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Abstract. We show that the symmetry operators for the quantum superintegrable system
on the 3-sphere with generic 4-parameter potential form a closed quadratic algebra with 6
linearly independent generators that closes at order 6 (as differential operators). Further
there is an algebraic relation at order 8 expressing the fact that there are only 5 algebraically
independent generators. We work out the details of modeling physically relevant irreducible
representations of the quadratic algebra in terms of divided difference operators in two
variables. We determine several ON bases for this model including spherical and cylindrical
bases. These bases are expressed in terms of two variable Wilson and Racah polynomials
with arbitrary parameters, as defined by Tratnik. The generators for the quadratic algebra
are expressed in terms of recurrence operators for the one-variable Wilson polynomials. The
quadratic algebra structure breaks the degeneracy of the space of these polynomials. In an
earlier paper the authors found a similar characterization of one variable Wilson and Racah
polynomials in terms of irreducible representations of the quadratic algebra for the quantum
superintegrable system on the 2-sphere with generic 3-parameter potential. This indicates
a general relationship between 2nd order superintegrable systems and discrete orthogonal
polynomials.

Key words: superintegrability; quadratic algebras; multivariable Wilson polynomials; mul-
tivariable Racah polynomials
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1 Introduction

We define an n-dimensional classical superintegrable system to be an integrable Hamiltonian
system that not only possesses n mutually Poisson – commuting constants of the motion, but in
addition, the Hamiltonian Poisson-commutes with 2n − 1 functions on the phase space that
are globally defined and polynomial in the momenta. Similarly, we define a quantum su-
perintegrable system to be a quantum Hamiltonian which is one of a set of n algebraically

?This paper is a contribution to the Special Issue “Relationship of Orthogonal Polynomials and Spe-
cial Functions with Quantum Groups and Integrable Systems”. The full collection is available at
http://www.emis.de/journals/SIGMA/OPSF.html

mailto:math0236@math.waikato.ac.nz
http://www.math.waikato.ac.nz
mailto:miller@ima.umn.edu
http://www.ima.umn.edu/~miller/
mailto:sarahisabellepost@gmail.com
http://www.crm.umontreal.ca/~post/
http://dx.doi.org/10.3842/SIGMA.2011.051
http://www.emis.de/journals/SIGMA/OPSF.html


2 E.G. Kalnins, W. Miller Jr. and S. Post

independent mutually commuting differential operators, and that commutes with a set of
2n − 1 independent differential operators of finite order. We restrict to classical systems of

the form H =
n∑

i,j=1
gijpipj + V and quantum systems H = ∆n + Ṽ . These systems, inclu-

ding the classical Kepler [1] and anisotropic oscillator systems and the quantum anisotropic
oscillator and hydrogen atom have great historical importance, due to their remarkable proper-
ties [2, 3, 4, 5, 6]. One modern practical application among many is the Hohmann transfer,
a fundamental tool for the positioning of earth satellites and for celestial navigation in gene-
ral, which is based on the superintegrability of the Kepler system [7]. The order of a clas-
sical superintegrable system is the maximum order of the generating constants of the motion
(with the Hamiltonian excluded) as a polynomial in the momenta, and the order of a quan-
tum superintegrable system is the maximum order of the quantum symmetries as differential
operators.

Systems of 2nd order have been well studied and there is now a structure and classification
theory [8, 9, 10, 11, 12, 13], especially for the cases n = 2, 3. For 3rd and higher order superin-
tegrable systems there have been recent dramatic advances but no structure and classification
theory as yet [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29].

The potential V corresponding to a 2nd order superintegrable system, classical or quan-
tum, on an n-dimensional conformally flat manifold depends linearly on several parameters
in general and can be shown to generate a vector space of dimension ≤ n + 2. (One di-
mension corresponds to the trivial addition of a constant to the potential and usually isn’t
included in a parameter count.) If the maximum is achieved, the potential is called non-
degenerate. There is an invertible mapping between superintegrable systems on different
manifolds, called the Stäckel transform, which preserves the structure of the algebra gene-
rated by the symmetries. In the cases n = 2, 3 it is known that all nondegenerate 2nd
order superintegrable systems are Stäckel equivalent to a system on a constant curvature
space [30, 31]. An important fact for 2D systems is that all systems can be obtained from
one generic superintegrable system on the complex 2-sphere by appropriately chosen limit pro-
cesses, e.g. [32, 33]. The use of these processes in separation of variables methods for wave
and Helmholtz equations in n dimensions was pioneered by Bôcher [34]. For n = 3 it ap-
pears that all nondegenerate 3D systems can be obtained from one generic superintegrable
system on the complex 3-sphere by similar limiting processes, but the proof is not yet com-
plete [11, 35].

For n = 2 we define the generic sphere system by embedding of the unit 2-sphere x21+x22+x23 =
1 in three dimensional flat space. Then the Hamiltonian operator is

H =
∑

1≤i<j≤3
(xi∂j − xj∂i)2 +

3∑
k=1

ak
x2k
, ∂i ≡ ∂xi .

The 3 operators that generate the symmetries are L1 = L12, L2 = L13, L3 = L23 where

Lij ≡ Lji = (xi∂j − xj∂i)2 +
aix

2
j

x2i
+
ajx

2
i

x2j
,

for 1 ≤ i < j ≤ 4. Here

H =
∑

1≤i<j≤3
Lij +

3∑
k=1

ak = H0 + V, V =
a1
x21

+
a2
x22

+
a3
x23
.

From the general structure theory for 2D 2nd order superintegrable systems with nonde-
generate potential we know that the 3 defining symmetries will generate a symmetry algebra
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(a quadratic algebra) by taking operator commutators, which closes at order 6, [36]. That is, all
possible symmetries can be written as symmetrized operator polynomials in the basis generators
and in the 3rd order commutator R, where R occurs at most linearly. In particular, the dimen-
sion of the space of truly 2nd order symmetries for the Hamiltonian operator is 3, for the 3rd
order symmetries it is 1, for the 4th order symmetries it is 6, and for the 6th order symmetries
it is 10. For the generic 2-sphere quantum system the structure equations can be put in the
symmetric form [12]

εijk[Li, R] = 4{Li, Lk} − 4{Li, Lj} − (8 + 16aj)Lj + (8 + 16ak)Lk + 8(aj − ak), (1.1)

R2 =
8

3
{L1, L2, L3} − (16a1 + 12)L2

1 − (16a2 + 12)L2
2 − (16a3 + 12)L2

3

+
52

3
({L1, L2}+ {L2, L3}+ {L3, L1}) +

1

3
(16 + 176a1)L1 +

1

3
(16 + 176a2)L2

+
1

3
(16 + 176a3)L3 +

32

3
(a1 + a2 + a3) + 48(a1a2 + a2a3 + a3a1) + 64a1a2a3. (1.2)

Here εijk is the pure skew-symmetric tensor, R = [L1, L2] and {Li, Lj} = LiLj + LjLi with
an analogous definition of {L1, L2, L3} as a symmetrized sum of 6 terms. In practice we will
substitute L3 = H − L1 − L2 − a1 − a2 − a3 into these equations.

In [12] we started from first principles and worked out some families of finite and
infinite dimensional irreducible representations of the quadratic algebra with structure rela-
tions (1.1), (1.2), including those that corresponded to the bounded states of the associated
quantum mechanical problem on the 2-sphere. Then we found 1-variable models of these repre-
sentations in which the generators Li acted as divided difference operators in the variable t on
a space of polynomials in t2. The eigenfunctions of one of the operators Li turned out to be the
Wilson and Racah polynomials in their full generality. In essence, this described an isomorphism
between the quadratic algebra of the generic quantum superintegrable system on the 2-sphere
and the quadratic algebra generated by the Wilson polynomials.

The present paper is concerned with the extension of these results to the 3-sphere, where
the situation is much more complicated. From the general structure theory for 3D 2nd or-
der superintegrable systems with nondegenerate potential we know that although there are
2n − 1 = 5 algebraically independent 2nd order generators, there must exist a 6th 2nd or-
der symmetry such that the 6 symmetries are linearly independent and generate a quadratic
algebra that closes at order 6 [37]. (We call this the 5 =⇒ 6 Theorem.) Thus, all pos-
sible symmetries can be written as symmetrized operator polynomials in the basis genera-
tors and in the four 3rd order commutators Ri, where the Ri occur at most linearly. In
particular, the dimension of the space of truly 2nd order symmetries is 3, for the 3rd or-
der symmetries is 4, for the 4th order symmetries it is 21, and for the 6th order sym-
metries it is 56. In 3D there are 5 algebraically independent, but 6 linearly independent,
generators. The algebra again closes at 6th order, but in addition there is an identity at
8th order that relates the 6 algebraically dependent generators. The representation the-
ory of such quadratic algebras is much more complicated and we work out a very impor-
tant instance of it here. In this case we will find an intimate relationship between these
representations and Tratnik’s 2-variable Wilson and Racah polynomials in their full genera-
lity [38, 39, 40].

For nD nondegenerate systems there are 2n − 1 functionally independent but n(n + 1)/2
linearly independent generators for the quadratic algebra. We expect that the relationships
developed here will extend to n-spheres although the results will be of increasing comple-
xity.
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2 The quantum superintegrable system on the 3-sphere

We define the Hamiltonian operator via the embedding of the unit 3-sphere x21+x22+x23+x24 = 1
in four-dimensional flat space

H =
∑

1≤i<j≤4
(xi∂j − xj∂i)2 +

4∑
k=1

ak
x2k
, ∂i ≡ ∂xi . (2.1)

A basis for the second order constants of the motion is

Lij ≡ Lji = (xi∂j − xj∂i)2 +
aix

2
j

x2i
+
ajx

2
i

x2j
,

for 1 ≤ i < j ≤ 4. Here

H =
∑

1≤i<j≤4
Lij +

4∑
k=1

ak.

In the following i, j, k, ` are pairwise distinct integers such that 1 ≤ i, j, k, ` ≤ 4, and εijk
is the completely skew-symmetric tensor such that εijk = 1 if i < j < k. There are 4 linearly
independent commutators of the second order symmetries (no sum on repeated indices):

R` = εijk[Lij , Ljk].

This implies, for example, that

R1 = [L23, L34] = −[L24, L34] = −[L23, L24].

Also

[Lij , Lk`] = 0.

Here we define the commutator of linear operators F , G by [F,G] = FG−GF . The structure
equations can be worked out via a relatively straightforward but tedious process. We get the
following results.

The fourth order structure equations are

[Lij , Rj ] = 4εi`k({Lik, Lj`} − {Li`, Ljk}+ Li` − Lik + Ljk − Lj`),
[Lij , Rk] = 4εij`({Lij , Li` − Lj`}+ (2 + 4aj)Li` − (2 + 4ai)Lj` + 2ai − 2aj).

Here {F,G} = FG+GF .
The fifth order structure equations (obtainable directly from the fourth order equations and

the Jacobi identity) are

[R`, Rk] = 4εik`(Ri − {Lij , Ri}) + 4εjk`(Rj − {Lij , Rj}).

The sixth order structure equations are

R2
` =

8

3
{Lij , Lik, Ljk} − (12 + 16ak)L

2
ij − (12 + 16ai)L

2
jk − (12 + 16aj)L

2
ik

+
52

3
({Lij , Lik + Ljk}+ {Lik, Ljk}) +

(
16

3
+

176

3
ak

)
Lij +

(
16

3
+

176

3
ai

)
Ljk

+

(
16

3
+

176

3
aj

)
Lij + 64aiajak + 48(aiaj + ajak + akai) +

32

3
(ai + aj + ak),
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εik`εjk`
2
{Ri, Rj} =

4

3
({Li`, Ljk, Lk`}+ {Lik, Lj`, Lk`} − {Lij , Lk`, Lk`}) +

26

3
{Lik, Lj`}

+
26

3
{Li`, Ljk}+

44

3
{Lij , Lk`}+ 4L2

k` − 2{Lj` + Ljk + Li` + Lik, Lk`}

− (6 + 8a`){Lik, Ljk} − (6 + 8ak){Li`, Lj`} −
32

3
Lk`

−
(

8

3
− 8a`

)
(Ljk + Lik)−

(
8

3
− 8ak

)
(Ljl + Li`)

+

(
16

3
+ 24ak + 24a` + 32aka`

)
Lij − 16(aka` + ak + a`).

Here {A,B,C} = ABC +ACB +BAC +BCA+ CAB + CBA.
The eighth order functional relation is∑

i,j,k,l

[
1

8
L2
ijL

2
kl −

1

92
{Lik, Lil, Ljk, Ljl} −

1

36
{Lij , Lik, Lkl} −

7

62
{Lij , Lij , Lkl}

+
1

6

(
1

2
+

2

3
al

)
{LijLikLjk}+

2

3
LijLkl −

(
1

3
− 3

4
ak −

3

4
al − akal

)
L2
ij

+

(
1

3
+

1

6
al

)
{Lik, Ljk}+

(
4

3
ak +

4

3
al +

7

3
akal

)
Lij

+
2

3
aiajakal + 2aiajak +

4

3
aiaj

]
= 0.

Here {A,B,C,D} is the 24 term symmetrizer of 4 operators and the sum is taken over all
pairwise distinct i, j, k, `. For the purposes of the representation, it is useful to redefine the
constants as ai = b2i − 1

4 .
We note that the algebra described above contains several copies of the algebra generated

by the corresponding potential on the two-sphere. Namely, let us define A to be the algebra
generated by the set {Lij , I} for all i, j = 1, . . . , 4 where I is the identity operator. Then, we
can see that there exist subalgebras Ak generated by the set {Lij , I} for i, j 6= k and that these
algebras are exactly those associated to the 2D analog of this system. Furthermore, if we define

Hk ≡
∑

i<j,i,j 6=k
Lij −

∑
j 6=k

b2i −
3

4

 I

then Hk will commute with all the elements of Ak and will represent the Hamiltonian for the
associated system. For example, takeA4 to be the algebra generated by the set {L12, L13, L23, I}.
In this algebra, we have the operator H4 = L12 + L13 + L23 + (3/4 − b21 − b22 − b23)I which is
in the center of A4 and which is the Hamiltonian for the associated system on the two sphere
immersed in R3 = {(x1, x2, x3)}.

Next we construct families of finite dimensional and infinite dimensional bounded below ir-
reducible representations of this algebra that include those that arise from the bound states of
the associated quantum mechanical eigenvalue problem. At the same time we will construct
models of these representations via divided difference operators in two variables s and t. Im-
portant tools for this construction are the results of [12] giving the representations of the Ak’s
and known recurrence relations for one-variable Wilson and Racah polynomials.

3 Review of Wilson polynomials

Before we proceed to the model, we us present a basic overview of some of the characteristics
of the Wilson polynomials [41] that we plan to employ in the creation of our model. The
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polynomials are given by the expression

wn
(
t2
)
≡ wn

(
t2, α, β, γ, δ

)
= (α+ β)n(α+ γ)n(α+ δ)n

× 4F3

(
−n, α+ β + γ + δ + n− 1, α− t, α+ t
α+ β, α+ γ, α+ δ

; 1

)
= (α+ β)n(α+ γ)n(α+ δ)nΦ(α,β,γ,δ)

n

(
t2
)
,

where (a)n is the Pochhammer symbol and 4F3(1) is a generalized hypergeometric function of
unit argument. The polynomial wn(t2) is symmetric in α, β, γ, δ.

The Wilson polynomials are eigenfunctions of a divided difference operator given as

τ∗τΦn = n(n+ α+ β + γ + δ − 1)Φn, (3.1)

where

EAF (t) = F (t+A), τ =
1

2t

(
E1/2 − E−1/2

)
,

τ∗ =
1

2t

[
(α+ t)(β + t)(γ + t)(δ + t)E1/2 − (α− t)(β − t)(γ − t)(δ − t)E−1/2

]
.

See [42] for a simple derivation.

The Wilson polynomials Φn(t2) ≡ Φ
(α,β,γ,δ)
n (t2), satisfy the three term recurrence formula

t2Φn

(
t2
)

= K(n+ 1, n)Φn+1

(
t2
)

+K(n, n)Φn

(
t2
)

+K(n− 1, n)Φn−1
(
t2
)
,

where

K(n+ 1, n) =
α+ β + γ + δ + n− 1

(α+ β + γ + δ + 2n− 1)(α+ β + γ + δ + 2n)

× (α+ β + n)(α+ γ + n)(α+ δ + n), (3.2)

K(n− 1, n) =
n(β + γ + n− 1)(β + δ + n− 1)(γ + δ + n− 1)

(α+ β + γ + δ + 2n− 2)(α+ β + γ + δ + 2n− 1)
, (3.3)

K(n, n) = α2 −K(n+ 1, n)−K(n− 1, n). (3.4)

This formula, together with Φ−1 = 0, Φ0 = 1, determines the polynomials uniquely.
We can construct other recurrence relations between Wilson polynomials of different pa-

rameters using a family of divided difference operators Lµ,ν , Rµ,ν , µ, ν = α, β, γ, δ given in
Appendix A. Most importantly for the model considered below, we can construct operators
which fix n, the degree of the polynomial and which change the parameters by integer values.
In the model constructed below, we will want to change α and δ by integer values and keep β, γ
fixed. The operators which accomplish this are given by

LαβLαγΦ(α,β,γ,δ)
n = (α+ β − 1)(α+ γ − 1)Φ(α−1,β,γ,δ+1)

n ,

RαβRαγΦ(α,β,γ,δ)
n =

(n+ α+ β)(n+ α+ γ)(n+ β + δ − 1)(n+ γ + δ − 1)

(α+ β)(α+ γ)
Φ(α+1,β,γ,δ−1)
n .

We give the action on the Φ
(α,β,γ,δ)
n (t2) for simplicity. For a complete exposition on the recurrence

relations see Appendix A.
Finally, the weight function of the model will be based on a two dimensional generalization

of the weight function of the Wilson polynomials.
For fixed α, β, γ, δ > 0 (or if they occur in complex conjugate pairs with positive real

parts) [41], the Wilson polynomials are orthogonal with respect to the inner product

〈wn, wn′〉 =
1

2π

∫ ∞
0

wn
(
−t2
)
wn′

(
−t2
) ∣∣∣∣Γ(α+ it)Γ(β + it)Γ(γ + it)Γ(δ + it)

Γ(2it)

∣∣∣∣2 dt
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= δnn′n!(α+ β + γ + δ + n− 1)n

× Γ(α+β+n)Γ(α+γ+n)Γ(α+δ+n)Γ(β+γ+n)Γ(β+δ+n)Γ(γ+δ+n)

Γ(α+β+γ+δ+2n)
. (3.5)

When m is a nonnegative integer then α + β = −m < 0 so that the above continuous
Wilson orthogonality does not apply. The representation becomes finite dimensional and the
orthogonality is a finite sum

〈wn, wn′〉 =
(α− γ + 1)m(α− δ + 1)m

(2α+ 1)m(1− γ − δ)m

m∑
k=0

(2α)k(α+ 1)k(α+ β)k(α+ γ)k(α+ δ)k
(1)k(α)k(α− β + 1)k(α− γ + 1)k(α− δ + 1)k

× wn((α+ k)2)wn′((α+ k)2) = δnn′

× n!(n+α+β+γ+δ−1)n(α+β)n(α+γ)n(α+δ)n(β+γ)n(β+δ)n(γ+δ)n
(α+β+γ+δ)2n

. (3.6)

Thus, the spectrum of the multiplication operator t2 is the set {(α+ k)2 : k = 0, . . . ,m}. Now,
we are ready to determine the model.

4 Construction of the operators for the model

To begin, we review some basic facts about the representation.

The original quantum spectral problem for (2.1) was studied in [43] from an entirely different
point of view. It follows from this study that for the finite dimensional irreducible representations
of the quadratic algebra the multiplicity of each energy eigenspace is (M + 2)(M + 1)/2 and we
have

L12 + L13 + L23 + L14 + L24 + L34 =

−
2M +

4∑
j=1

bj + 3

2

+
4∑
j=1

b2j

 I, (4.1)

where I is the identity operator.

Of course, for an irreducible representation, the Hamiltonian will have to be represented by
a constant times the identity and initially for the construction of the model, we assume

L12 + L13 + L23 + L14 + L24 + L34 =

E − 1 +
4∑
j=1

b2j

 I.

We will obtain the quantized values of E from the model.

We recall that each operator Lij is a member of the subalgebras Ak for k 6= i, j. Thus, we
can use the known representations of these algebras, and symmetry in the indices, to see that
the eigenvalues of each operator will be associated with eigenfunctions φh,m indexed by integers
0 ≤ h ≤ m so that

(Lij)φh,m =

(
−(2h+ bi + bj + 1)2 − 1

2
+ b2i + b2j

)
φh,m, (4.2)

(Lij + Lik + Ljk)φh,m =

(
1

4
− (2m+ bi + bj + bk + 2)2

)
φh,m. (4.3)
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4.1 A basis for L13, L12 + L13 + L23

As described above, we seek to construct a representation of A by extending the representations
obtained for the subalgebras Ak. The most important difference for our new representation is
that the operator H4 = L12 + L13 + L23 + 3/4− (b21 + b22 + b23) is in the center of A4 but not A.
Hence, it can no longer be represented as a constant. We can still use the information about its
eigenvalues to make an informed choice for its realization.

Restricting to bounded below irreducible representations of the quadratic algebra initially,
we see from the representations of A4 that the possible eigenvalues of H4 are given as in (4.3)
and the eigenvalues of L13 are given as in (4.2).

We can begin our construction of a two-variable model for the realization of these represen-
tations by choosing variables t and s, such that

H4 =
1

4
− 4s2, L13 = −4t2 − 1

2
+ b21 + b23,

i.e., the action of these operators is multiplication by the associated transform variables. From
the eigenvalues of the operators, we can see that the spectrum of s2 is {(−sm)2 = (m+ 1 + (b1 +
b2 + b3)/2)2} and the spectrum of t2 is {t2` = (`+ (b1 + b2 + 1)/2)2}.

In this basis, the eigenfunctions d`,m for a finite dimensional representation are given by delta
functions

d`,m(s, t) = δ(t− t`)δ(s− sm), 0 ≤ ` ≤ m ≤M.

4.2 A basis for L12, L12 + L13 + L23

Next, we construct L12 in the model. Let fn,m be a basis for the model corresponding to
simultaneous eigenvalues of L12, L12 +L13 +L23. From the representations of A4 [12], we know
that the action of L13 on this basis is given by

L13fn,m =
∑

j=n,n±1
Cm(j, n)fj,m, (4.4)

where

Cm(n, n) =
1

2

(b21 − b22)(b1 + b2 + 2m+ 2)(b1 + b2 + 2b3 + 2m+ 2)

(2n+ b1 + b2 + 2)(2n+ b1 + b2)
+ b21 + b23, (4.5)

Cm(n, n+ 1)Cm(n+ 1, n) = 16(n+ 1)(n−m)(n− b3 −m)(n+ b2 + 1)(n+ b1 + 1)

× (n+ b1 + b2 + 1)
(n+m+ b1 + b2 + 2)(n+m+ b1 + b2 + b3 + 2)

(2n+ b1 + b2 + 3)(2n+ b1 + b2 + 2)2(2n+ b1 + b2 + 1)
. (4.6)

We already know that the bounded below representations of A4 are intimately connected
with the Wilson polynomials. The connection between these polynomials and the representation
theory is the three term recurrence formula (4.4) for the action of L13 on an L12 basis, where
the coefficients are given by (4.5) and (4.6).

We define the operator L on the representation space of the superintegrable system by the
action of the three term recurrence relations for the Wilson polynomials given by expansion
coefficients (3.2)–(3.4), i.e.

Lfn = K(n+ 1, n)fn+1 +K(n, n)fn +K(n− 1, n)fn−1.

Note that with the choices

α = −b1 + b3 + 1

2
−m, β =

b1 + b3 + 1

2
,
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γ =
b1 − b3 + 1

2
, δ =

b1 + b3 − 1

2
+ b2 +m+ 2, (4.7)

we have a perfect match with the action of L13 as

Cm(n+ 1, n) = 4K(n+ 1, n), Cm(n− 1, n) = 4K(n− 1, n)− 1

2
+ b21 + b23.

Thus, the action of L13 is given by

L13fn =

(
−4L− 1

2
+ b21 + b23

)
fn,

and so we see that the action of L13 on an L12 basis is exactly the action of the variable t2 on
a basis of Wilson polynomials. Hence, we hypothesize that L12 takes the form of an eigenvalue
operator for Wilson polynomials in the variable t

L12 = −4τ∗t τt − 2(b1 + 1)(b2 + 1) + 1/2,

where τ , τ∗t are given as (3.1) with the choice of parameters as given in (4.7). Here the subscript t
expresses the fact that this is a difference operator in the variable t, although the parameters
depend on the variable s.

The basis functions corresponding to diagonalizing H4 and L12 can be taken, essentially, as
the Wilson polynomials

fn,m(t, s) = wn
(
t2, α, β, γ, δ

)
δ(s− sm),

where sm = m+ 1 + (b1 + b2 + b3)/2 as above. Note that wn(t2) actually depends on m (or s2)
through the parameters α, δ. Also α+δ is independent of m. Written in terms of the variable s,
the parameters are given by

α =
b2 + 1

2
+ s, β =

b1 + b3 + 1

2
, γ =

b1 − b3 + 1

2
, δ =

b2 + 1

2
− s. (4.8)

Note that when s is restricted to sm, these parameters agree with (4.7).

Since the wn are symmetric with respect to arbitrary permutations of α, β, γ, δ, we can
transpose α and β and verify that wn is a polynomial of order n in s2.

4.3 A basis for L13, L24

For now, let us assume that we have a finite dimensional irreducible representation such that
the simultaneous eigenspaces of L12, L12 +L13 +L23 are indexed by integers n, m, respectively,
such that 0 ≤ n ≤ m ≤ M . Each simultaneous eigenspace is one-dimensional and the total
dimension of the representation space is (M + 1)(M + 2)/2. Now we need to determine the
action of the operators L14, L24, L34 in the model.

A reasonable guess of the form of the operator L24 is as a difference operator in s, since it
commutes with L13. We hypothesize that it takes the form of an eigenvalue equation for the
Wilson polynomials in the variable s. We require that it have eigenvalues of the form (4.2).

Note that when acting on the delta basis d`,m, it produces a three-term recursion relation. For
our representation, we require that that the representation cut off at the appropriate bounds.
That is if we write the expansion coefficients of L24 acting on d`,m, as

L24d`,m = B(m,m− 1)d`,m−1 +B(m,m)d`,m +B(m,m+ 1)d`,m+1,
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we require B(m,m− 1)B(m− 1,m) = 0 and B(M,M + 1)B(M + 1,M) = 0. These restrictions
are realized in our choices of parameters,

α̃ = t+
b2 + 1

2
, β̃ = −M − b1 + b2 + b3

2
− 1,

γ̃ = M + b4 +
b1 + b2 + b3

2
+ 2, δ̃ = −t+

b2 + 1

2
. (4.9)

For L24 we take

L24 = −4τ̃∗s τ̃s − 2(b2 + 1)(b4 + 1) +
1

2
.

Here τ̃s is the difference operator in s where the parameters are α̃, β̃, γ̃, δ̃.
With the operator L24 thus defined, the unnormalized eigenfunctions of the commuting

operators L13, L24 in the model take the form gn,k where

L13g`,k =

(
−(2`+ b1 + b3 + 1)2 − 1

2
+ b21 + b23

)
gn,k,

L24g`.k =

(
−(2k + b2 + b4 + 1)2 − 1

2
+ b22 + b24

)
gn,k,

where 0 ≤ ` ≤M , 0 ≤ k ≤M − `, and

g`,k = δ(t− t`)wk
(
s2, α̃, β̃, γ̃, δ̃

)
, (4.10)

with t` = `+ (b1 + b3 + 1)/2 as above.
For this choice of parameters, the functions (4.10) constitute an alternative basis for the

representation space, consisting of polynomials in s2, t2 multiplied by a delta function in s.

4.4 Completion of the model

In this section, we finalize the construction of our model by realizing the operator L34. The
operator L34 must commute with L12, so we hypothesize that it is of the form

L34 = A(s)S(LαβLαγ)t +B(s)S−1(RαβRαγ)t + C(s)(LR)t +D(s), (4.11)

where Suf(s, t) = f(s+ u, t), A, B, C, D are rational functions of s to be determined, and the
operators Lαβ, Rαβ, L, R, etc. are defined in Appendix B. The subscript t denotes difference
operators in t. (Note that τ∗t τ ≡ (LR)t.) The parameters are (4.8). Here

LαβLαγ =
1

4t(t+ 1
2)

(α− 1 + t)(α+ t)(β + t)(γ + t)T 1

+
1

4t(t− 1
2)

(α− 1− t)(α− t)(β − t)(γ − t)T−1

− 1

4t(t+ 1
2)

(α− 1 + t)(α− 1− t)(β + t)(γ − 1− t)

− 1

4t(t− 1
2)

(α− 1− t)(α− 1 + t)(β − t)(γ − 1 + t),

RαβRαγ =
1

4t(t+ 1
2)

(β + t)(γ + t)(δ − 1 + t)(δ + t)T 1

+
1

4t(t− 1
2)

(β − t)(γ − t)(δ − 1− t)(δ − t)T−1
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− 1

4t(t+ 1
2)

(β − 1− t)(γ + t)(δ − 1 + t)(δ − 1− t)

− 1

4t(t− 1
2)

(β − 1 + t)(γ − t)(δ − 1− t)(δ − 1 + t),

LR =
1

4t(t+ 1
2)

(α+ t)(β + t)(γ + t)(δ + t)T 1 +
1

4t(t− 1
2)

(α− t)(β − t)(γ − t)(δ − t)T−1

− 1

4t(t+ 1
2)

(α+ t)(β + t)(γ + t)(δ + t)− 1

4t(t− 1
2)

(α− t)(β − t)(γ − t)(δ − t).

On the other hand, we can consider the action of L34 on the basis (4.10). Considering L34

primarily as an operator on s we hypothesize that it must be of the form

L34 = Ã(t)T (Lα̃β̃Lα̃γ̃)s + B̃(t)T−1(Rα̃β̃Rα̃γ̃)s + C̃(t)(LR)s + D̃(t)s2 + Ẽ(t) + κL12, (4.12)

where the difference operators are defined in Appendix B with subscript s denoting difference
operators in s and κ is a constant.

Finally, we express the operator L14 asE +

4∑
j=1

b2j − 1

 I − L12 − L13 − L23 − L24 − L34.

By a long and tedious computation we can verify that the 3rd order structure equations are
satisfied if and only if E takes the values

E = −

2M +
4∑
j=1

bj + 3

2

− 1

and the functional coefficients for L34 in (4.11), (4.12) take the following form :

A(s) = −(2M + b1 + b2 + b3 − 2s+ 2)(2M + b1 + b2 + b3 + 2b4 + 2s+ 4)

2s(2s+ 1)
,

B(s) = −(2M + b1 + b2 + b3 + 2s+ 2)(2M + b1 + b2 + b3 + 2b4 − 2s+ 4)

2s(2s− 1)
,

C(s) = −2 +
2(2M + b1 + b2 + b3 + 3)(2M + b1 + b2 + b3 + 2b4 + 3)

4s2 − 1
,

D(s) = 2s2 − 2

(
2M + b1 + b2 + b3 + b4 + 4

2

)2

− (b1 + b2)
2 + b23 + b24
2

+ b3 + b4 + 2M + 3

+
((b1 + b2 + 1)2 − b23)(2M + b1 + b2 + b3 + 3)(2M + b1 + b2 + b3 + 2b4 + 3)

2(4s2 − 1)
,

Ã(t) =
(b1 − b3 + 2t+ 1)(b1 + 1 + b3 + 2t)

2t(2t+ 1)
,

B̃(t) =
(b1 − b3 − 2t+ 1)(b1 + 1 + b3 − 2t)

2t(2t− 1)
,

C̃(t) = 2 +
2(b23 − b21)

4t2 − 1
,

D̃(t) = 2, (4.13)

and κ = −4. The expression for Ẽ(t) takes the form Ẽ(t) = µ1 + µ2/(4t
2 − 1) where µ1, µ2 are

constants, but we will not list it here in detail.
For finite dimensional representations, we have the requirement that M be a positive integer

so we obtain the quantization of the energy obtained previously (4.1).
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4.5 The model and basis functions

We shall now review what we have constructed, up to this point. We realize the algebra A by
the following operators

H = −

2M +
4∑
j=1

bj + 3

2

+ 1

 I,

H4 =
1

4
− 4s2, L13 = −4t2 − 1

2
+ b21 + b23,

L12 = −4τ∗t τt − 2(b1 + 1)(b2 + 1) +
1

2
, L24 = −4τ̃∗s τ̃s − 2(b2 + 1)(b4 + 1) +

1

2
,

L34 = A(s)S(LαβLαγ)t +B(s)S−1(RαβRαγ)t + C(s)(LR)t +D(s),

where the parameters for the τt operators are given in (4.8), the parameters for the operators τ̃s
are given in (4.9) and the functional coefficients of L34 are given in (4.13). The operators L23,
L14 can be obtained through linear combinations of this basis.

Using Maple, we have verified explicitly that this solution satisfies all of the 4th, 5th, 6th
and 8th order structure equations.

We have computed three sets of orthogonal basis vectors corresponding to diagonalizing three
sets of commuting operators, {L13, H4}, {L12, H4} and {L13, L24}, respectively,

d̃`,m(s, t) = δ(t− t`)δ(s− sm), 0 ≤ ` ≤ m ≤M, (4.14)

fn,m(s, t) = wn(t2, α, β, γ, δ)δ(s− sm), 0 ≤ n ≤ m ≤M, (4.15)

g`,k(s, t) = wk(s
2, α̃, β̃, γ̃, δ̃)δ(t− t`), 0 ≤ ` ≤ k + ` ≤M. (4.16)

We also have a nonorthogonal basis given by

hn,k(s, t) = t2ns2k, 0 ≤ n+ k ≤M.

Recall that the spectrum of the variables s, t is given by

t` = `+
b1 + b3 + 1

2
, sm = −

(
m+ 1 +

b1 + b2 + b3
2

)
, 0 ≤ ` ≤ m ≤M.

We finish the construction of the model by computing normalizations for the basis fn,m,
and g`,m and the weight function.

5 The weight function and normalizations

We begin this section by determining the weight function and normalization of the basis functions
in the finite dimensional representations. Later, we shall extend the system to the infinite
dimensional bounded below case.

5.1 The weight function and normalization
of the basis d̃`,m(s, t) = δ(t− t`)δ(s− sm)

We consider the normalization for the d`,m = δ(t − t`)δ(s − sm) basis for finite dimensional
representations where

t` = `+
b1 + b3 + 1

2
, sm = −

(
m+ 1 +

b1 + b2 + b3
2

)
, 0 ≤ ` ≤ m ≤M.
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In order to derive these results we use the requirement that the generating operators Lij are
formally self-adjoint.

Consider a weight function ω(t, s) so that

〈f(t, s), g(t, s)〉 =

∫∫
f(t, s)g(t, s)ω(t, s)dsdt,

then we assume that the basis functions are orthonormal with

〈c`,mδ(t− t`)δ(s− sm), c`′,mδ(t− t′`)δ(s− s′m)〉 = δm,m′δ`,`′ ,

which implies that c2`,mω(t`, sm) = 1. The adjoint properties of L13 and L24 provide recurrence
relations on the c`,m. That is

〈δ(t− t` − 1)δ(s− sm), L13δ(t− t`)δ(s− sm)〉
= 〈L13δ(t− t` − 1)δ(s− sm), δ(t− t`)δ(s− sm)〉

implies the recurrence relation

c2`+1,m

c2`,m
=

(`+ 1)(1 + b3 + `)(m− `+ b2)(m+ `+ b1 + b3 + 2)(2`+ b1 + b3 + 1)

(m− `)(1 + b1 + b3 + `)(m+ `+ b1 + b2 + b3 + 2)(2`+ b1 + b3 + 3)
. (5.1)

Similarly, the self-adjoint property of L24

〈δ(t− t`)δ(s− sm + 1), L24δ(t− t`)δ(s− sm)〉
= 〈L24δ(t− t` − 1)δ(s− sm + 1), δ(t− t`)δ(s− sm)〉

implies the recurrence relation

c2`,m+1

c2`,m
=

(M − `+ b4)(m+ `+ b1 + b3 + 2)(M +m+ b1 + b2 + b3 + 2)

(M +m+ b1 + b2 + b3 + b4 + 3)(m+ `+ b1 + b2 + b3 + 2)

× (m− `+ 1)(2m+ 2 + b1 + b2 + b3)

(M −m)(m− `+ 1 + b2)(2m+ 4 + b1 + b2 + b3)
. (5.2)

Putting together (5.1) and (5.2) we obtain

c2`,m
c20,0

=
(1 + b3)`(1 + b4)M (M + b1 + b2 + b3 + 3)m(2 + b1 + b3)m+`

(1 + b2)m−`(1 + b1)`(1 + b1 + b3)`(1 + b4)M−m(M + b1 + b2 + b3 + b4 + 3)m

× (M −m)!(m− `)!`!(2 + b1 + b2 + b3)(1 + b1 + b3)

M !(2m+ 2 + b1 + b2 + b3)(2`+ 1 + b1 + b3)(2 + b1 + b2 + b3)m+`
, (5.3)

which gives the value of the weight function for the spectrum of t, s via w(t`, sm) = c−2`,m.

5.2 Normalization of the wn(t
2)δ(s− sm) basis

Next, we use the orthogonality of the Wilson polynomials to find the normalization of the fn,m
basis in the finite dimensional representation.

Assume the normalized basis functions have the form

f̂n,m(s, t) = kn,mwn
(
t2, α, β, γ, δ

)
δ(s− sm), 0 ≤ n ≤ m ≤M.

When evaluated at s = sm, the parameters are given by

α = −b1 + b3 + 1

2
−m, β =

b1 + b3 + 1

2
,
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γ =
b1 − b3 + 1

2
, δ =

b1 + b3 − 1

2
+ b2 +m+ 2, (5.4)

and satisfy α+β = −m < 0. Thus, the Wilson orthogonality is realized as a finite sum over the
weights of t2. However, the weight of the variable t is given by t` = ` + β and we must adjust
the equation for the Wilson orthogonality (3.6) by permuting α and β. This is allowed since
the polynomial and the requirement α+ β = −m are symmetric in the two parameters. In this
form the Wilson orthogonality is given over the spectrum of the multiplication operator t2 as
the set {(β + `)2 : ` = 0, . . . ,m}

〈wn, wn′〉 =
(β − γ + 1)m(β − δ + 1)m

(2β + 1)m(1− γ − δ)m
(5.5)

×
m∑
`=0

(2β)`(β + 1)`(β + α)`(β + γ)`(β + δ)`
(1)`(β)`(β − α+ 1)`(β − γ + 1)`(β − δ + 1)`

wn((β + `)2)wn′((β + `)2)

=
δnn′n!(n+ α+ β + γ + δ − 1)n(α+ β)n(β + γ)n(β + δ)n(α+ γ)n(α+ δ)n(γ + δ)n

(α+ β + γ + δ)2n
.

In light of this orthogonality, we hypothesize that the weight function is given by

〈f(t, s), g(t, s)〉 =

∫∫ ∑
`,m

f(t, s)g(t, s)w(t, s)δ(t− t`)δ(s− sm)

=
∑
`,m

f(t`, sm)g(t`, sm)ω(t`, sm)

and so we look for normalization constants so that

〈f̂n,m(s, t), f̂n′,m′(s, t)〉 =

∫∫ ∑
`,m

f̂n,m(s, t)f̂n′,m′(s, t)w(t, s)δ(t− t`)δ(s− sm)

= δm,m′
∑
`

kn,mkn′,mwn(t2` )wn′(t2` )w(t`, sm)δ(t− t`)δ(s− sm)

= δm,m′δn,n′ . (5.6)

The orthogonality (5.5) in terms of the choices of parameters (5.4) is given by

δn,n′ =
(2 + b1 + b2)2n(m− n)!(1 + b3)m−n

(n+ b1 + b2 + 1)n(1 + b1)n(1 + b2)n(2 + b1 + b2)m+n(2 + b1 + b2 + b3)m+n

×
m∑
`=0

(1 + b1)`(1 + b1 + b3)`(1 + b2)m−`(2 + b1 + b2 + b3)m+`

`!(m− `)!(1 + b3)`(2 + b1 + b3)m+`

× (2`+ b1 + b3 + 1)

(1 + b1 + b3)
wn(t2` )wn′(t2` ). (5.7)

The weight function (5.3) can be rewritten as

ω(t`, sm) =
M !(1 + b4)M−m(M + b1 + b2 + b3 + b4 + 3)m(2m+ 2 + b1 + b2 + b3)

(M −m)!(1 + b4)M (M + b1 + b2 + b3 + 3)m(2 + b1 + b2 + b3)
(5.8)

× (1 + b1)`(1 + b1 + b3)`(1 + b2)m−`(2 + b1 + b2 + b3)m+`(2`+ 1 + b1 + b3)

`!(m− `)!(1 + b3)`(2 + b1 + b3)m+`(1 + b1 + b3)c20,0
.

We can now solve the equation (5.6) for kn,m by comparing (5.8) and (5.7) to obtain

k2n,m
c20,0

=
(1 + b4)M (1 + b3)m−n(M + b1 + b2 + b3 + 3)m(2 + b1 + b2 + b3)(2 + b1 + b2)2n
n!M !(1 + b4)M−m(n+ b1 + b2 + 1)n(1 + b1)n(1 + b2)n(2m+ 2 + b1 + b2 + b3)
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× (m− n)!(M −m)!

(M + b1 + b2 + b3 + b4 + 3)m(2 + b1 + b2)m+n(2 + b1 + b2 + b3)m+n
.

With this normalization the basis functions f̂n,m(s, t) are orthonormal.

5.3 Normalization of the wk(s
2)δ(t− t`) basis

Next, we use the orthogonality of the Wilson polynomials to find the normalization of the gn,k
basis in the finite dimensional representation. We take the normalized basis functions to be
given by

ĝ`,k(s, t) = h`,kwk(s
2, α̃, β̃, γ̃, δ̃)δ(t− t`), 0 ≤ n ≤M, 0 ≤ k ≤M − `.

Again, we want to show that there exist normalization constants h`,k so that the following
holds:

〈ĝ`,k(s, t), ĝ`′,k′(s, t)〉 =

∫∫ ∑
`,m

ĝ`,k(s, t)ĝ`′,k′(s, t)w(t, s)δ(t− t`)δ(s− sm)

= δ`,`′
∑
m

h`,kh`,k′wk(s
2
m)wk′(s

2
m)w(t`, sm)δ(t− t`)δ(s− sm)

= δ`,`′δk,k′ .

When restricted to t = t` the parameters α̃, β̃, γ̃, δ̃ become

α̃ = `+ 1 +
b1 + b2 + b3

2
, β̃ = −M − 1− b1 + b2 + b3

2
,

γ̃ = M + b4 + 2 +
b1 + b2 + b3

2
, δ̃ = −`− b1 − b2 + b3

2
, (5.9)

and so we have α̃ + β̃ = −M + ` < 0. Also, the spectrum of the variable s2 is given by the set
{(m+1+ b1+b2+b3

2 )2 : m = `, . . . ,M} which we can write as {((m−`)+α̃)2 : m−` = 0, . . . ,M−`}.
The Wilson orthogonality can be written in terms of the choice of parameters (5.9) as

δk,k′ =
(M − k + `)!(3 + b1 + b2 + b3)M

(3 + b1 + b2 + b3 + b4)M+k−`

× (2 + b1 + b3)M+`−k(3 + b1 + b2 + b3 + b4)M (2 + b2 + b4 + k)k
(1 + b2)k(1 + b4)k(1 + b2 + b4 + k)k(2 + b2 + b4)M−`+k

×
M∑
m=`

(1 + b4)M−m(M + b1 + b2 + b3 + b4 + 3)m(2 + b1 + b2 + b3)m+`

(M −m)!(m− `)!(M + b1 + b2 + b3 + 3)m(2 + b1 + b3)m+`

× (1 + b2)m−`(2m+ 2 + b1 + b2 + b3)

(2 + b1 + b2 + b3)
wk
(
s2m
)
wk′

(
s2m
)
,

where the index being summed over is m = `, . . . ,M instead of m− ` = 0, . . . ,M − `.
Comparing this orthogonality with the weight function (5.3) written as

ω(t`, sm) =
(1 + b4)M−m(M + b1 + b2 + b3 + b4 + 3)m(2 + b1 + b2 + b3)m+`

(M −m)!(m− `)!(M + b1 + b2 + b3)m(2 + b1 + b3)m+`

× (1 + b2)m−`(2m+ 2 + b1 + b2 + b3)

(2 + b1 + b2 + b3)

× M !(1 + b1)`(1 + b1 + b3)`(2`+ 1 + b1 + b3)

`!(1 + b3)`(1 + b4)M (2 + b1 + b2 + b3)(1 + b1 + b3)c20,0
,
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the normalization constants are determined by the requirement

δk,k′ = h`,kl`,k

M∑
m=`

ω(t`, sm)wk
(
s2m
)
wk
(
s2m
)

for l`,k. The proper choice of normalization is

h`,k
c20,0

=
(M − k + `)!(2 + b1 + b3)M+k+`(2 + b2 + b4)2k

(1 + b2)k(1 + b4)k(1 + b2 + b4 + k)k(3 + b1 + b2 + b3)M (2 + b2 + b4)M+k−`

× `!(1 + b3)`(1 + b4)M (1 + b1 + b3)

M !(1 + b1)`(1 + b1 + b3)`(M + 3 + b1 + b2 + b3 + b4)m(2`+ 1 + b1 + b3)
.

With this normalization, the ĝ`,k(s, t) form an orthonormal basis.

5.4 The norm of 1

Throughout the previous analysis, the weight and normalization have been proportional to an
arbitrary overall factor c0,0. We can fix this constant by requiring that the function 1, belonging
to the basis hn,k(s, t) of monomials in s2, t2, be normalized to length 1. We compute this by
using the Wilson orthogonality for the 0th order Wilson polynomials (i.e. (3.6) with k, k′ = 0).
The norm of 1 is given by

〈1, 1〉 =

M∑
m=0

m∑
`=0

ω(t`, sm)

=
M∑
m=0

m∑
`=0

M !(1 + b4)M−m(M + b1 + b2 + b3 + b4 + 3)m(2m+ 2 + b1 + b2 + b3)

(M −m)!(1 + b4)M (M + b1 + b2 + b3 + 3)m(2 + b1 + b2 + b3)

× (1 + b1)`(1 + b1 + b3)`(1 + b2)m−`(2 + b1 + b2 + b3)m+`(2`+ 1 + b1 + b3)

`!(m− `)!(1 + b3)`(2 + b1 + b3)m+`(1 + b1 + b3)c20,0
.

Evaluating the double sum gives

〈1, 1〉 =
(3 + b1 + b2 + b4)M (3 + b1 + b2 + b3)M

(1 + b4)M (1 + b3)M

1

c20,0
.

Thus, setting

c20,0 =
(3 + b1 + b2 + b4)M (3 + b1 + b2 + b3)M

(1 + b4)M (1 + b3)M
,

will make 〈1, 1〉 = 1.

5.5 Infinite dimensional representations

For infinite dimensional but bounded below representations with −m and −M + ` nonnegative
integers and all bj real we take the inner product of two functions f(t2, s2), g(t2, s2) in the form

〈f, g〉 =

∫ ∞
0

∫ ∞
0

f
(
−t2,−s2

)
g
(
−t2,−s2

)
ω(t, s)dtds.

To compute the measure ω(t, s) such that our operators Ljk are formally self-adjoint we use the
fact that we already know the restriction of the measure to the s-constant basis (4.15) and the
t-constant basis (4.16). For consistency, we see that the weight function should be

1

(2π)2

∣∣∣∣∣Γ( b2+1
2 + i(t+ s))Γ( b2+1

2 + i(−t+ s))Γ( b1+b3+1
2 + it)Γ( b1−b3+1

2 + it)

Γ(2it)

∣∣∣∣∣
2
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×

∣∣∣∣∣Γ(−M − b1+b2+b3
2 − 1 + is)Γ(M + b1+b2+b3

2 + b4 + 2 + is)

Γ(2is)

∣∣∣∣∣
2

= ω(t, s).

Then we can compute the norm square of the constant function f(t2, s2) = 1 by using (3.5)
twice to evaluate the iterated integral:

〈1, 1〉 = 4
Γ(b1 + 1)Γ(b2 + 1)Γ(b4 + 1)

Γ(b1 + b2 + b4 + 3)

× Γ(−M)Γ(−M − b3)Γ(M + b1 + b2 + b3 + b4 + 3)Γ(M + b1 + b2 + b4 + 3).

Comparing the measures that we have derived for the infinite dimensional and finite dimen-
sional cases with the 2-variable Wilson and Racah polynomials introduced by Tratnik [38, 39, 40]
we see that they agree. Thus we have found two-variable Wilson and Racah polynomials in com-
plete generality.

6 Expansion coefficients

We can easily determine the coefficients for the expansion of one of our bases in terms of another.
Here we write the expansion coefficients in terms of the unnormalized functions. The expansion
of the d`,m basis in terms of the fn,m basis is given by

〈δ(t− t`)δ(s− sm), wn(t)δ(s− s′m)〉 = δm,m′wn(t`)|s=smω(t`, sm),

wn(t`)|s=sm = (−m)n(−m− b3)n(1 + b2)n

× 4F3

(
−n, 1 + b1 + b2 + n, −1− b1 − b3 −m− `, −m+ `
−m, −m− b3, 1 + b2,

∣∣∣∣1) .
The expansion of the d`,m basis in terms of the g`,k basis is given by

〈δ(t− t`)δ(s− sm), wk(s)δ(t− t`)〉 = δn,nwm′−n(sm)ω(tn, sm),

wk(sm)|t=t` = (−M + `)k(3 + b1 + b2 + b3 + b4 +M + `)k(1 + b2)k

×4F3

(
−k, 1 + b2 + b4 + k, −m+ `, 2 + b1 + b2 + b3 +m+ `

−M + `, 3 + b1 + b2 + b3 + b4 +M + `, 1 + b2,

∣∣∣∣1) .
Finally, the expansion of the fn,m basis in terms of the g`,k basis is given by

〈wn(t)δ(s− sm), wk(s)δ(t− t`)〉 = wn(tn)|s=smwk(sm)|t=t`ω(t`, sm).

In order to understand the significance of these expansions in quantum theory, it is useful to
consider the results of [43]. There the Schrödinger eigenvalue problem for the generic potential on
the n-sphere was considered, for general n. For n = 3 it was shown that all of the eigenfunctions
of the pairs commuting operators treated in this paper separated in some version of either
spherical or cylindrical coordinates and were expressible as continuous multivariable orthogonal
polynomials orthogonal on a simplex. Thus the expansion coefficients derived here represent the
expansion of one basis of solutions of the Schrödinger eigenvalue equation in terms of another.

6.1 A basis for L12, L12 + L14 + L24

Now that we have computed the measures for our spaces of polynomials from first principles
and established that they agree with those for the Tratnik generalization of Wilson and Racah
polynomials to two variables [38, 39], we can make use of known results for the Tratnik case to
compute another ON basis for our spaces. In an appendix to [40] the authors show that the
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true 2-variable Racah polynomials defined by Tratnik are simultaneous eigenfunctions of two
commuting difference operators L1, L2. We will identify these operators with our symmetry
algebra and verify another eigenbasis for our representation space.

We construct the polynomials of Tratnik [38, 39] and operators given in [40] via the definitions

x0 = 0, x1 = t− b1 + b3 + 1

2
, x2 = −s− 1− b1 + b2 + b3

2
, x3 = M,

β0 = b3, β1 = b1 + b3 + 1, β2 = b1 + b2 + b3 + 2, β3 = b1 + b2 + b3 + 3.

The original form of the polynomials were given in terms of the Racah polynomials which can
be related to the Wilson polynomials via

rn(a, b, c, d, x) = wn
(
ã, b̃, c̃, d̃, (x+ ã)2

)
with

ã =
c+ d+ 1

2
, b̃ = a− c+ d− 1

2
, c̃ = b+

d− c+ 1

2
, d̃ =

c− d+ 1

2
.

Then, the two-variable extension of the Wilson polynomials defined by Tratnik are given by
equation (3.10) of [40] as

R2(n1, n2;βi;x1, x2;M) = rn1 (β1 − β0 − 1, β2 − β1 − 1,−x2 − 1, x2 + β1;x1)

× rn2 (n1 + β2 − β0 − 1, β3 − β2 − 1, n1 −M − 1, n1 + β2 +M ;−n1 + x2)

with the requirements that 0 ≤ n1 ≤ n1 + n2 ≤M .
We can express the 2-variable polynomial R2 in terms of the Wilson polynomials using the

original parameters and variables of the model as

R2(n1, n2; bi; t, s;M) = wn1

(
α, β, γ, δ; t2

)
(6.1)

× wn2

(
n1 + β +

α+ δ

2
, γ +

α+ δ

2
,M + 1 + b4 + β +

α+ δ

2
,M + 1 + β +

α+ δ

2
, s2
)
,

where as in (4.8)

α =
b2 + 1

2
+ s, β =

b1 + b3 + 1

2
, γ =

b1 − b3 + 1

2
, δ =

b2 + 1

2
− s.

In particular, note that the parameters α, δ depend on s and so the polynomial wn1 is a function
of both s and t.

Note that it was already demonstrated in Section 4.2 that the polynomial, wn1 , is an eigen-
function of L12. Furthermore, it is easy to see that wn2 depends only on s and so will be left
invariant by L12 and so the 2-variable polynomial R2 is an eigenfuction for L12. As was exhibited
in [40], there is a set of two commuting difference operators whose simultaneous eigenfunctions
are just these orthogonal polynomials. It is then natural to expect that these operators can be
expressed in terms of the operators in our model which commute with L12, i.e., I, L12, L34, H3,
and H4.

The commuting difference operators are given as follows, via [40]. Let Ii be the operator
which maps xi to −xi − βi and leaves fixed xj for j 6= i. Similarly, define Eax1 as the operator

which maps xi to xi + a and leaves fixed xj for j 6= i. We define functions Bj,k
i as

B0,0
i ≡ xi(xi + βi) + xi+1(xi+1 + βi+1) +

(β1 + 1)(βi+1 − 1)

2
,

B0,1
i ≡ (xi+1 + xi + βi+1)(xi+1 − xi + βi+1 − βi),
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B1,0
i ≡ (xi+1 − xi)(xi+1 + xi + βi+1),

B1,1
i ≡ (xi1+ + xi + βi+1)(xi+1 + xi + βi+1 + 1),

and further extend these functions for k = −1, 0, 1 via

B−1,ki ≡ Ii
(
B1,k
i

)
, Bk,−1

i ≡ Ii+1

(
Bk,i
i

)
.

We also define bji by

b0i = (2xi + βi + 1)(2xi + βi − 1), b1i = (2xi + βi + 1)(2xi + β1), b−1i = Ii
(
b1i
)
.

Let ν be some multi-index ν = (ν1, ν2) with νi = −1, 0, 1 and µ be a single index µ = −1, 0, 1.
Then the functions given by

Cµ ≡ 21−|µ|
B0,µ

0 Bµ,0
1

bµ1
, Cν ≡ 22−|ν1|+|ν2|

B0,ν1
0 Bν1,ν2

1 Bν2,0
2

bν11 b
ν2
2

,

are enough to define the operators and describe the results of [40]. The operators

L1 =
∑

µ=−1,0,1
CµE

µ
x1 −

(
x2(x2 + β2) +

(β0 + 1)(β2 − 1)

2

)
,

L2 =
∑

νi=−1,0,1
CνE

ν1
x1E

ν2
x2 −

(
x3(x3 + β3) +

(β0 + 1)(β3 − 1)

2

)
,

commute and their eigenfunctions are given by R2 (6.1).
The eigenvalues of the operators L1, L2 are given by

L1R2 = −n1(n1 + b1 + b2)R2, L2R2 = −(n1 + n2)(n1 + n2 + b1 + b2 + b4)R2,

so we hypothesize that L1 is a linear combination of L12 and the identity and L2 is a linear
combination of H3 and the identity. In fact, it is straightforward to verify that

L12 = 4L1 − 2b1b2 − 2b1 − 2b2 −
3

2
,

L14 + L12 + L24 = 4L2 − 2(b1b2 − b2b4 − b1b4)− 4(b1 + b2 + b4)−
9

2
.

The normalization of this basis can be found in [39] and [40]. Thus, we have shown that Tratnik’s
version of two-variable Racah polynomials corresponds to the L12, L12 + L14 + L24 eigenbasis.

7 Conclusions and discussion

We have demonstrated explicitly the isomorphism between the quadratic algebra of the generic
quantum superintegrable system on the 3-sphere and the quadratic algebra generated by the
recurrence relations for two-variable Wilson and Racah polynomials, and have worked out the
basic theory for physically relevant (boundstate) infinite as well as finite dimensional repre-
sentations of the algebra. The 6 generators of the quadratic algebra break the degeneracy of
the energy eigenspaces and, via various choices of commuting pairs of operators, allow one
to describe unique bases. The eigenbases for the commuting pairs {L12, H4}, {L13, H4} and
{L12, H3} correspond to separation of the original quantum mechanical Schrödinger eigenvalue
equation in various polyspherical coordinates, whereas the eigenbasis for {L13, L24} corresponds
to separation in cylindrical coordinates, see [43].
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Natural questions here are: what is the origin of these models of the symmetry algebra action
and how can we determine when there is a differential operator model, a difference operator
model or some other model? Clearly, the models are associated with the spectral resolutions
of systems of commuting operators in the symmetry algebra. In [13] we showed how difference
and differential operator models can be suggested by analysis of the corresponding classical
systems, and these ideas are relevant here. In [44] we developed a recurrence relation approach
for differential operators that allowed us to derive difference equation models for 2D quantum
systems and, again, this approach should generalize to 3D quantum systems. Also, there is an
obvious connection between the existence of models and bispectrality [40]. Another issue is that
all models that we know of for quantum symmetry algebras of 2D and 3D superintegrable systems
are associated with commuting operators whose simultaneous separated eigenfunctions are of
hypergeometric type. Do there exist models with commuting operators whose simultaneous
separated eigenfunctions are not hypergeometric?

It is suggested by our method that most of the quadratic algebras for all Stäckel equivalence
classes of 3D second order quantum superintegrable systems on conformally flat spaces should be
obtainable by appropriate limit processes from the quadratic algebra associated with the generic
superintegrable system on the 3-sphere, namely that generated by the two-variable Wilson poly-
nomials. However these limit processes are very intricate, see e.g. [33], and each equivalence class
exhibits unique structure, so each class is important for study by itself. Moreover, within each
class of Stäckel equivalent systems the structure of the quadratic algebra remains unchanged
but the spectral analysis of the generators for the algebra can change. We conjecture that
this limiting process for superintegrable quantum systems is analogous to the Askey scheme for
obtaining various families of orthogonal polynomials as limits of Askey–Wilson polynomials.

As an example of this, in the paper [45] we studied the quadratic algebra associated with the
quantum 3D caged isotropic oscillator. There, the Hamiltonian operator was

H = ∂21 + ∂22 + ∂23 + a2
(
x21 + x22 + x23

)
+
b1
x21

+
b2
x22

+
b3
x23
, ∂i ≡ ∂xi ,

and a basis for the second order constants of the motion was (with H = M1 +M2 +M3)

M` = ∂2` + a2x2` +
b`
x2`
, ` = 1, 2, 3, Li = (xj∂k − xk∂j)2 +

bjx
2
k

x2j
+
bkx

2
j

x2k
.

We found 3 two-variable models for physically relevant irreducible representations of the quad-
ratic algebra. One was in terms of differential operators and led to monomial eigenfunctions for
the generators that corresponded to separation of variables in Cartesian coordinates, one was in
terms of mixed differential-difference operators and led to one-variable dual Hahn polynomial
eigenfunctions for the generators that corresponded to separation of variables in cylindrical
coordinates, and the third was in terms of pure difference operators and led to one-variable
Wilson or Racah polynomial eigenfunctions for the generators that corresponded to separation
of variables in spherical coordinates. It can be shown that the flat space caged isotropic oscillator
system can be obtained as a limit of the generic system on the sphere, whereas at the quadratic
algebra level one variable dual Hahn and Wilson polynomials can be obtained as limits of two-
variable Wilson polynomials.

For nD nondegenerate superintegrable systems on conformally flat spaces there are 2n− 1
functionally independent but n(n + 1)/2 linearly independent generators for the quadratic al-
gebra. It is reasonable to conjecture that the quadratic algebra of the generic potential on
the n-sphere is uniquely associated with the (n − 1)-variable version of Tratnik’s multivariable
Wilson polynomials.

Finally, these results suggest the existence of a q version of superintegrability for quantum
systems [46].
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A Recurrence relations for Wilson polynomials

In addition to a three term recurrence relation, the Wilson polynomials Φ
(α,β,γ,δ)
n (t2) satisfy the

following parameter-changing recurrence relations:

τ (α,β,γ,δ)Φ(α,β,γ,δ)
n =

n(n+ α+ β + γ + δ − 1)

(α+ β)(α+ γ)(α+ δ)
Φ
(α+1/2,β+1/2,γ+1/2,δ+1/2)
n−1 ,

where

τ (α,β,γ,δ) =
1

2y

(
T 1/2 − T−1/2

)
.

This is a consequence of

τ [(α+ y)k(α− y)k] = −k
[(
α+

1

2
+ y

)
k−1

(
α+

1

2
− y
)
k−1

]
,

µ(α,β,γ,δ)Φ(α,β,γ,δ)
n = −(α+ β − 1)Φ(α−1/2,β−1/2,γ+1/2,δ+1/2)

n ,

where

µ(α,β,γ,δ) =
1

2y

[
−
(
α+ y − 1

2

)(
β + y − 1

2

)
T 1/2 +

(
α− y − 1

2

)(
β − y − 1

2

)
T−1/2

]
.

This follows from

µ[(α+ y)k(α− y)k] = −(α+ β − k − 1)

[(
α− 1

2
+ y

)
k

(
α− 1

2
− y
)
k

]
.

Using the inner product (3.5), one can compute the adjoint recurrences

τ∗(α+1/2,β+1/2,γ+1/2,δ+1/2)Φ
(α+1/2,β+1/2,γ+1/2,δ+1/2)
n−1 = (α+ β)(α+ γ)(α+ δ)Φ(α,β,γ,δ)

n ,

where

τ∗(α+1/2,β+1/2,γ+1/2,δ+1/2)

=
1

2y

[
(α+ y)(β + y)(γ + y)(δ + y)T 1/2 − (α− y)(β − y)(γ − y)(δ − y)T−1/2

]
,

and

µ(γ+1/2,δ+1/2,α−1/2,β−1/2)Φ(α−1/2,β−1/2,γ+1/2,δ+1/2)
n

= −(n+ γ + δ)(n+ α+ β − 1)

(α+ β − 1)
Φ(α,β,γ,δ)
n ,

which follows from

µ(γ+1/2,δ+1/2,α−1/2,β−1/2)
[(
α− 1

2
+ y

)
k

(
α− 1

2
− y
)
k

]
= −(k + γ + δ)[(α+ y)k(α− y)k]

+ k(α+ γ + k − 1)(α+ δ + k − 1)[(α+ y)k−1(α− y)k−1].

Due to the symmetry in α, β, γ, δ, the µ operators lead to several recurrences. Basically they
allow one to raise any two of the parameters by 1/2 and lower the remaining two parameters
by 1/2 in such a way that the process is essentially reversible. Moreover, composing a recurrence
with its adjoint leads to eigenvalue equations for the Wilson polynomials.
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B Recurrence relations for construction of the spherical
and cylindrical models

The spherical and cylindrical models are associated with the 8 basic raising and lowering ope-
rators for the Wilson polynomials, as well as the three term recurrence relation. We list these

operators here and describe their actions on the basis polynomials Φn ≡ Φ
(α,β,γ,δ)
n .

1. R =
1

2y

[
T 1/2 − T−1/2

]
,

RΦn =
n(n+ α+ β + γ + δ − 1)

(α+ β)(α+ γ)(α+ δ)
Φ
(α+1/2,β+1/2,γ+1/2,δ+1/2)
n−1 .

2. L =
1

2y

[
(α− 1/2 + y)(β − 1/2 + y)(γ − 1/2 + y)(δ − 1/2 + y)T 1/2

− (α− 1/2− y)(β − 1/2− y)(γ − 1/2− y)(δ − 1/2− y)T−1/2
]
,

LΦn = (α+ β − 1)(α+ γ − 1)(α+ δ − 1)Φ
(α−1/2,β−1/2,γ−1/2,δ−1/2)
n+1 .

3. Lαβ =
1

2y

[
−(α− 1/2 + y)(β − 1/2 + y)T 1/2 + (α− 1/2− y)(β − 1/2− y)T−1/2

]
,

LαβΦn = −(α+ β − 1)Φ(α−1/2,β−1/2,γ+1/2,δ+1/2)
n .

4. Rαβ =
1

2y

[
−(γ − 1/2 + y)(δ − 1/2 + y)T 1/2 + (γ − 1/2− y)(δ − 1/2− y)T−1/2

]
,

RαβΦn = −(n+ γ + δ − 1)(n+ α+ β)

α+ β
Φ(α+1/2,β+1/2,γ−1/2,δ−1/2)
n .

5. Lαγ =
1

2y

[
−(α− 1/2 + y)(γ − 1/2 + y)T 1/2 + (α− 1/2− y)(γ − 1/2− y)T−1/2

]
,

LαγΦn = −(α+ γ − 1)Φ(α−1/2,β+1/2,γ−1/2,δ+1/2)
n .

6. Rαγ =
1

2y

[
−(β − 1/2 + y)(δ − 1/2 + y)T 1/2 + (β − 1/2− y)(δ − 1/2− y)T−1/2

]
,

RαγΦn = −(n+ β + δ − 1)(n+ α+ γ)

α+ γ
Φ(α+1/2,β−1/2,γ+1/2,δ−1/2)
n .

7. Lαδ =
1

2y

[
−(α− 1/2 + y)(δ − 1/2 + y)T 1/2 + (α− 1/2− y)(δ − 1/2− y)T−1/2

]
,

LαδΦn = −(α+ δ − 1)Φ(α−1/2,β+1/2,γ+1/2,δ−1/2)
n .

8. Rαδ =
1

2y

[
−(β − 1/2 + y)(γ − 1/2 + y)T 1/2 + (β − 1/2− y)(γ − 1/2− y)T−1/2

]
,

RαδΦn = −(n+ β + γ − 1)(n+ α+ δ)

α+ δ
Φ(α+1/2,β−1/2,γ−1/2,δ+1/2)
n .

Again, the three term recurrence is

y2Φn

(
y2
)

= K(n+ 1, n)Φn+1

(
y2
)

+K(n, n)Φn

(
y2
)

+K(n− 1, n)Φn−1
(
y2
)
, (B.1)

where the coefficients are given by (3.2), (3.3) and (3.4).

To construct the spherical model we look for first order difference operators defining recur-
rences for the basis functions Φn that are not just squares and that change parameters by integer
amounts. Here are the possibilities:

1. Eigenvalue equations. Here α, β, γ, δ, n must be unchanged. The possibilities are

LRΦn = n(n+ α+ β + γ + δ − 1)Φn,
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LαβR
αβΦn = (n+ γ + δ − 1)(n+ α+ β)Φn,

LαγR
αγΦn = (n+ β + δ − 1)(n+ α+ γ)Φn,

LαδR
αδΦn = (n+ β + γ − 1)(n+ α+ δ)Φn.

2. Fix n and lower α by 1. The only possibilities are

LαβLαγΦ(α,β,γ,δ)
n = (α+ β − 1)(α+ γ − 1)Φ(α−1,β,γ,δ+1)

n ,

LαβLαδΦ
(α,β,γ,δ)
n = (α+ β − 1)(α+ δ − 1)Φ(α−1,β,γ+1,δ)

n ,

LαγLαδΦ
(α,β,γ,δ)
n = (α+ γ − 1)(α+ δ − 1)Φ(α−1,β+1,γ,δ)

n .

3. Fix n and raise by α by 1. The only possibilities are

RαβRαγΦ(α,β,γ,δ)
n =

(n+ α+ β)(n+ α+ γ)(n+ β + δ − 1)(n+ γ + δ − 1)

(α+ β)(α+ γ)
Φ(α+1,β,γ,δ−1)
n ,

RαβRαδΦ(α,β,γ,δ)
n =

(n+ α+ β)(n+ α+ δ)(n+ β + γ − 1)(n+ γ + δ − 1)

(α+ β)(α+ δ)
Φ(α+1,β,γ−1,δ)
n ,

RαγRαδΦ(α,β,γ,δ)
n =

(n+ α+ γ)(n+ α+ δ)(n+ β + γ − 1)(n+ β + δ − 1)

(α+ γ)(α+ δ)
Φ(α+1,β−1,γ,δ)
n .

4. Fix n and α. The only possibilities that change parameters are

LαβR
αγΦ(α,β,γ,δ)

n =
(α+ β − 1)(n+ α+ γ)(n+ β + δ − 1)

α+ γ
Φ(α,β−1,γ+1,δ)
n ,

LαβR
αδΦ(α,β,γ,δ)

n =
(α+ β − 1)(n+ α+ δ)(n+ β + γ − 1)

α+ δ
Φ(α,β−1,γ,δ+1)
n ,

LαγR
αβΦ(α,β,γ,δ)

n =
(α+ γ − 1)(n+ α+ β)(n+ γ + δ − 1)

α+ β
Φ(α,β+1,γ−1,δ)
n ,

LαγR
αδΦ(α,β,γ,δ)

n =
(α+ γ − 1)(n+ α+ δ)(n+ γ + β − 1)

α+ δ
Φ(α,β,γ−1,δ+1)
n ,

LαδR
αβΦ(α,β,γ,δ)

n =
(α+ δ − 1)(n+ α+ β)(n+ γ + δ − 1)

α+ β
Φ(α,β+1,γ,δ−1)
n ,

LαδR
αγΦ(α,β,γ,δ)

n =
(α+ δ − 1)(n+ α+ γ)(n+ β + δ − 1)

α+ γ
Φ(α,β,γ+1,δ−1)
n .

5. Lower n by 1 and fix α. The only possibilities that change parameters are

RLαβΦn = −n(n+ α+ β + γ + δ − 1)

(α+ γ)(α+ δ)
Φ
(α,β,γ+1,δ+1)
n−1 ,

RLαγΦn = −n(n+ α+ β + γ + δ − 1)

(α+ β)(α+ δ)
Φ
(α,β+1,γ,δ+1)
n−1 ,

RLαδΦn = −n(n+ α+ β + γ + δ − 1)

(α+ β)(α+ γ)
Φ
(α,β+1,γ+1,δ)
n−1 .

6. Lower n by 1 and raise α by 1. The only possibilities are

RRαβΦn = −n(n+ γ + δ − 1)(n+ α+ β)(n+ α+ β + γ + δ − 1)

(α+ β)(α+ β + 1)(α+ γ)(α+ δ)
Φ
(α+1,β+1,γ,δ)
n−1 ,

RRαγΦn = −n(n+ β + δ − 1)(n+ α+ γ)(n+ α+ β + γ + δ − 1)

(α+ γ)(α+ γ + 1)(α+ β)(α+ δ)
Φ
(α+1,β,γ+1,δ)
n−1 ,

RRαδΦn = −n(n+ β + γ − 1)(n+ α+ δ)(n+ α+ β + γ + δ − 1)

(α+ δ)(α+ δ + 1)(α+ β)(α+ γ)
Φ
(α+1,β,γ,δ+1)
n−1 .
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7. Raise n by 1 and fix α. The only possibilities that change parameters are

RαβLΦn = −(n+ γ + δ − 2)(n+ α+ β − 1)(α+ γ − 1)(α+ δ − 1)Φ
(α,β,γ−1,δ−1)
n+1 ,

RαγLΦn = −(n+ β + δ − 2)(n+ α+ γ − 1)(α+ β − 1)(α+ δ − 1)Φ
(α,β−1,γ,δ−1)
n+1 ,

RαδLΦn = −(n+ β + γ − 2)(n+ α+ δ − 1)(α+ β − 1)(α+ γ − 1)Φ
(α,β−1,γ−1,δ)
n+1 .

8. Raise n by 1 and lower α by 1. The only possibilities are

LαβLΦn = −(α+ β − 1)(α+ β − 2)(α+ γ − 1)(α+ δ − 1)Φ
(α−1,β−1,γ,δ)
n+1 ,

LαγLΦn = −(α+ γ − 1)(α+ γ − 2)(α+ β − 1)(α+ δ − 1)Φ
(α−1,β,γ−1,δ)
n+1 ,

LαδLΦn = −(α+ δ − 1)(α+ δ − 2)(α+ β − 1)(α+ γ − 1)Φ
(α−1,β,γ,δ−1)
n+1 .

In addition we can use the three term recurrence (B.1) and multiplication by the operator y2 to
both raise and lower n by 1 while fixing the other parameters.
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2003.

[2] Tempesta P., Winternitz P., Harnad J., Miller W., Pogosyan G., Rodriguez M. (Editors), Superintegrability
in classical and quantum systems (September 16–21, 2002 Montreal, Canada), CRM Proceedings and Lecture
Notes, Vol. 37, Providence, RI, American Mathematical Society, 2004.

[3] Eastwood M., Miller W. (Editors), Symmetries and overdetermined systems of partial differential equations
(July 17 – August 4, 2006, Minneapolis, MN), The IMA Volumes in Mathematics and its Applications,
Vol. 144, Springer, New York, 2008.

[4] Higgs P.W., Dynamical symmetries in a spherical geometry. I, J. Phys. A: Math. Gen. 12 (1979), 309–323.

[5] Curtright T.L., Zachos C.K., Deformation quantization of superintegrable systems and Nambu mechanics,
New J. Phys. 4 (2002), 83.1–83.16, hep-th/0205063.

[6] Zachos C.K., Curtright T.L., Branes, quantum Nambu brackets and the hydrogen atom, Czechoslovak J.
Phys. 54 (2004), 1393–1398, math-ph/0408012.

[7] Curtis H.D., Orbital mechanics for engineering students, Aerospace Enineering Series, Elsevier, Amsterdam,
2005.

[8] Kalnins E.G., Kress J.M., Miller W. Jr., Second-order superintegrable systems in conformally flat spaces.
V. Two- and three-dimensional quantum systems, J. Math. Phys. 47 (2006), 093501, 25 pages.

[9] Kalnins E.G., Kress J.M., Pogosyan G.S., Miller W. Jr., Completeness of superintegrability in two-
dimensional constant-curvature spaces, J. Phys. A: Math. Gen. 34 (2001), 4705–4720, math-ph/0102006.

[10] Daskaloyannis C., Ypsilantis K., Unified treatment and classification of superintegrable systems with inte-
grals quadratic in momenta on a two dimensional manifold, J. Math. Phys. 47 (2006), 042904, 38 pages,
math-ph/0412055.

[11] Kalnins E.G., Kress J.M., Miller W. Jr., Nondegenerate three-dimensional complex Euclidean superinte-
grable systems and algebraic varieties, J. Math. Phys. 48 (2007), 113518, 26 pages, arXiv:0708.3044.

[12] Kalnins E.G., Miller W. Jr., Post S., Wilson polynomials and the generic superintegrable system on the
2-sphere, J. Phys. A: Math. Theor. 40 (2007), 11525–11538.

http://dx.doi.org/10.1088/0305-4470/12/3/006
http://dx.doi.org/10.1088/1367-2630/4/1/383
http://arxiv.org/abs/hep-th/0205063
http://dx.doi.org/10.1007/s10582-004-9807-x
http://dx.doi.org/10.1007/s10582-004-9807-x
http://arxiv.org/abs/math-ph/0408012
http://dx.doi.org/10.1063/1.2337849
http://dx.doi.org/10.1088/0305-4470/34/22/311
http://arxiv.org/abs/math-ph/0102006
http://dx.doi.org/10.1063/1.2192967
http://arxiv.org/abs/math-ph/0412055
http://dx.doi.org/10.1063/1.2817821
http://arxiv.org/abs/0708.3044
http://dx.doi.org/10.1088/1751-8113/40/38/005


Generic Superintegrable System on the 3-Sphere 25

[13] Kalnins E.G., Miller W. Jr., Post S., Models for quadratic algebras associated with second order superinte-
grable systems in 2D, SIGMA 4 (2008), 008, 21 pages, arXiv:0801.2848.

[14] Chanu C., Degiovanni L., Rastelli G., Superintegrable three-body systems on the line, J. Math. Phys. 49
(2008), 112901, 10 pages, arXiv:0802.1353.
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[29] Rañada M.F., Rodŕıguez M.A., Santander M., A new proof of the higher-order superintegrability of a non-
central oscillator with inversely quadratic nonlinearities, J. Math. Phys. 51 (2010), 042901, 11 pages,
arXiv:1002.3870.

[30] Kalnins E.G., Kress J.M., Miller W. Jr., Second order superintegrable systems in conformally flat spaces.
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