2).

The spin-1 elementary matrices Ẽi,j(2p) are transformed into the 3× 3 unit matrices Ei,j as

SẼi,i(2p)S
†

= Ei,j for i, j = 0, 1, 2.

For instance we have

SẼ1,1(2p)S
†

= E1,1 =

 0 0 0
0 1 0
0 0 0

 .

We have thus confirmed relations (4.3).
Let us introduce the transformation which maps the tensor product of the spin-s represen-

tations: V
(2s)

1 ⊗ · · · ⊗ V (2s)
Ns

to the tensor product of the (2s + 1)-dimensional representations:

C2s+1
1 ⊗ · · · ⊗C2s+1

Ns
. We define it by the tensor product of transformation S as follows

S1 ⊗ · · · ⊗ SNs : V
(2s)

1 ⊗ · · · ⊗ V (2s)
Ns
→ C2s+1

1 ⊗ · · · ⊗C2s+1
Ns

.

We also define its complex conjugate

S1 ⊗ · · · ⊗ SNs : V
(2s)

1 ⊗ · · · ⊗ V (2s)
Ns
→ C2s+1

1 ⊗ · · · ⊗C2s+1
Ns

.

Let us consider the spin-s ground state with (2s+ 1)-dimensional entries, |Ψ(2s)
G 〉. For the spin-1

case, it gives the ground state of the spin-1 XXZ Hamiltonian (1.1). In terms of the ground

state constructed by the fusion method, |ψ(2sp)
g 〉, it is given by

|Ψ(2s)
G 〉 = S1 ⊗ · · · ⊗ SNs |ψ(2sp)

g 〉.

Here we recall that |ψ(2sp)
g 〉 denotes the ground state of the integrable spin-s XXZ spin chain

constructed through the fusion method, where the evaluation representations are associated with
principal grading. In terms of the eigenvector with (2s+ 1)-dimensional entries, the expectation
value of a given local operator E with (2s+ 1)-dimensional entries is given by

〈Ψ(2s)
G |E|Ψ(2s)

G 〉 = 〈ψ(2sp)
g |S†1 ⊗ · · · ⊗ S

†
NsES1 ⊗ · · · ⊗ SNs |ψ(2sp)

g 〉.

Therefore, the operator E corresponds to the operator E(2sp) in the fusion construction as follows

E(2sp) = S
†
1 ⊗ · · · ⊗ S

†
NsES1 ⊗ · · · ⊗ SNs .

For instance, from (4.3) we have the following:

Ẽi,i(2sp) = S
†
Ei,jS for i, j = 0, 1, . . . , 2s.

Similarly, we have the following relations for the spin-s XXZ transfer matrices defined as (2s+

1)Ns × (2s+ 1)Ns matrices t
(`,2s)
12···Ns , to those of the fusion construction:

t̃
(`,2sp)
12···Ns(λ) = S

†
1 ⊗ · · · ⊗ S

†
Nst

(`,2s)
12···Ns(λ)S1 ⊗ · · · ⊗ SNs for ` = 1, 2, . . . , 2s.
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5 Multiple-integral representations for spin-s case

We introduce some useful symbols for expressing the correlation functions of the integrable
spin-s XXZ spin chain. We derive the multiple-integral representation of the spin-s correlation
functions by mainly following the procedures of [20] except for the formula of reducing the
higher-spin form factors into the spin-1/2 scalar products such as in Corollary 1.

Let us sketch the main procedures for deriving the multiple-integral representation of the spin-
s XXZ correlation functions. First, we introduce the spin-s elementary operators as the basic
blocks for constructing the local operators of the integrable spin-s XXZ spin chain. Secondly,
we reduce them into a sum of products of the spin-1/2 elementary operators, which we express
through the spin-1/2 QISP formula in terms of the matrix elements of the spin-1/2 monodromy
matrix, and evaluate their scalar products through Slavnov’s formula of the Bethe-ansatz scalar
products. Here, the expectation value of a physical quantity is expressed as a sum of the ratios
of the Bethe-ansatz scalar products to the norm of the Bethe-ansatz eigenvector. Furthermore,
the ratios are expressed in terms of the determinants of some matrices. Thirdly, solving the
integral equations for the matrices in the thermodynamic limit, we derive the multiple-integral
representation of the correlation functions.

Let us summarize the multiple-integral representations of correlation functions for the inte-
grable spin-s XXZ spin chain in a region of the massless regime with 0 ≤ ζ < π/2s [20]. We
show the revised expression [53, 54]. Here we recall that in the massless regime we set η = iζ
with 0 ≤ ζ < π.

We express any correlation function of the integrable spin-s XXZ chain in terms of the linear
combination of products of the spin-s elementary matrices. They are defined by

F (2sp)
m ({ik, jk}) = 〈ψ(2sp)

g |
m∏
k=1

Ẽ
ik,jk(2sp)
k |ψ(2sp)

g 〉/〈ψ(2sp)
g |ψ(2sp)

g 〉,

where Ẽ
ik,jk(2sp)
k denotes the (2s + 1) × (2s + 1) elementary matrix whose entries are all zero

except for the (ik, jk) element which is given by 1, for each k with 1 ≤ k ≤ m. Here integers ik

and jk satisfy 1 ≤ ik, jk ≤ 2s. We recall that |ψ(2sp)
g 〉 denotes the spin-s ground state.

Let us consider a product of the spin-`/2 elementary matrices associated with principal

grading, E
i1,j1(`p)
1 · · ·Eim,jm(`p)

m , for which we shall evaluate the zero-temperature spin-s XXZ

correlation functions. We introduce variables ε
[k]′
α and ε

[k]
β which take only two values 0 or 1 for

k = 1, 2, . . . ,m and α, β = 0, 1, . . . , `. For the mth product of elementary matrices, we introduce

sets of ε
[k]′
α s and ε

[k]
β s (1 ≤ k ≤ m) such that the number of αs satisfying ε

[k]′
α = 1 and 1 ≤ α ≤ 2s

is given by ik and the number of βs satisfying ε
[k]
β = 1 and 1 ≤ β ≤ 2s by jk, respectively. We

then express them by integers ε′js and εjs for j = 1, 2, . . . , 2sm as follows:

ε′2s(k−1)+α = ε[k]′
α for α = 1, 2, . . . , 2s; k = 1, 2, . . . ,m,

ε2s(k−1)+β = ε
[k]
β for β = 1, 2, . . . , 2s; k = 1, 2, . . . ,m.

We express the mth product of (2s + 1) × (2s + 1) elementary matrices in terms of a sum of

2smth products of the 2 × 2 elementary matrices with entries {εj , ε′j}; i.e., e
ε′1,ε1
1 · · · eε

′
2sm,ε2sm

2sm

[20, 54].

For given sets of εj and ε′j for j = 1, 2, . . . , 2sm we define α− by the set of integers j satisfying
ε′j = 1 and α+ by the set of integers j satisfying εj = 0:

α−({ε′j}) = {j; ε′j = 1}, α+({εj}) = {j; εj = 0}.
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We denote by α− and α+ the number of elements of the set α− and α+, respectively. Due to
the “charge conservation”, we have

α− + α+ = 2sm. (5.1)

Precisely, we have α− =
m∑
k=1

ik and α+ = 2sm−
m∑
k=1

jk. Here we recall that for the R-matrix of

the XXZ spin chain matrix elements R(u)abcd vanish if a+b 6= c+d, which we call the charge con-

servation. It follows from the charge conservation that the correlation function F
(2sp)
m ({εj , ε′j})

vanishes unless the two sums are equal:
m∑
k=1

ik =
m∑
k=1

jk. We therefore obtain relation (5.1).

We remark that the charge conservation of the R-matrix corresponds to the “ice rule” of the
six-vertex model, which is defined as a two-dimensional ferro-electric lattice model.

For sets α− and α+ we define λ̃j for j ∈ α− and λ̃′j′ for j′ ∈ α+, by the following sequence:

(λ̃′j′max
, . . . , λ̃′j′min

, λ̃jmin , . . . , λ̃jmax) = (λ1, . . . , λ2sm).

Let us recall the assumption that in the region 0 ≤ ζ < π/2s the spin-s ground state |ψ(2sp)
g 〉

is given by Ns/2 sets of the 2s-strings:

λ(α)
a = µa − (α− 1/2)η + δ(α)

a for a = 1, 2, . . . , Ns/2 and α = 1, 2, . . . , 2s.

Here we also assume that string deviations δ
(α)
a are very small for large Ns. In terms of rapidities

forming strings, λ
(α)
a , the spin-s ground state associated with the principal grading is given by

|ψ(2sp)
g 〉 =

Ns/2∏
a=1

2s∏
α=1

B̃(2sp)(λ(α)
a ; {ξb}Ns)|0〉.

Here we have M Bethe roots with M = 2sNs/2 = sNs. The density of string centers, ρ(λ), is
given by

ρ(λ) =
1

2ζ cosh(πλ/ζ)
,

which has simple poles at λ = iζ(n+ 1/2), for n ∈ Z with the residues (−1)n/(2πi).

We define the (j, k) element of a matrix S = S
(
(λj)2sm; (w

(2s)
j )2sm

)
by

Sj,k = ρ
(
λj − w(2s)

k + η/2
)
δ(α(λj), β(k)) for j, k = 1, 2, . . . , 2sm.

Here δ(α, β) denotes the Kronecker delta. We define β(j) by

β(j) = j − 2s[[(j − 1)/2s]],

where the Gauss symbol [[x]] is defined by the greatest integer less than or equal to a real
number x. We define α(λj) by α(λj) = γ (1 ≤ γ ≤ 2s) if λj is related to the integral variable

µj by λj = µj − (γ − 1/2)η, or λj ≈ w(2s)
k where β(k) = γ (1 ≤ γ ≤ 2s) [20]. We remark that µj

correspond to the centers of complete 2s-strings λj . When we evaluate α(λj), we assume that

the integral paths of
∫∞−i(γ−1)ζ±iε
−∞−i(γ−1)ζ±iε are replaced by those of

∫∞−i(γ−1/2)ζ
−∞−i(γ−1/2)ζ for γ = 1, 2, . . . , 2s,

respectively. Here we remark that when we deform the integral path of
∫∞−i(γ−1)ζ+iε
−∞−i(γ−1)ζ+iε to that of∫∞−i(γ−1/2)ζ

−∞−i(γ−1/2)ζ (for γ = 1, 2, . . . , 2s), we may have the contribution of a simple pole at λ = w
(2s)
k

with integer k satisfying β(k) = γ.
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With the above notations, we express correlation functions for the massless spin-s XXZ chain
in the form of multiple integrals as follows

F (2sp)
m ({εj , ε′j}) = C({ik, jk})

(∫ ∞+iε

−∞+iε
+

∫ ∞−iζ+iε

−∞−iζ+iε
+ · · ·+

∫ ∞−i(2s−1)ζ+iε

−∞−i(2s−1)ζ+iε

)
dλ1 · · ·

×

(∫ ∞+iε

−∞+iε
+ · · ·+

∫ ∞−i(2s−1)ζ+iε

−∞−i(2s−1)ζ+iε

)
dλα+

×

(∫ ∞−iε

−∞−iε
+

∫ ∞−iζ−iε

−∞−iζ−iε
+ · · ·+

∫ ∞−i(2s−1)ζ−iε

−∞−i(2s−1)ζ−iε

)
dλα++1 · · ·

×

(∫ ∞−iε

−∞−iε
+ · · ·+

∫ ∞−i(2s−1)ζ−iε

−∞−i(2s−1)ζ−iε

)
dλ2sm

×
∑

α+({εj})

Q({εj , ε′j};λ1, . . . , λ2sm)detS(λ1, . . . , λ2sm). (5.2)

Here we have defined Q({εj , ε′j};λ1, . . . , λ2sm) by

Q({εj , ε′j};λ1, . . . , λ2sm))

= (−1)α+

∏
j∈α−

(
j−1∏
k=1

sinh
(
λ̃j − w(2s)

k + η
) 2sm∏
k=j+1

sinh
(
λ̃j − w(2s)

k

))
∏

1≤k<`≤2sm

sinh(λ` − λk + η + ε`,k)

×

∏
j′∈α+

(
j′−1∏
k=1

sinh
(
λ̃′j′ − w

(2s)
k − η

) 2sm∏
k=j′+1

sinh
(
λ̃′j′ − w

(2s)
k

))
∏

1≤k<`≤2sm

sinh
(
w

(2s)
k − w(2s)

`

) . (5.3)

Here we have set εk,` = iε for Im(λk − λ`) > 0 and εk,` = −iε for Im(λk − λ`) < 0, where ε is an
infinitesimally small positive real number: 0 < ε� 1. The normalization factor C is given by

C({ik, jk}) =

m∏
k=1

(√
F (`, ik)/F (`, jk)q

ik(`−ik)/2−jk(`−jk)/2
)

=

m∏
b=1

√√√√[2s
ib

]
q

[
2s
jb

]−1

q

.

where q = eη = eiζ .

Here we should remark that in (5.2) the sum of α+({εj}) is taken over all sets {εj} corre-

sponding to {ε[k]
β } (1 ≤ k ≤ m) such that the number of integers β satisfying ε

[k]
β = 1 with

1 ≤ β ≤ 2s is given by jk for each k satisfying 1 ≤ k ≤ m. In (5.3) we take a set α−({ε′j})
corresponding to ε

[k]′
α for k = 1, 2, . . . ,m, where the number of integers α satisfying ε

[k]′
α = 1 and

1 ≤ α ≤ 2s is given by ik for each k (1 ≤ k ≤ m).

6 Multiple integrals of the spin-1 one-point functions (s = 1)

We calculate analytically the integrals for the spin-1 one-point functions. Considering the
residues which are derived when we shift the integral paths, we explicitly evaluate the dou-
ble integrals expressing the spin-1 one-point functions. Hereafter, we shall often denote the
spin-s elementary matrices Ẽi,j(2sp) by Ei,j for simplicity.
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6.1 〈E22〉: The emptiness formation probability

Let us evaluate the emptiness formation probability (EFP) 〈Ẽ2,2(2p)〉. In this case we have

i1 = j1 = 2; (ε1, ε2) = (1, 1), (ε′1, ε
′
2) = (1, 1); C = 1;

α+ = ∅, α− = {1, 2}; (λ̃1, λ̃2) = (λ1, λ2).

Here the symbol ∅ denotes the empty set. We evaluate EFP as follows

〈Ẽ2,2(2p)
1 〉 = φ2

(
{λγ};

{
w

(2)
j

}
L

)(
lim
ε→0

〈ψ(2p;ε)
g |D(2p;ε)

(
w

(2;ε)
1

)
D(2p;ε)

(
w

(2;ε)
2

)
|ψ(2p;ε)
g 〉

〈ψ(2p;ε)
g |ψ(2p;ε)

g 〉

)
.

Let us denote the integral path
∫∞+iα
−∞+iα by

∫
Ciα

. The multiple-integral formula reads

〈E22〉 =

(∫
C−iε

+

∫
C−η−iε

)
dλ1

(∫
C−iε

+

∫
C−η−iε

)
dλ2Q(λ1, λ2) detS(λ1, λ2),

where Q(λ1, λ2) and S(λ1, λ2) are expressed in terms of ϕ(x) = sinh(x) as

Q(λ1, λ2) =
ϕ(λ1 − w(2)

2 )ϕ(λ2 − w(2)
1 + η)

ϕ(λ2 − λ1 + η + ε21)ϕ(w
(2)
1 − w

(2)
2 )

,

S(λ1, λ2) =

(
ρ(λ1 − w(2)

1 + η/2) δα(λ1),1 ρ(λ1 − w(2)
2 + η/2) δα(λ1),2

ρ(λ2 − w(2)
1 + η/2) δα(λ2),1 ρ(λ2 − w(2)

2 + η/2) δα(λ2),2

)
.

We now shift the integral paths C−iε and C−η−iε into C−η/2 and C−3η/2, respectively. During
the contour deformation each of the integral paths does not cross any pole of the integrand, and
hence we have

〈E22〉 =

(∫
C−η/2

+

∫
C−3η/2

)
dλ1

(∫
C−η/2

+

∫
C−3η/2

)
dλ2Q(λ1, λ2) detS(λ1, λ2).

We now denote C−η/2 and C−3η/2 by C1 and C2, respectively. After expanding the above
expression with respect to the types of integral paths, we have four terms. However, only two
of them survive due to the Kronecker deltas in the matrix S

〈E22〉 =

∫
C1

dλ1

∫
C1

dλ2Q(λ1, λ2)

∣∣∣∣∣ρ(λ1 − w(2)
1 + η/2) 0

ρ(λ2 − w(2)
1 + η/2) 0

∣∣∣∣∣
+

∫
C1

dλ1

∫
C2

dλ2Q(λ1, λ2)

∣∣∣∣∣ρ(λ1 − w(2)
1 + η/2) 0

0 ρ(λ2 − w(2)
2 + η/2)

∣∣∣∣∣
+

∫
C2

dλ1

∫
C1

dλ2Q(λ1, λ2)

∣∣∣∣∣ 0 ρ(λ1 − w(2)
2 + η/2)

ρ(λ2 − w(2)
1 + η/2) 0

∣∣∣∣∣
+

∫
C2

dλ1

∫
C2

dλ2Q(λ1, λ2)

∣∣∣∣∣ 0 ρ(λ1 − w(2)
2 + η/2)

0 ρ(λ2 − w(2)
2 + η/2)

∣∣∣∣∣
=

∫
C1

dλ1

∫
C2

dλ2Q(λ1, λ2)ρ(λ1 − w(2)
1 + η/2)ρ(λ2 − w(2)

2 + η/2)

−
∫
C2

dλ1

∫
C1

dλ2Q(λ1, λ2)ρ(λ1 − w(2)
2 + η/2)ρ(λ2 − w(2)

1 + η/2),
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Substituting w
(2)
1 = ξ1, w

(2)
2 = ξ1 − η, we have

〈E22〉 =

∫ ∞
−∞

dµ1

∫ ∞
−∞

dµ2(Q12 −Q21)ρ(µ1 − ξ1)ρ(µ2 − ξ1)

=

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2(Q12 −Q21)ρ(x1)ρ(x2)

where x1 = µ1 − ξ1, x2 = µ2 − ξ1, and Q12 and Q21 are given by

Q12 = Q(µ1 − η/2, µ2 − 3η/2) =
1

ϕ(η)

ϕ(µ1 − ξ1 + η/2)ϕ(µ2 − ξ1 − η/2)

ϕ(µ2 − µ1 − iε)

=
1

ϕ(η)

ϕ(x1 + η/2)ϕ(x2 − η/2)

ϕ(x2 − x1 − iε)
, (6.1)

Q21 = Q(µ1 − 3η/2, µ2 − η/2) =
1

ϕ(η)

ϕ(µ1 − ξ1 − η/2)ϕ(µ2 − ξ1 + η/2)

ϕ(µ2 − µ1 + 2η + iε)

=
1

ϕ(η)

ϕ(x1 − η/2)ϕ(x2 + η/2)

ϕ(x2 − x1 + 2η + iε)
.

Thus, we have

〈E22〉 = I12 − I21

where I12 and I21 are given by

I12 =

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2Q12(x1, x2)ρ(x1)ρ(x2),

I21 =

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2Q21(x1, x2)ρ(x1)ρ(x2).

The integrand Q12 is transformed into Q21 when we shift the integral path as x1 → x1 − η
and x2 → x2 + η. First we shift the integral path in I12 as x1 → x1 − η.

Here we note that due to the sign in front of ε in the denominator of (6.1), the integrand Q12

has a pole at x1 = x2 − iε as a function of x1. Here we recall that ε is an infinitesimally small
positive real number. We therefore express the integral I12 in terms of a sum of two integrals,
J1 + J2, as follows

I12 =

∫ ∞
−∞

dx2ρ(x2)

∫ ∞
−∞

dx1Q12(x1, x2)ρ(x1)

=

∫ ∞
−∞

dx2ρ(x2)

(∫ ∞−η
−∞−η

dx1Q12(x1, x2)ρ(x1)− 2πiRes
[
Q12(x1, x2)ρ(x1)|x1=x2−iε

])
=

∫ ∞
−∞

dx2ρ(x2)

∫ ∞
−∞

dx1Q12(x1 − η, x2)(−1)ρ(x1)

− 2πi

∫ ∞
−∞

dx2ρ(x2)Res
[
Q12(x1, x2)ρ(x1)|x1=x2−iε

]
≡ J1 + J2.
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Here we have made use of the anti-periodicity: ρ(x + nη) = (−1)nρ(x). We also remark that
the simple pole at x1 = −η/2 due to ρ(x1) is canceled by the factor ϕ(x1 + η/2) in Q12(x1, x2).

Let us first consider the single integral J2 derived from the pole at x1 = x2 − ε. Explicitly
evaluating the integral J2 we have

J2 = −2πi

∫ ∞
−∞

dx2ρ(x2)2 1

ϕ(η)

ϕ(x2 + η/2)ϕ(x2 − η/2)

−1

=
π

4ζ2 sin ζ

∫ ∞
−∞

dx
cosh 2x− cos ζ

cosh2(πx/ζ)
=
ζ − sin ζ cos ζ

2ζ sin2 ζ
.

Here we have made use of formula (B.2).

Let us next consider the double integral J1. We shift the integral path in J1 as x2 → x2 + η.
We derive the wanted integral I21 as follows

J1 =

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2Q12(x1 − η, x2)(−1)ρ(x1)ρ(x2)

=

∫ ∞
−∞

dx1

∫ ∞+η

−∞+η
dx2Q12(x1 − η, x2)(−1)ρ(x1)ρ(x2)

=

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2Q12(x1 − η, x2 + η)(−1)2ρ(x1)ρ(x2)

=

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2Q21(x1, x2)ρ(x1)ρ(x2) = I21.

Here we note that the simple pole at x2 = η/2 due to ρ(x2) is canceled by the factor ϕ(x2−η/2)
in Q12.

Finally we have the analytical expression of the one-point function 〈E22〉 as follows

〈E22〉 = I12 − I21 = (J1 + J2)− I21 = J2 =
ζ − sin ζ cos ζ

2ζ sin2 ζ
.

6.2 〈E11〉 = 2〈e1,11 e0,02 〉

Let us calculate a spin-1 one-point function, 〈E11〉. Setting ε′1 = 1 and ε′2 = 0 in formula (2.10)
we have

i1 = j1 = 1; (ε1, ε2) = (0, 1), (1, 0); C = 1;

α+ = {1}, {2}; α− = {1}; (λ̃′1, λ̃1) = (λ1, λ2), (λ̃′2, λ̃1) = (λ1, λ2).

Here (ε1, ε2) = (1, 0) corresponds to α+ = {2}, and hence we have (λ̃′2, λ̃1) = (λ1, λ2).
Applying formula (3.14) we express 〈E11〉 as follows

〈Ẽ1
1,1(2p)

〉 = 〈ψ(2p)
g |Ẽ1

1,1 (2p)
|ψ(2 p)
g 〉/〈ψ(2p)

g |ψ(2p)
g 〉

= φ2

(
{λγ};

{
w

(2)
j

}
L

)(
lim
ε→0

〈{λα(ε)}(2p;ε)M |B(2p;ε)(w
(2;ε)
1 )C(2p;ε)(w

(2;ε)
2 )|{λα(ε)}(2p;ε)M 〉

〈{λα(ε)}(2p;ε)M |{λα(ε)}(2p;ε)M 〉
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+ lim
ε→0

〈{λα(ε)}(2p;ε)M |D(2p;ε)(w
(2;ε)
1 )A(2p;ε)(w

(2;ε)
2 )|{λα(ε)}(2p;ε)M 〉

〈{λα(ε)}(2p;ε)M |{λα(ε)}(2p;ε)M 〉

)
. (6.2)

Considering the spin inversion symmetry and the quantum group invariance we evaluate 〈E11〉
by

〈Ẽ1
1,1(2p)

〉 = 2φ2

(
{λγ};

{
w

(2)
j

}
L

)
× lim
ε→0

〈{λα(ε)}(2p;ε)M |D(2p;ε)(w
(2;ε)
1 )A(2p;ε)(w

(2;ε)
2 )|{λα(ε)}(2p;ε)M 〉

〈{λα(ε)}(2p;ε)M |{λα(ε)}(2p;ε)M 〉
. (6.3)

Let us briefly review how we reduce (6.2) to (6.3). It follows from formula (3.12) that we
have

〈ψ(2p)
g |Ẽ1,1(2p)

1 |ψ(2p)
g 〉 = 〈ψ(2p;0

g |e1,0
1 e0,1

2 |ψ
(2p;0
g 〉+ 〈ψ(2p;0

g |e1,1
1 e0,0

2 |ψ
(2p;0
g 〉.

Due to the spin inversion symmetry (4.2) we have

〈ψ(2p;0
g |e1,0

1 e0,1
2 |ψ

(2p;0
g 〉 = 〈ψ(2p;0

g |e0,1
1 e1,0

2 |ψ
(2p;0
g 〉.

We have the following symmetry relation (3.13) due to the quantum group invariance Uq(sl2):

〈ψ(2p;0)
g |e0,1

1 e1,0
2 |ψ

(2p;0)
g 〉 = 〈ψ(2p;0)

g |e1,1
1 e0,0

2 |ψ
(2p;0)
g 〉.

Therefore, we have

〈ψ(2p;0)
g |e1,0

1 e0,1
2 |ψ

(2p;0
g 〉 = 〈ψ(2p;0)

g |e1,1
1 e0,0

2 |ψ
(2p;0
g 〉.

Here we also recall that |ψ(2p;ε)
g 〉 = |{λα(ε)}(2p;ε)M 〉.

Let us consider the case of (ε′1, ε
′
2) = (1, 0) and (ε1, ε2) = (1, 0), which corresponds to α+ =

{2} and α− = {1}, and hence we have (λ̃′2, λ̃1) = (λ1, λ2). The multiple-integral formula reads

〈E11〉 = 2

(∫
C+iε

+

∫
C−η+iε

)
dλ1

(∫
C−iε

+

∫
C−η−iε

)
dλ2Q(λ1, λ2) detS(λ1, λ2),

where Q(λ1, λ2) and detS(λ1, λ2) are given by

Q(λ1, λ2) = − ϕ(λ2 − w(2)
2 )ϕ(λ1 − w(2)

1 − η)

ϕ(λ2 − λ1 + η + ε21)ϕ(w
(2)
1 − w

(2)
2 )

=
ϕ(λ1 − ξ1 − η)ϕ(λ2 − ξ1 + η)

ϕ(λ1 − λ2 − η + ε12)ϕ(η)
, (6.4)

S(λ1, λ2) =

(
ρ(λ1 − w(2)

1 + η/2) δα(λ1),1 ρ(λ1 − w(2)
2 + η/2) δα(λ1),2

ρ(λ2 − w(2)
1 + η/2) δα(λ2),1 ρ(λ2 − w(2)

2 + η/2) δα(λ2),2

)
.

Here we recall that
∫
Ciα

denotes the integral path
∫∞+iα
−∞+iα and also that ϕ(x) = sinh(x).

Let Γj denote a small contour rotating counterclockwise around λ = w
(2)
j for each j. We

shift the integral paths C−iε → C1, C−η−iε → C2 and C+iε → C1−Γ1, C−η+iε → C2−Γ2, where
C1 = C−η/2 and C2 = C−3η/2. For instance, we have∫

C+iε

dλ1 =

∫
C1

dλ1 −
∫

Γ1

dλ1.

Expanding the determinant of matrix S, we thus obtain

〈E11〉/2 =

(∫
C1

−
∫

Γ1

)
dλ1

∫
C2

dλ2Q(λ1, λ2)ρ(λ1 − w(2)
1 + η/2)ρ(λ2 − w(2)

2 + η/2)
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−
(∫

C2

−
∫

Γ2

)
dλ1

∫
C1

dλ2Q(λ1, λ2)ρ(λ1 − w(2)
2 + η/2)ρ(λ2 − w(2)

1 + η/2).

The one-point function 〈E11〉 is now expressed in terms of J1, J2, K1 and K2, as follows.

〈E11〉 = 2(−K1 +K2 + J1 − J2).

Here we shall give definitions of integrals J1, J2, K1 and K2 and calculate them shortly in the
following. For K1 and K2, making use of the formula: 2πiRes [ρ(λ− w + η/2)|λ=w] = 1, we
have

K1 ≡
∫

Γ1

dλ1

∫
C2

dλ2Q(λ1, λ2)ρ(λ1 − w(2)
1 + η/2)ρ(λ2 − w(2)

2 + η/2)

=

∫
C2

dλ2Q(w
(2)
1 , λ2)ρ(λ2 − w(2)

2 + η/2) =

∫ ∞
−∞

dµ2Q(ξ1, µ2 − 3η/2)ρ(µ2 − ξ1)

=

∫ ∞
−∞

dxρ(x),

and

K2 ≡
∫

Γ2

dλ1

∫
C1

dλ2Q(λ1, λ2)ρ(λ1 − w(2)
2 + η/2)ρ(λ2 − w(2)

1 + η/2)

=

∫
C1

dλ2Q(w
(2)
2 , λ2)ρ(λ2 − w(2)

1 + η/2) =

∫ ∞
−∞

dµ2Q(ξ1 − η, µ2 − η/2)ρ(µ2 − ξ1)

= 2 cosh η

∫ ∞
−∞

dxρ(x)
ϕ(x+ η/2)

ϕ(x+ 3η/2)
= −2 cosh η

∫ ∞
−∞

dxρ(x)
ϕ(x− η/2)

ϕ(x+ η/2)
.

We have defined the integrals J1 and J2 by

J1 ≡
∫
C1

dλ1

∫
C2

dλ2Q(λ1, λ2)ρ(λ1 − w(2)
1 + η/2)ρ(λ2 − w(2)

2 + η/2)

=

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2ρ(x1)ρ(x2)

(
− 1

ϕ(η)

)
ϕ(x1 − 3η/2)ϕ(x2 − η/2)

ϕ(x2 − x1 − iε)
,

J2 ≡
∫
C2

dλ1

∫
C1

dλ2Q(λ1, λ2)ρ(λ1 − w(2)
2 + η/2)ρ(λ2 − w(2)

1 + η/2)

=

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2ρ(x1)ρ(x2)

(
− 1

ϕ(η)

)
ϕ(x1 − 5η/2)ϕ(x2 + η/2)

ϕ(x2 − x1 + 2η + iε)
.

As in the case of 〈E22〉, we transform the integral J1 into J2 by shifting the integral path as
x1 → x1 − η and x2 → x2 + η. First we shift the integral path in J1 as x1 → x1 − η. There

are two simple poles at x1 = x2 − iε and x1 = −η/2. Using 2πiRes
[
ρ(x)|x=−η/2

]
= −1, we can

calculate the residues as

2πiRes

[
ρ(x1)ρ(x2)

(
− 1

ϕ(η)

)
ϕ(x1 − 3η/2)ϕ(x2 − η/2)

ϕ(x2 − x1 − iε)

∣∣∣∣
x1=−η/2

]

= −2(cosh η)ρ(x2)
ϕ(x2 − η/2)

ϕ(x2 + η/2)
,

and

2πiRes

[
ρ(x1)ρ(x2)

(
− 1

ϕ(η)

)
ϕ(x1 − 3η/2)ϕ(x2 − η/2)

ϕ(x2 − x1 − iε)

∣∣∣∣
x1=x2−iε

]
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=
2πi

ϕ(η)
ρ(x2)2ϕ(x2 − 3η/2)ϕ(x2 − η/2).

Thus we have

J1 = −I1 − I2 +

∫ ∞−η
−∞−η

dx1

∫ ∞
−∞

dx2ρ(x1)ρ(x2)

(
− 1

ϕ(η)

)
ϕ(x1 − 3η/2)ϕ(x2 − η/2)

ϕ(x2 − x1 − iε)

= −I1 − I2 +

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2(−1)ρ(x1)ρ(x2)

(
− 1

ϕ(η)

)
ϕ(x1 − 5η/2)ϕ(x2 − η/2)

ϕ(x2 − x1 + η − iε)
,

where

I1 =

∫ ∞
−∞

dx

[
−2(cosh η)ρ(x)

ϕ(x− η/2)

ϕ(x+ η/2)

]
,

I2 =

∫ ∞
−∞

dx

[
2πi

ϕ(η)
ρ(x)2ϕ(x− 3η/2)ϕ(x− η/2)

]
.

Next we shift the integral path as x2 → x2 +η. Here we remark that the simple pole at x2 = η/2
of ρ(x2) has zero residue due to the factor ϕ(x2 − η/2) of the integrand. Thus we have

J1 = −I1 − I2 +

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2(−1)2ρ(x1)ρ(x2)

(
− 1

ϕ(η)

)
ϕ(x1 − 5η/2)ϕ(x2 + η/2)

ϕ(x2 − x1 + 2η − iε)

= −I1 − I2 + J2,

where we have omitted the infinitesimal ε since we can shift the integral path without crossing
the poles. Thus, we have

〈E11〉 = 2(−K1 +K2 + J1 − J2) = 2(−K1 +K2 − I1 − I2) = 2(−K1 − I2),

where we have used the fact that K2 = I1. Using the formula (B.1), we have K1 = 1/2. Next
we consider the integral I2. Shifting the integral path of x as x→ x+ iπ, we have

I2/(2πi) =

∫ ∞+iπ

−∞+iπ

ϕ(x− η/2)ϕ(x− 3η/2)

ϕ(η)
ρ(x)2dx

+ 2πiRes

[
ϕ(x− η/2)ϕ(x− 3η/2)

ϕ(η)
ρ(x)2

∣∣∣∣
x=iπ/2

]

=

∫ ∞
−∞

ϕ(x+ η/2)ϕ(x− η/2)

ϕ(η)
(−1)2ρ(x)2dx+ 2πi

ϕ(−η)

ϕ(η)(2πi)2

=
1

4ζ2ϕ(η)

∫ ∞
−∞

sinh(x+ η/2) sinh(x− η/2)

cosh2(πx/ζ)
dx− 1

2πi
.

Making use of the formula: sinh(x+ η/2) sinh(x− η/2) = (cosh 2x− cosh η)/2 we have

I2 = 2πi

(∫ ∞
−∞

cosh 2x

cosh2(πx/ζ)
dx− cosh η

∫ ∞
−∞

1

cosh2(πx/ζ)
dx

)
− 1 =

ζ − sin ζ cos ζ

2ζ sin2 ζ
− 1,

where we have used the formula (B.2). Finally, we obtain

〈E11〉 = 2(−K1 − I2) =
cos ζ(sin ζ − ζ cos ζ)

ζ sin2 ζ
.
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6.3 〈E00〉

In this case we have

i1 = j1 = 0; (ε1, ε2) = (0, 0), (ε′1, ε
′
2) = (0, 0); C = 1;

α+ = {1, 2}; α− = ∅; (λ̃′2, λ̃1) = (λ1, λ2).

The multiple-integral formula reads

〈E00〉 = 2

(∫
C+iε

+

∫
C−η+iε

)
dλ1

(∫
C+iε

+

∫
C−η+iε

)
dλ2Q(λ1, λ2) detS(λ1, λ2),

where Q(λ1, λ2) and S(λ1, λ2) are given by

Q(λ1, λ2) =
ϕ(λ2 − w(2)

2 )ϕ(λ1 − w(2)
1 − η)

ϕ(λ2 − λ1 + η + ε21)ϕ(w
(2)
1 − w

(2)
2 )

,

S(λ1, λ2) =

(
ρ(λ1 − w(2)

1 + η/2) δα(λ1),1 ρ(λ1 − w(2)
2 + η/2) δα(λ1),2

ρ(λ2 − w(2)
1 + η/2) δα(λ2),1 ρ(λ2 − w(2)

2 + η/2) δα(λ2),2

)
.

Here we recall that
∫
Ciα

denotes the integral path
∫∞+iα
−∞+iα and ϕ(x) = sinh(x).

We now shift the integral paths C+iε → C1 − Γ1, C−η+iε → C2 − Γ2, where C1 = C−η/2,

C2 = C−3η/2 and Γj is a small contour rotating counterclockwise around λ = w
(2)
j . Expanding

the determinant of matrix S, we obtain

〈E00〉 =

(∫
C1

−
∫

Γ1

)
dλ1

(∫
C2

−
∫

Γ2

)
dλ2Q(λ1, λ2)ρ(λ1 − w(2)

1 + η/2)ρ(λ2 − w(2)
2 + η/2)

−
(∫

C2

−
∫

Γ2

)
dλ1

(∫
C1

−
∫

Γ1

)
dλ2Q(λ1, λ2)ρ(λ1 − w(2)

2 + η/2)ρ(λ2 − w(2)
1 + η/2)

= I1 − I2 − I3 − I4 + I5 + I6,

where

I1 =

∫
C1

dλ1

∫
C2

dλ2Q(λ1, λ2)ρ1
1ρ

2
2, I2 =

∫
C2

dλ1

∫
C1

dλ2Q(λ1, λ2)ρ1
2ρ

2
1,

I3 = Q
(
w

(2)
2 , w

(2)
1

)
, I4 =

∫
C2

dλ2Q
(
w

(2)
1 , λ2

)
ρ2

2, I5 =

∫
C1

dλ2Q
(
w

(2)
2 , λ2

)
ρ2

1,

I6 =

∫
C2

dλ1Q
(
λ1, w

(2)
1

)
ρ1

2,

and ρjk = ρ(λj − w
(2)
k + η/2). Shifting the integral path as for the former cases, we have

I1 − I2 = −K1 −K2 where

K1 =

∫ ∞
−∞

dx22πiRes

[
1

ϕ(η)

ϕ(x1 − 3η/2)ϕ(x2 − η/2)

ϕ(x2 − x1 − iε)
ρ(x1)ρ(x2)

∣∣∣∣
x1=x2−iε

]

=
sin ζ cos ζ − ζ

2ζ sin2 ζ
+ 1,

K2 =

∫ ∞
−∞

dx22πiRes

[
1

ϕ(η)

ϕ(x1 − 3η/2)ϕ(x2 − η/2)

ϕ(x2 − x1 − iε)
ρ(x1)ρ(x2)

∣∣∣∣
x1=−η/2

]

= 2 cosh η

∫ ∞
−∞

dx
ϕ(x− η/2)

ϕ(x+ η/2)
ρ(x).
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The other terms are calculated as

I3 = −1, I4 = −
∫ ∞
−∞

ρ(x)dx, I5 = K2, I6 = −
∫ ∞
−∞

ρ(x)dx.

Summing up all the contributions, we have

〈E00〉 =
ζ − sin ζ cos ζ

2ζ sin2 ζ
. (6.5)

Here we can confirm that the relation 〈E22〉 = 〈E00〉 by directly evaluating the integral.

6.4 〈E11〉 through 2〈e0,11 e1,02 〉

We evaluate 〈E11〉 by calculating the multiple integral representing 〈e0,1
1 e1,0

2 〉. Here we recall

that due to the spin inversion symmetry we have 〈E11〉 = 2〈e0,1
1 e1,0

2 〉. In this case we have

i1 = j1 = 1; (ε1, ε2) = (0, 1), (ε′1, ε
′
2) = (1, 0); C = 1;

α+ = {2}; α− = {2}; (λ̃′2, λ̃2) = (λ1, λ2).

The multiple-integral formula reads

〈E11〉 = 2

(∫
C+iε

+

∫
C−η+iε

)
dλ1

(∫
C−iε

+

∫
C−η−iε

)
dλ2Q(λ1, λ2) detS(λ1, λ2),

where Q(λ1, λ2) and detS(λ1, λ2) are given by

Q(λ1, λ2) = − ϕ(λ2 − w(2)
1 + η)ϕ(λ1 − w(2)

1 − η)

ϕ(λ2 − λ1 + η + ε21)ϕ
(
w

(2)
1 − w

(2)
2

) =
ϕ(λ1 − ξ1 − η)ϕ(λ2 − ξ1 + η)

ϕ(λ1 − λ2 − η + ε12)ϕ(η)
,

S(λ1, λ2) =

(
ρ(λ1 − w(2)

1 + η/2)δα(λ1),1 ρ(λ1 − w(2)
2 + η/2) δα(λ1),2

ρ(λ2 − w(2)
1 + η/2)δα(λ2),1 ρ(λ2 − w(2)

2 + η/2)δα(λ2),2

)
.

Here we remark that we have the same Q(λ1, λ2) as in equation (6.4) for the case of 〈e1,1
1 e0,0

2 〉.
We therefore obtain

〈E1,1〉 =
cos ζ(sin ζ − ζ cos ζ)

ζ sin2 ζ
.

We have thus confirmed the quantum group invariance 〈e0,1
1 e1,0

2 〉 = 〈e1,1
1 e0,0

2 〉 through the
multiple-integral representation.

Finally in Section 6 we give an important remark: through an explicit evaluation of the
multiple integrals of 〈Ẽ1,1(2p)〉 we have shown the following relations:

〈e0,0
1 e1,1

2 〉 = 〈e1,1
1 e0,0

2 〉, 〈e1,0
1 e0,1

2 〉 = 〈e0,0
1 e1,1

2 〉.

It follows that in the spin-1 case, every one-point function is expressed in terms of a single
multiple integral, which corresponds to the expectation value of a single product of the local
spin-1/2 operators. In general, however, the spin-s correlation function of an arbitrary entry is
expressed in terms of the expectation values of a sum of products of the local spin-1/2 operators
such as shown in (5.2). Here we recall that the sum over sets α+({εβ}) in (5.2) corresponds to
the sum over sequences {εβ} in the reduction formula of Corollary 1.
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Figure 1. One-point functions of spin-1 XXZ chain in the massless regime obtained by the explicit

evaluations of multiple integrals. The red and blue lines represent those for 〈E22〉 = 〈E00〉 and 〈E11〉,
respectively.

7 Consistency with numerical estimates
of the spin-1 one-point functions

We now show that the analytical expressions of the spin-1 one-point functions are consistent with
their numerical estimates, which are obtained by the method of numerical exact diagonalization
of the integrable spin-1 XXZ Hamiltonian.

Let us fist summarize the analytical results derived in Section 6. Evaluating the multiple
integrals explicitly, we have obtained all the one-point function for the integrable spin-1 XXZ
chain as

〈Ẽ2,2(2p)〉 = 〈Ẽ0,0(2p)〉 =
ζ − sin ζ cos ζ

2ζ sin2 ζ
, 〈Ẽ1,1(2p)〉 =

cos ζ(sin ζ − ζ cos ζ)

ζ sin2 ζ
,

which are shown in Fig. 1. In particular, via evaluation of the multiple integrals, we have
confirmed the uniaxial symmetry relation:

〈E22〉 = 〈E00〉. (7.1)

Through the direct evaluation of the multiple integrals we confirm the identity: 〈E22〉+ 〈E11〉+
〈E00〉 = 1. Here we recall that assuming the uniaxial symmetry (7.1) the analytical expression
of 〈E00〉 has been given in [20].

Furthermore, we have confirmed the relations among the correlation functions due to the
quantum group Uq(sl2) symmetry and the spin inversion symmetry as follows

〈Ẽ1,1(2p)〉 = 2〈e0,0
1 e1,1

2 〉 = 2〈e1,1
1 e0,0

2 〉 = 2〈e0,1
1 e1,0

2 〉 = 2〈e1,0
1 e0,1

2 〉.

In the XXX limit ∆ → 1 we have 〈E22〉 = 〈E11〉 = 〈E00〉 = 1/3, which has been shown by
Kitanine in the XXX case [17]. In the free Fermion limit ∆→ 0 we have 〈E22〉 = 〈E00〉 = 1/2,
and 〈E11〉 = 0. Here we should remark that we consider the region 0 ≤ ζ < π/(2s) with s = 1,
namely, 0 < ∆ ≤ 1.

Finally, we confirm the analytical results by comparing them with the numerical results of
exact diagonalization, which are shown in Fig. 2. In Fig. 2, the red and blue lines represent
the analytical results obtained by evaluating the multiple integrals of the one-point functions,
〈E22〉 = 〈E00〉 and 〈E11〉, respectively. The black dotted lines represent the numerical estimates
of the one-point functions which are obtained by the method of exact diagonalization of the
integrable spin-1 XXZ Hamiltonian with the system size of Ns = 8. We numerically obtain the
ground-state eigenvector of the integrable spin-1 XXZ Hamiltonian, and calculate the numerical
estimates of the one-point functions.

We have found that the numerical and analytical results of the spin-1 one-point functions
agree quite well in the region 0 < ∆ ≤ 1, as shown in Fig. 2. We thus conclude that the
numerical results should support the validity of the multiple-integral representations for the
spin-1 one-point functions.
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Figure 2. Comparison with the exact numerical diagonalization. The red and blue lines represent

analytical results obtained by the multiple integrals for 〈E22〉 = 〈E00〉 and 〈E11〉, respectively. The black

dotted lines represent those obtained by exact diagonalization with the system size Ns = 8.

A Derivation of reduction formula (2.10)

For the spin-`/2 Hermitian elementary matrices associated with homogeneous grading, Ẽi,j(`,+),
we introduce coefficients g̃i,j by

|̃|`, i〉〈`, j|| =
∑
{ε′α}`

∑
{εβ}`

g̃i,j({ε′α}, {εβ})e
ε′1, ε1
1 · · · eε

′
`, ε`
` .

Then, we have

g̃i,j({ε′α}, {εβ}) =

[
`
i

]
q

[
`
j

]−1

q

(
`
i

)
q

qi(i−1)/2−j(j−1)/2q−(a(1)+···+a(i)−i)+(b(1)+···+b(j)−j).

We derive the reduction formula for the Hermitian elementary operators Ẽi,j(`,+) as follows

Ẽi,j(`,+) = P̃ (`)Ẽi,j(`,+) =

[
`
i

]
q

[
`
j

]−1

q

(
`
i

)
qi(i−1)/2−j(j−1)/2 |̃|`, i〉 (A.1)

×
∑
{εβ}`

∑
{ε′α}`

(
〈`, i||σ−a(1) · · ·σ

−
a(i)||`, 0〉q

−(a(1)+···+a(i)−i)
)
〈`, 0||σ+

b(1) · · ·σ
+
b(j)q

b(1)+···+b(j)−i.

Here {εβ}` is given by a sequence of 0 or 1 such that the number of integers β for 1 ≤ β ≤ `
satisfying εβ = 1 is given by j, and {ε′α}` is given by a sequence of 0 or 1 such that the number
of integers α satisfying ε′α = 1 is given by i.

We can show the following property:

Lemma 3 ([54]). Let α− be a set of distinct integers {a(1), . . . , a(i)} satisfying 1 ≤ a(1) <
· · · < a(i) ≤ `, we have the following:

〈`, i||σ−a(1) · · ·σ
−
a(i)||`, 0〉q

−(a(1)+···+a(i))+i =

[
`
i

]−1

q−i(i−1)/2,

which is independent of the set α− = {a(1), a(2), . . . , a(i)}.

Applying Lemma 3 we show that the inside of the parentheses (or the round brackets) of
equation (A.1) is independent of a(k)s. Making use of the following:∑

{ε′α}`

1 =

(
`
i

)
,
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where ε′α are such a sequence of 0 or 1 that the number of ε′α = 1 is given by i. We thus have

Ẽi,j(`,+) =

[
`
i

]
q

[
`
j

]−1

q

(
`
i

)−1

qi(i−1)/2−j(j−1)/2 |̃|`, i〉〈`, i||

×
(
`
i

) ∑
{εβ}`

σ−a(1) · · ·σ
−
a(i)||`, 0〉〈`, 0||σ

+
b(1) · · ·σ

+
b(j)q

−(a(1)+···+a(i)−i)qb(1)+···+b(j)−i

=

[
`
i

]
q

[
`
j

]−1

q

qi(i−1)/2−j(j−1)/2 |̃|`, i〉〈`, i||e−(i−j)ξ1
∑
{εβ}`

χ1···`e
ε′1,ε1
1 · · · eε

′
`, ε`
` χ−1

1···`.

Here we recall that {εβ}` is a sequence such that the number of integers β of 1 ≤ β ≤ `
satisfying εβ = 1 is given by j. The integers a(k) (1 ≤ k ≤ i) and b(k) (1 ≤ k ≤ j) satisfying
1 ≤ a(1) < · · · < a(i) ≤ ` and 1 ≤ b(1) < · · · < b(j) ≤ `, respectively, are related to the
sequences {ε′α}` and {εβ}` by the following relation [54]:

e
ε′1,ε1
1 · · · eε

′
`,ε`
` = e1,0

a(1) · · · e
1,0
a(i)e

0,0
1 · · · e

0,0
` e0,1

b(1) · · · e
0,1
b(j).

B Useful integral formulas∫ ∞
−∞

dx

coshx
= π, (B.1)∫ ∞

−∞

cosh 2ax

cosh2 x
dx =

2πa

sinπa
, for |a| < 1. (B.2)
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hep-th/0105144.

http://dx.doi.org/10.1143/JPSJ.57.1905
http://dx.doi.org/10.1016/0375-9601(82)90764-2
http://dx.doi.org/10.1016/0375-9601(84)90588-7
http://dx.doi.org/10.1016/0375-9601(84)90588-7
http://dx.doi.org/10.1088/0305-4470/21/11/008
http://dx.doi.org/10.1088/0305-4470/21/23/010
http://dx.doi.org/10.1088/0305-4470/21/23/021
http://dx.doi.org/10.1088/0305-4470/22/5/015
http://dx.doi.org/10.1088/0305-4470/22/13/022
http://dx.doi.org/10.1088/0305-4470/22/13/022
http://dx.doi.org/10.1088/0305-4470/23/10/003
http://dx.doi.org/10.1088/0305-4470/23/10/003
http://dx.doi.org/10.1088/0305-4470/22/11/023
http://dx.doi.org/10.1016/0550-3213(90)90435-G
http://dx.doi.org/10.1088/0305-4470/23/11/032
http://dx.doi.org/10.1088/0305-4470/23/11/032
http://dx.doi.org/10.1088/0305-4470/23/9/022
http://dx.doi.org/10.1088/0305-4470/23/5/002
http://dx.doi.org/10.1088/0305-4470/24/13/025
http://dx.doi.org/10.1088/0305-4470/32/12/008
http://arxiv.org/abs/cond-mat/9807076
http://arxiv.org/abs/hep-th/9307129
http://dx.doi.org/10.1142/S0217751X94001771
http://dx.doi.org/10.1142/S0217751X94001771
http://arxiv.org/abs/hep-th/9310089
http://dx.doi.org/10.1016/0550-3213(94)90030-2
http://arxiv.org/abs/hep-th/9407122
http://dx.doi.org/10.1016/j.nuclphysb.2005.05.012
http://arxiv.org/abs/math.QA/0504433
http://arxiv.org/abs/1103.4206
http://dx.doi.org/10.1016/j.nuclphysb.2009.01.002
http://arxiv.org/abs/1105.4722
http://arxiv.org/abs/hep-th/0105144


One-Point Functions of the Integrable Spin-1 XXZ Chain 41

[56] Takahashi M., Half-filled Hubbard model at low temperature, J. Phys. C: Solid State Phys. 10 (1977),
1289–1293.

[57] Sakai K., Shiroishi M., Nishiyama Y., Takahashi M., Third-neighbor correlators of a one-dimensional spin-
1/2 Heisenberg antiferromagnet, Phys. Rev. E 67 (2003), 065101, 4 pages, cond-mat/0302564.

[58] Kato G., Shiroishi M., Takahashi M., Sakai K., Next nearest-neighbor correlation functions of the spin-1/2
XXZ chain at critical region, J. Phys. A: Math. Gen. 36 (2003), L337–L344, cond-mat/0304475.

[59] Takahashi M., Kato G., Shiroishi M., Next nearest-neighbor correlation functions of the spin-1/2 XXZ chain
at massive region, J. Phys. Soc. Japan 73 (2004), 245–253, cond-mat/0308589.

[60] Kato G., Shiroishi M., Takahashi M., Sakai K., Third-neighbor and other four-point correlation functions
of spin-1/2 XXZ chain, J. Phys. A: Math. Gen. 37 (2004), 5097–5123, cond-mat/0402625.

[61] Boos H.E., Korepin V.E., Smirnov F.A., Emptiness formation probability and quantum Knizhnik–
Zamolodchikov equation, Nuclear Phys. B 658 (2003), 417–439, hep-th/0209246.

[62] Boos H.E., Shiroishi M., Takahashi M., First principle approach to correlation functions of spin-1/2 Heisen-
berg chain: fourth-neighbor correlators, Nuclear Phys. B 712 (2005), 573–599, hep-th/0410039.

[63] Sato J., Shiroishi M., Fifth-neighbor spin-spin correlator for the anti-ferromagnetic Heisenberg chain,
J. Phys. A: Math. Gen. 38 (2005), L405–L411, hep-th/0504008.

[64] Sato J., Shiroishi M., Takahashi M., Correlation functions of the spin-1/2 anti-ferromagnetic Heisenberg
chain: exact calculation via the generating function, Nuclear Phys. B 729 (2005), 441–466, hep-th/0507290.

[65] Sato J., Shiroishi M., Takahashi M., Exact evaluation of density matrix elements for the Heisenberg chain,
J. Stat. Mech. Theory Exp. 2006 (2006), P12017, 27 pages, hep-th/0611057.

[66] Razumov A.V., Stroganov Yu.G., Spin chains and combinatorics, J. Phys. A: Math. Gen. 34 (2001), 3185–
3190, cond-mat/0012141.

[67] Kitanine N., Maillet J.M., Slavnov N.A., Terras V., Emptiness formation probability of the XXZ spin-1/2
Heisenberg chain at ∆ = 1/2, J. Phys. A: Math. Gen. 35 (2002), L385–L391, hep-th/0201134.

[68] Kitanine N., Maillet J.M., Slavnov N.A., Terras V., Exact results for the σz two-point function of the XXZ
chain at ∆ = 1/2, J. Stat. Mech. Theory Exp. 2005 (2005), L09002, 7 pages, hep-th/0506114.

[69] Sato J., Shiroishi M., Density matrix elements and entanglement entropy for the spin-1/2 XXZ chain at
∆ = 1/2, J. Phys. A: Math. Theor. 40 (2007), 8739–8749, arXiv:0704.0850.

[70] Jimbo M., A q-difference analogue of U(g) and the Yang–Baxter equation, Lett. Math. Phys. 10 (1985),
63–69.

[71] Jimbo M., A q-analogue of U(gl(N + 1)), Hecke algebra and the Yang–Baxter equation, Lett. Math. Phys.
11 (1986), 247–252.

[72] Drinfel’d V.G., Quantum groups, in Proceedings of the International Congress of Mathematicians, Vols. 1, 2
(Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, 798–820.
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