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Abstract. We study Fourier theory on quantum Euclidean space. A modified version of
the general definition of the Fourier transform on a quantum space is used and its inverse is
constructed. The Fourier transforms can be defined by their Bochner’s relations and a new
type of g-Hankel transforms using the first and second ¢-Bessel functions. The behavior of
the Fourier transforms with respect to partial derivatives and multiplication with variables is
studied. The Fourier transform acts between the two representation spaces for the harmonic
oscillator on quantum Euclidean space. By using this property it is possible to define
a Fourier transform on the entire Hilbert space of the harmonic oscillator, which is its own
inverse and satisfies the Parseval theorem.

Key words: quantum Euclidean space; Fourier transform; ¢-Hankel transform; harmonic
analysis; g-polynomials; harmonic oscillator

2010 Mathematics Subject Classification: 17B37; 81R60; 33D50

1 Introduction

There has been a lot of interest in formulating physics on noncommutative space-times, see
e.g. [3, b, 14, 15, 23, 32]. In particular, since non-commutativity implies a quantized space-
time, quantum field theories on such spaces should be well-behaved in the ultraviolet-limit, see
e.g. [3]. The infinities of the commutative, continuous theories could appear as poles in the
g-plane with ¢ a deformation parameter. In such theories quantum groups replace Lie groups
in the description of the symmetries. An important concept in this theory is integration and
Fourier theory on quantum spaces, see e.g. [4, 23, 32, 34, 35, 36]. The Fourier kernel is defined
in [29, Definition 4.1]. In this paper we study the Fourier theory on quantum Euclidean space,
which has symmetry group O4(m). The deformation parameter ¢ is always assumed to satisfy
0 < g < 1. The Fourier transform is studied from the point of view of harmonic analysis
on quantum Euclidean space, see e.g. [5, 15, 20, 31, 33]. This is captured in the Howe dual
pair (Oq(m),Uy(sl2)). The quantum algebra U,(sly) is generated by the Oy(m)-invariant norm
squared and Laplace operator on quantum Euclidean space. The Fourier transform was defined
in an abstract Hopf-algebraic setting in [23]. In this article, the Fourier transform on quantum
Euclidean space is studied analytically. This leads to explicit formulae for the behavior of the
Fourier transform with respect to partial derivatives. The definition of the Fourier transform
is also extended from spaces of polynomials weighted with Gaussians to an appropriate Hilbert
space, which was a problem left open in [23].

A general theory of Gaussian-induced integration on quantum spaces was developed in [23].
We use this procedure on quantum Euclidean space for the two types of calculus defined in [6].
One of the two integrations we obtain corresponds to the result in [14, 34]. Both types of
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integration can be written as a combination of integration over the quantum sphere, see [34],
and radial Jackson integration, see e.g. [17, Section 1.11]. Each one of the integrations satisfies
Stokes’ theorem for both types of calculus. It turns out that Fourier theory is defined more
naturally using the Fourier kernel for one calculus combined with the Gaussian-induced inte-
gration for the other calculus. This implies we use a generalized Gaussian-induced integration
compared to [23]. This was also done implicitly for the analytical approach to Fourier theory
on the braided line in [26]. We calculate the quantum sphere integral of spherical harmonics
weighted with the Fourier kernel, which yields a ¢g-deformed Bessel function. This function is
known as the first g-Bessel function, see [21]. As a side result we obtain a Funk-Hecke theorem
on quantum Euclidean space. This allows us to construct the reproducing kernel for the spheri-
cal harmonics. The reproducing kernel can be expressed as a ¢-Gegenbauer polynomial in terms
of the generalized powers of the inner product constructed in [32].

Because of the appearance of g-Bessel functions, the combination of radial integration with
the spherical integration and the exponential leads to new g-deformed Hankel transforms. In [27]
the g-Hankel transforms corresponding to the so-called third g-Bessel functions were defined and
studied. In the current paper the g-Hankel transforms for the first and second g-Bessel functions
are introduced. It is proven that they are each other’s inverse by applying the theory of the ¢-
Laguerre polynomials, see [30]. Then the inverse of the Fourier transform on quantum Euclidean
space is defined by its Bochner’s relations in terms of the second g-Hankel transform. The fact
that the Fourier transforms can be expressed in terms of Bochner’s relations is an immediate
consequence of their O4(m)-invariance. It is proven that the transforms behave canonically with
respect to partial derivatives and multiplication with variables.

Furthermore, we extend the domain of the Fourier transforms from spaces corresponding to
polynomials weighted with a Gaussian to the Hilbert space structure of [14]. This Hilbert space
has two representations in function spaces; the Fourier transform and its inverse act between
these spaces. The first and second g-Bessel function can be connected by a substitution ¢ « ¢~*.
The first g-Bessel function has a finite domain of analyticity contrary to the second one. This
implies that the inverse Fourier transform is better suited to generalize to a Hilbert space. By
composing this Fourier transform with the projection operators corresponding to the two dual
representations of the Hilbert space, we obtain a Fourier transform which can be defined on the
entire Hilbert space. This transform is its own inverse and satisfies a Parseval theorem.

In [10] the theory of the ¢-Dirac and ¢-Laplace operator on undeformed Euclidean space was
developed. The g-Laplace operator is O(m)-invariant and generates Uy (slz) together with the
classical norm squared. This implies that ¢g-harmonic analysis on Euclidean space corresponds
to the Howe dual pair (O(m),U,(sl2)), i.e. there is no spherical deformation and the radial de-
formation corresponds to that of quantum Euclidean space. Therefore, the g-Hankel transforms
in the current paper can also be used to construct an O(m)-invariant g-Fourier transform on
Euclidean space, connected to the g-Dirac operator.

The paper is organized as follows. First an introduction to g-calculus, quantum Euclidean
space and Fourier theory on quantum spaces is given. Then two ¢g-Hankel transforms are defined.
By studying their behavior with respect to the g-Laguerre polynomials it is proven that the two
transforms act as each other’s inverse. Then the integration on quantum Euclidean space is
studied. The Fourier transform of a spherical harmonic weighted with a radial function can be
expressed as the first g-Hankel transform of the radial function. The inverse Fourier transform is
therefore defined by its Bochner’s relations. Next, the behavior of the Fourier transforms with re-
spect to derivatives and multiplication with variables is studied. The previous results allow a con-
struction of a Funk—Hecke theorem and reproducing kernels for the spherical harmonics on quan-
tum Euclidean space. Then the Fourier transforms are connected with the harmonic oscillator
which makes it possible to extend the Fourier transform to the Hilbert space defined for this har-
monic oscillator. Finally the g-Fourier transform on undeformed Euclidean space is considered.
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2 Preliminaries

2.1 g-calculus

We give a short introduction to g-derivatives, g-integration and g-special functions, see [17, 22,
25, 26]. The report [25] that will be referred to often is also included in the book [24]. For u
a number, and ¢ the deformation parameter, 0 < g < 1, we define the ¢-deformation of u as

g¢“—1
It is clear that lim[u|, = u. We also define
q—1
(e =1 —w)(l—qu)---(1-¢"u) and  (40)00 =[] (1 - ud®).
k=0
The g-derivative of a function f(t) is defined by
flat) — f(t)
ONf(t)) = ———2. 2.1
o) = =8 (2.1)
This operator satisfies the generalized Leibniz rule
O (f1(t) f2(1)) = O (f1(1) f2(2) + f1(at)Of (f2(2)). (2.2)

The g-integration on an interval [0, a] with a € R is given by

/0 it dgt = (1 - gaS f(da)d

k=0

The infinite g-integral can be defined in several ways, determined by a parameter v € R\{0},

/ U0t = -0y 3 F(a)et = lim / ) (2.3)

k=—o00

The positive (y € RT) or negative (y € R™) infinite integral is a function of 7, however from

the definition it is clear that [ = [J7"°. So 89 [[* dqt = 0 holds which means the integral

is a g-constant. The integral is the inverse of differentiation,

/0 00 F(0) dgt = f(a) — £(0). (2.4)

The g-factorial of an integer k is given by [k|,! = [k]q[k — 1], ---[1]4 and satisfies [k],! =

(¢;9)k/(1 — g)*. This can be generalized to the ¢-Gamma function I'y(t) for ¢ > 0 satisfying
Lyt +1) = [t];T'y(t), see e.g. [17, formula (1.10.1)]. The g-exponentials are defined as

— t o
= and E (t) =e,1(t) = Zq%J(J—l)%_

Note that a different notation for the exponentials is used compared to [10]. The relation
eq(t)Eq(—t) = 1 holds and the derivatives are given by

Hey(t) =e(t) and  HE,(t) = Ey(qt). (2.5)
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For g < 1 the series E,(t) converges absolutely and uniformly everywhere and eg4(t) in the area

[t] < l%q. The function e4(t) can be analytically continued to C\{{— } as 1/(Eq(—t)). The

zeroes of the g-exponential E, are

—k
E, (— a ) =0 for ke N. (2.6)
l—q
This follows from the infinite product representation FE, (%q) = (—t;9)c0, see [17, formula
(1.3.16)]. This implies that the relation
7= —t? N —t2
= E 2.
[T dwsms () = [T ansom, () @7)
holds.
The g-Hermite polynomials are given by
[k/2] (K], .
HY(t) = -1 j%q D (g + 1))k2% 2.8

and related to the discrete g-Hermite I polynomials hx(x;¢q) in [25, Section 3.28] by

1+q\*? / _
H(t) = ¢* <_Z> hk(q lvl—q2t;q).

1

We introduce the g-Laguerre polynomials for a > —1 in the normalization of [10, p. 24],

J i ( 2i+20+2.
@) i (i - q 1q )( i)
E( ) ulq 2\ _ q j(j+1+2a) q27,(z+a) : ( u) : . 2.9
() 2 i -y >
2i+2a 2 2 Lo
They can also be defined using the ¢-Gamma function since @) oy L2Utet) holds.

(1- q2)9 ‘ — Dp(itatl)
They are connected with the g-Laguerre polynomials Lg-a) (u; q) from [25, Section 3.21] by
() -2\ _ _—j(j+1420) 7 (@) 2),,. 2
£ (ulg™?) = UL (1 - ¢?)ui ¢?)

and to the ¢g-Laguerre polynomials in [30] by the same formula with a substitution (1 —¢*)u — u
in the right hand side of the formula.
The substitution ¢ — ¢~ yields,

2i+2004-2

i o2
E(a (ulg®) Zq(ﬂ G—it)__ (=) (q g )(j,i)'

= dlgellile! (1—g¢2)i (2.10)

These polynomials are related to the little g-Laguerre polynomials (the Wall polynomials)
pj(u;alg), see [25, Section 3.20], by

o 200+2. 2).

,C(»a) qu _ qj(j+1) (¢ 7.q' J D q72 — 1w q2a q2 ]
7 ( ‘ ) (17(12)][‘7](]2! J(( ) | )

The g-Laguerre polynomials in equation (2.10) satisfy the orthogonality relation

1

L, X 1o L(j+a+1)
/01 doauu ﬁ( )(u\q ) (u|q ) 2(—u) = 5jkq2(a+1)( +1+J)(1[T
2!
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see [25, equation (3.20.2)]. Using the calculation rules in [10, Lemma 10], this can be rewritten as

1

Visq 2 —r?
iy 201 (@) < 2) £ < > ( )
/0 qT’I" j 1+q| k 1+ q 1_|_q

?UtDUHAIL L (j +a + 1)(1+q)°

=i : (2.11)
! [j]qQ!
One of the orthogonality relations for g-Laguerre polynomials in equation (2.9) is
/7' d, tt2a+1£(a) < ¢t q —2> £@ ( ¢*t? |q_2> s <—q2t2>
0 14+g¢q ko \1+gq T\ 1+gq
IO e Y (o 212
= 05k [j]q2!q(j+1)(j+2a+2) Ata _|_q7 ) .

see [25, equation (3.21.3)], with

(a+1)(a+2) ~-00 — 22
Y q 2a+1 q
d , = dgtt .
(\Wq a) (1+Q)O‘Fq2(a+1)/o DA (1+q>

The function d(\, «) therefore satisfies

qa(a+1)

d(v7, a) :Fq2(04+1)/0 | dpuu®ep(—u).

Partial integration implies that this function satisfies d(A,a + 1) = d(\, ) for @« > —1. The
explicit expression for d can be found from [25, equation (3.21.3)].

Remark 1. The ¢-Laguerre polynomials do not form a complete orthogonal system for the
Hilbert space corresponding to the measure in equation (2.12). In [8] the compliment of the
basis is constructed. The corresponding functions derived in [8, Section 4] (with a suitable
renormalization) will therefore be annihilated by the g-Hankel transform H%” in the subsequent
Definition 2. This follows from the same calculation that leads to the subsequent equation (3.2).

The g-Gegenbauer polynomials, see [16, equation (2.19)], are given by

L3]

w3

(—1)7¢UD (¢ ¢*)n
— [lg2!ln = 2jlg! (1 = %)™

Cala;t) = ((1 +q)t) . (2.13)

j=
They are big g-Jacobi polynomials on [—1,1] with the two parameters equal to A — , see [16,
equation (2.26)].

For v > —1, the first and second ¢-Bessel function, introduced by Jackson, see [21, 22], are
given by

_ v (_1)i . 2i 1
Jlgl)(x’qQ) - (1 +C]> Z 2Tpeli+rv+1) (1 —|—q> for o] < 1—¢q (2.14)

and

I (2]¢%) = ¢” <1+q>”§: 21(Z+Vz)j—u)+ )<1iq>2i’ (2:15)

=0
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Jlgl)(x|q2) is analytical in the area |z| < 1T1q and J32 ( |¢?) is analytical on R*. The first

g-Bessel function can be analytically continued by the relation

1 1

see [17, Exercise 1.24], which is defined for all x. Since z v Ji? (x|q ) is an entire function the
formula above implies that av gy (7|q?) is analytic on C outside the poles {+ig*(1—¢q)~ |k €
N}. Therefore x_”J,El)(a;\q2) is well-defined and analytic for z € R.

These g-Bessel functions are related to the I (z;q) in [21, (1.13) and (1.17)] or [17, Exer-
cise 1.24] by

V(zlg®) = IV (20 - @as¢?), IV (2l¢?) = ¢ TV (201 — g)z; 7).

The generating functions for the ¢-Laguerre polynomials are given by

o2 L () g 242
(1) 2\ _ 1tq _av 2.1
Jo (rtle”) <1+q> jzr a+j+1)(1+q)jeq2< 1+q>’ (2.16)
a o (j+a)(j+1+a) pl@) 25 2
J§2)(qrt|q2):< rt ) 1 M) B, <— ! ) (2.17)
1+g¢ Cp(a+j+1) (1+q) 1+g¢

J=0

This follows from direct calculations, they are equivalent to [25, formulas (3.20.11) and (3.21.13)].

2.2 The Howe dual pair and harmonic oscillator on R}"

Quantum spaces are spaces where the variables have braid statistics. The commutation relations
are generalizations of the bosonic or fermionic ones by an R-matrix. The algebra of functions
on a quantum space can be seen as the algebra O of formal power series in non-commuting

variables z!, ..., 2™,

O=C[z',...,a™])/I

with I the ideal generated by the commutation relations of the variables. We consider quantum
spaces which satisfy the Poincaré-Birkhoff-Witt property, which states that the dimension of
the space of homogeneous polynomials of a certain degree is the same as in the commutative
case. Superspaces, for instance, do not satisfy this property.

We focus on the case of the quantum Euclidean space Rj*. The relations for the variables can
e.g. be found in [15, 20, 33]. We denote by O, the algebra of formal power series for the specific
case of the quantum Euclidean space. The quantum Euclidean space can be defined by the
R-matrix of the quantum orthogonal group O,(m), see [5, 14]. The matrix R e Clmxm)x(mxm)
can be expressed in terms of its projection operators as R = qPs — q 'Pa+ ¢"~™Py, and is
symmetric, Rkl Rkl The matrix R depends on the parameter ¢ and returns to the undeformed

case when ¢ — 1 (hn% RZ = (5%5;) The antisymmetric part defines the commutation relations
q—

Pjgx®x:(PA)lxx 0.

We will always use the summation convention. The singlet part defines the metric C;; = o9,
by (P1);) = % with C' = C%Cj; = (14 ¢*~™)[m/2],2. The metric satisfies the relation

Cu(R)E = (RF)! ay (2.18)
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and is its own inverse, CijC’jk = (5f . The braid matrix also satisfies the relation

Cz(]%_l)z = qm_lel. (2.19)

The generalized norm squared is then defined as x% = a:iCijxj . This norm squared is central

in the algebra O, and is invariant under the co-action of O4(m). The explicit expressions for the
coaction of O4(m) or the dually related action of U,(so(m)) can be found in e.g. [6, 14, 15, 20].
In order to obtain a Fourier transform a second set of coordinates is needed, denoted by y, which
is a copy of the x coordinates. The commutation relations between the x and y coordinates are
given by izl = q_ll%;jlxkyl, see [23, 29, 32].

The differential calculus on R was developed in [6, 31], the action of the partial derivatives
is determined by

i TIN

d'x) =C +q(R™) 20 (2.20)
The Laplace operator on Ry is given by A = 0'C;;07. Tt is central in the algebra generated
by the partial derivatives and is O4(m)-invariant. The commutation relations for the partial
derivatives can be expressed using P4 or as

1—q?
)
see [31]. Formulas (2.18) and (2.19) yield

RO = qd'd + CYA, (2.21)

Axd = pd + Pl A and Ix? = pat + ¢?x2 with p=1+¢"™. (2.22)
The dilatation operator is given by

2 i j (q2 - 1)2 2
q H
and satisfies Ax! = ¢?2'A. For u € R, A% is defined by A%z’ = ¢*“2'A" and A¥(1) = 1.

The elements of O, corresponding to finite summations are the polynomials, the correspon-
ding algebra is denoted by P. The space P} is defined as the space of the polynomials P in P
which satisfy
A-1

2

A(P) = %k P
(P)=q or 21

P = [k]P. (2.24)

For f analytical in the origin, f(x?) € O, is defined by the Taylor expansion of f. Equa-
tion (2.22) leads to

8jf(x2) = $ju8i2f(x2) + f(q2x2)3j (2.25)
for general functions of x? and the g-derivative as defined in formula (2.1). The relation
1
0%, f(x%) = [ o0f (2 ] 2.26
x2f( ) (1+q)t t ( ) 22 ( )

is a useful calculation rule. o
There exists a second differential calculus on Ry" of partial derivatives 07, which is obtained

from the unbarred one by replacing 7, ¢, R, C by 99, ¢~ 1, R C. In particular, the relation
0if(x?) = qum*Q,u@ijf(XQ) + f(g2x*) 00 (2.27)

holds. The algebra generated by the variables and partial derivatives &’ is denoted Diff(R}").

The algebra generated by the variables and partial derivatives 87 is the same algebra. The
polynomial null-solutions of A are the same as those of A. The space of the null-solution of
degree k is denoted by Sg, so Sy = P Nker A.



8 K. Coulembier

Definition 1. The operator E is given by E = [2],2 4+ ¢™a" 0",

Using the expression for the dilation operator in formula (2.23) the operator E can be ex-
pressed as

m m [ A—1 m—
FE = [§LQ+q <q2_1—q 2((]2—1)X2A>.

Property (2.24) then implies that for Sy € S,

ESy = [% v k:} S (2.28)

holds. Together with A and x?, this operator E generates an algebra which is a g-deformation
of the universal enveloping algebra of sls.

Theorem 1. The operators A/p, x*/p and E generate the quantum algebra Uy(sly),

[A/u,xz/,u]q4 =FE, [E,xz/u]qQ = [2]qzx2/u, (A, Bl 2 = [2]2 A/ p. (2.29)
Proof. Combining equations (2.22) and (2.19) yields equation (2.29). Equation (2.22) implies
xiC’ijajx2 = ux® + q2X2£L‘iCij8j , which leads to the second relation. The third relation is
calculated in the same way. |

Remark 2. As the generators of U,(slz) are O4(m)-invariant, this quantum algebra and quan-
tum group form the Howe dual pair (Oq(m),Uy(sl2)), or (Uy(so(m)),U,(slz)).

The quantum algebra U, (sl2) is equal to the one in [10]. In [10], U,(slz) was generated by the
standard Euclidean norm squared r? on R™ and a g-deformation of the Laplace operator Ay
Since A, is still O(m)-invariant, the Howe dual pair (O(m),U,(slz)) appeared. Because the
Og4(m)-invariant harmonic operators on quantum Euclidean space in the present paper generate
the same quantum algebra we obtain an important connection between these two theories. In
particular the Oy(m)-invariant Fourier transform developed in the current paper can be used
to construct the O(m)-invariant g-Fourier transform on Euclidean space, as will be done in
Section 8.

Lemma 1 (Fischer decomposition). The space P decomposes into irreducible pieces under the
action of Uy(so(m)) as (see [20, 15])

[o.oluNNe o]

P = XQjSk.

The operator identities in Theorem 1 yield

E(x*S) = <[7; +k+ l} ot qz[l]q2> xSk

and A(x2Sy) = p2[l+k+ 2 —1],2[1] ,2x*72Sk. These calculations and the previous results lead
to

Theorem 2 (Howe duality). The decomposition of P into irreducible representations of
Uyg(so(m)) is given in Lemma 1. Each space B, x2Sy is a lowest weight module of Uy(sls)
with weight vectors x% Sy, the lowest weight vector is Sy with weight [m/2 + kls2. The Fischer
decomposition of P therefore is a multiplicity free irreducible direct sum decomposition under the
joint action of Uy(sla) x Ug(so(m)).
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The antilinear involutive antihomomorphism * on Diff(Ry?) is defined by (AB)* = B*A*,
(29)* = 2*Cy;, (99)" = —q ™k Cy; and \* = X with A € C and ~ complex conjugation. This
yields

(XQ)* = x? and A* = ¢ 2mA.
The harmonic oscillator on quantum Euclidean space was studied in [5, 7, 14]. The two
Hamiltonians (with an unimportant different normalization compared to [14]) are given by

1

h=5(mA+x%), B =g (-A"+x7). (2.30)

l\DM—l

Both operators have the same eigenvalues.

2.3 Integration and Fourier theory on quantum spaces

In [23] a method was prescribed to generalize g-integration to higher dimensions in the context
of quantum spaces. Gaussian-induced integration for general R-matrices is defined assuming
there is a matrix 7 € R™*"™ and a solution g, € O of the equation

—nid g, = z'gy. (2.31)

Integration [ on the space Pg,, with P the polynomials on the quantum space is then uniquely
defined by demanding [ 00" =0, i =1,...,m. For f € P the integral [ fg, is of the form

/ fon = Z[f11(gn), (2.32)

with I(gy) = | g and Z a functional on P C O. Superspace with purely bosonic and fermionic
coordinates can be seen as a limit of braided spaces, typically for ¢ — —1, see e.g. [13]. From
this point of view it is interesting to note that the Berezin integral can also be constructed in
this setting. In [12, 9] this led to integration over the supersphere and a new interpretation of
the Berezin integral.

An explicit example of this construction was already defined on quantum Euclidean space,
see [14]. In [34] it was shown that this integration can be defined and generalized using integra-
tion over the quantum Fuclidean sphere. In Section 4.1 we will show how this approach follows
from harmonic analysis on quantum Euclidean space.

In [23] a general procedure to construct a Fourier transform on quantum spaces was developed.
First the appropriate Gaussian-induced integration [ should be constructed and the exponential
or Fourier kernel (see [29, 36]) calculated. The Fourier transform on a braided-Hopf algebra B
with left dual Hopf algebra B* is a map F : B — B*. The co-ordinates for B are denoted by x
and for B* by y, the Fourier transforms are given by

FIry) —/f(X)eXpR(XIY), Ff(yl(x) —/*f(y)eXpR(XIY)-

These Fourier transforms are each others inverse, F*F = Vol .S, with S the antipode on B. As
an explicit example we consider the braided line B = Clz], with braided-Hopf algebra structure
as introduced in [28] given by

k(k—1)
wj ® zF Sak = (—1)kq =z 2, ex® = 8.

|Mw

_jq
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The dually-paired Hopf algebra B* is the same Hopf algebra with variable y. The relation
) zhyk
Ja

xy = qyz holds. The exponential is exp(z|y) = > i and satisfies 0f exp(z|y) = exp(x|y)y.
k=0

The Fourier transforms take the form

~-00 §-00
FIfI(y) = / def@) exp(ely)  and  F[f)(a) = / dyyf(y) exp(zly). (2:33)

00 _5.

The theory of [23] then implies F*F[f](xz) = Sf(x)Vol,s. We can rewrite this in a way that
will be more closely related to our approach of the Fourier transform on Ri". Define g(y) =
ﬁé}"[f](y), then the definition of the antipode implies

s

500 oo kD ik
q 2 Yy
f(—z) = / dyyo(y) S L2 v

—0-00 k=0 [k]q'

In this equation and in the first equation of (2.33), there are no coordinates which have to be
switched before integration. This implies that we can assume x and y commute and write the
equations above as

§-00

o) = — /W dyr f(@)eq(zy)  and  fla) = / Ay 9(y) By(—qya).

VOLY’(S —7-00 —J-00

In [26] a closely related analytical approach was given to the one dimensional Fourier trans-
form above. Consider real commuting variables z and y. Using the orthogonality relations and
the generating function of the Hermite polynomials in equation (2.8), it is possible to prove

1
1 Vi—q x 2
dgz |HY Ep(——— —i
22 (3) J- 2 qx[ ’“<\/1+Q> q2< 1+Q>]€Q( iy)

1—q
k—1
1) 2 2,2
_ Wq;<k+1)(k+2>ykeq2< 9y ) (2.34)

N ik 1+4gq

which is equivalent to [26, equation (8.7)]. For every § € R,

1 §-00 i q2y2 )
66 /_5.00 dqy [y €42 (—1 n q>] E,(iqyz)

= i* HQ< i )E (_ﬁ) (2.35)
T gt g SR \VTEg) Y T '

holds for Cs some constant depending on J, see [26, equation (8.21)]. So the two Fourier
transforms as defined in equations (2.34) and (2.35) can be regarded as each others inverse,
which was to be expected from the theory of [23]. There is however one difference between
the explicit Fourier transform in [26] and the abstract theory in [23]. While the inverse Fourier
transform remains unchanged, the integration for the Fourier transform is limited to a finite
interval. This will be explained in the subsequent Lemma 6. However, using property (2.7) the

1.
integral can be replaced by [Y'7* O.OOO. So the analytical approach of [26] recovers the theory
1—q

from [23] with an imposed limitation on 7. For other ~y, the theory from [23] would still hold,
but the constant Vol, 5 is infinite.
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3 The g-Hankel transforms

In this section we define two g-Hankel transforms using the first and second ¢-Bessel function.
These transforms will act as each others inverse. This is a generalization of the result in for-
mulas (2.34) and (2.35). By evaluating the Fourier transform on the appropriate functions in
Section 4.2 the first of these ¢-Hankel transforms will appear.

We will calculate the g-Hankel transforms of the ¢g-Laguerre and little g-Laguerre polynomials
weighted with a g-Gaussian. The undeformed Fourier—Gauss transform of these polynomials
was already studied in [1]. There also exists a third g-Bessel function besides the ones in
equations (2.14) and (2.15). We will not explicitly need the third type, but it is interesting
to note that in [27, 2] the corresponding ¢-Hankel transforms were constructed. These Hankel
transforms could also be used to define an Oy(m)-invariant Fourier transform on Rj'. This
would have the advantage that the Fourier transform is its own inverse. That Fourier transform
would however not behave well with respect to the derivatives on Rg*. This is already the case
for the Fourier transform on the braided line, as is proven in [27]. The braided line corresponds
to Ry for m = 1.

In anticipation of the connection with the Fourier transform on quantum Euclidean space
we will scale the g-Hankel transforms in the following definition with p, see equation (2.22),
although at this stage any constant could be used. The reason for the appearance of unfixed
constants (3, v will become apparent in Sections 4.2, 5 and 7.

Definition 2. For 8,7 € R™ and v > —%, the g-Hankel transforms are given by

7798 1+q (1-¢2)8 q 1+qrt’q ) v
Ao = =2 [ T P2 ()]
and
50 (2) 1+qr
W (fe)r) = 2EL [T g (o trtle )t”“[f(t)].

B Jo ! (r t)
In this definition it is not specified on which function spaces the g-Hankel transforms act.
At the moment we define them on functions for which the expression exists.

In order to connect the Fourier transform on Ry" with these g-Hankel transforms we define
the following transformations,

FEWE) =H o) and - FPURI(?) = HE W o X](),

with Y (u) = u?.

In order to prove the properties of the g-Hankel transforms we will need some identities of
the g-Bessel functions in equations (2.14) and (2.15). These are summarized in the following
lemma.

Lemma 2. The first and second q-Bessel functions satisfy

. D) Il TP (qule?) I\ (qulg®)
(4) 8q w YT O w T2
(i) T (lg?) + 70 (ulg?) _ 2] 2 (qu)
ur~! T (qu)v
T auld®) + J2 (@il _ o ) IO )
w1 T (quy

(i) 99T (ulg®)u” = IV (ulg®)w”  and  0LIP (ulg®)u” = ¢ I, (qulg®)u”
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Proof. The right-hand side of the second property (for the first g-Bessel function) can be
calculated using [1]2¢* = [V + i],2 — [i] 2,

1+q”1§< Z+V) (1iq>2i_[ll] (;(12)1”+1)<1iq>2i>

1
I (ulg?) + I (ulg?)

ul/l

The first and the third property follow from a direct calculation. The left-hand sides of the
properties can also be obtained from [17, Exercise 1.25]. |

Corollary 1. The second q-Bessel functions satisfy the following relation:
a1 u+1J (u|q ) _ [Zy}quuj( 1(u\q ) — ¢ty u+1J (qu|q )
Proof. This is a direct consequence of the second formula in Lemma 2(i). [

Combining generating function (2.16) and orthogonality relation (2.11) yields

1
/w ”mm>wﬂk@<7ﬁqﬁE2(ﬂ2ﬂ
(rt)” 7 \1+q T \1+g¢
q2(]+1)(3+u+1) +27 ( ¢2t2 >
- € — .
Gt Q+qi

Generating function (2.17) and orthogonality relation (2.12) lead to
y-00 J t 5 2t2 _ 2t2
/ agt (grt|q® ) vt | p) T2 e (4
0 (rt)r 7 \1+gq 1+¢q

:d( ,1/) , AE2<— ) (3.2)
V1+gq [7]q2! (14¢) 1 1+4+4¢

The following expansion of a monomial in terms of the g-Laguerre polynomials is a direct

consequence of equation (2.17),

120 :zj:(_l)i(qzz‘+2u+2.q2)(, 9 q(j—i)(jfi+1)+(i+1)(i+2u+2)£(V) 212 -
A+ ille! 2 G- ipl(i— )i 2O \Tag ! )

Applying this yields

/Wo d twtw t2j‘ .. —q?t?

0 ! (Tt>y (1+q)ﬂ['] 2! q 1—|—q

(—1)H (g% 2 +2; ¢2 )(] 0 qU=0U—i+1) ~ 1 2 B 2
G-t - e \ g ) WA i e g

2
il 1,> g 20D G+ £ ) < ) (_ r ) .
VIi+q 7 \1+q 1+gq

These calculations imply the following relations for the g-Hankel transforms in Definition 2:

2 2 242
4.8 | ~(v) r r - 1 : q°t
qu, |:£j <5M’q2> EqZ <—,8M>:| (t) = Wc‘jtzjetﬁ (_MB) fOI' 5 S R+,

I
'M“'

~
Il
o

|
a
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2,2 d(fw V) 2
. q t v r
Y [Cjt%ezﬁ (‘au)] (r) = ﬁﬁg ) (au|q )qu <_a,u> for a7 € R,
.  RUDGFY
with C; = M2

By considering the case § = 1/« we obtain

Theorem 3. For each o,y € R*, the inverse of the q-Hankel transform H” acting on R[t?] ®

242

eqz(—aqT),
242 2
qt 2 r
HIT o R[t? —a—— ] =R Eo(-——
Y H®6q2<au> H®q2<au>
s given by
1 - 2 242
— e Rp) e B, (_’"> SR[P] @ e, (—aq) .
d(w, 7/) 898 1%
This theorem for v = — and v = 3 is identical to the results in equations (2.34) and (2.35).

In order to prove the behavior of the Fourier transform on R we need the following properties
of the g-Hankel transforms. The exact function spaces on which they act is again not specified,
the properties hold if all the terms are well-defined. In particular these lemmata hold for the
function spaces in Theorem 3.

Lemma 3. The first q-Hankel transform satisfies the following properties:
() PHZLFOIO +H [ F0)] @) = 1l 1 0] (),
i) HH U0 = LA A0 and

(i) L [iaﬁlf] <t>f S e I f<q-1 (1_’“;2)5)—0.

The second q-Hankel transform satisfies the following properties:

() PHIL O +HI [ (0] () = “q[ilq"rtzﬂ[fu)](q-lr),

i) o ML) =~ G ona
ity 1y |jos | ) = =T, 10,

Proof. The first property is a direct consequence of Lemma 2(i7), the second a direct conse-
quence of Lemma 2(7). Property (iii) is calculated using formulas (2.2) and (2.4) and Lem-
ma 2 (i)

1+q
Hqﬁ{ ] /\/(1 q)B tu |Q) Vagflf(r)
Y —r— (1) 1+q,.4
1—q2 JI/
:/0 ( )B qu‘ ( ty |q ) yagf(q—l,r,)q

Vitss Jlgl) 1+qrtq
_q/ (1-q%)8 qu‘ ag ( tu ’ )TV f(?")
0
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1+CI/\/(1q 1 Tt‘q)

tV

r f(r).

Property (ii7) for the second ¢-Hankel transform is calculated similarly. |

Lemma 4. The relation

ML 021 0] ) = g 7)) - e (e )

holds for the second q-Hankel transform.

Proof. The left-hand side is calculated using Corollary 1,

M2 [0 f (O] (r) = —

1+ q 1 ~-00 p aq J£2_)1(1+qrt|q )tl/+1
1 qu+1 t t rr—1 f(t)

e ; 2J,S )( 1Jrqmt|q et 1+q[2v], Jia)l(%rt)t”
0 qt r rv f(t) - L qy+1 rr—1 f(t) )

which proves the lemma. |

4 Integration and Fourier transform on Ry’

4.1 Integration over the quantum sphere and induced integration on Ry

First we show how the Howe dual pair (O4(m),Uy(sl2)) uniquely characterizes the integration
over the quantum sphere from [34].

Theorem 4. The unique (up to a multiplicative constant) linear functional on P invariant under
the co-action of O4(m) and satisfying fgmq x’R = fsmfl R is given by the Pizzetti formula
q q

1
/mlR Z i 22)) 2)(MR)(O) for ReP.

Proof. The Fischer decomposition in Lemma 1 implies that the integration on P is uniquely
determined if it is determined on each of the blocks x2Sj. Since these blocks are irreducible
Uy (so(m))-representations (or irreducible O,4(m)-corepresentations) the integration should be
zero on each such block which is not one dimensional. This implies that the integration can only
have non-zero values on the elements x?. The second property then implies fS:In—l x2 = me 11,

which shows that the integration is uniquely determined up to the constant me—l 1. It is easﬂy
q

checked that the Pizzetti formula satisfies the conditions. |
2(T o ()™
We chose the normalization such that me—l 1= % This quantum sphere integration
q 2

can be expressed symbolically using the first g-Bessel-function (2.14),

[ () (F2 50

; (V=24/pn)?

The following lemma will be important for the sequel.
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Lemma 5. The Fischer decomposition (see Lemma 1) of 27 Sk(x) with Sy € Sy is given by

) ) 1 . 1 ;
Jjq, — JQ, _ 2 J 2 J
o8 = (5 - x u[mm/z—w”’“)“ <u[k+m/2—1]qz”’“>

with

. 1 X 1 ;
JQ, _ 2 J J
<(IJ SL — X ,u[k:—i— /2 — 1]q26 Sk) S Sk+1 and (M[k’-i- /2 — 1]q26 Sk> € Si_1.

Proof. Since A and ¢’ commute (mﬁjsk) € Sk—1. Equations (2.22), (2.29)
q
and (2.28) yield

1
[k+m/2—1

1

Sy = 0.
k+m/2—1. "

A <ijk —x? 8jSk> = pd Sy, — p*E
It Jg2 I

This can also be calculated by using the projection operator from P, onto Sp developed

in [20]. |

Before we use the quantum sphere integration to construct integration on Rj" along the lines
of [23] and [14], the following lemma should be considered.

Lemma 6. For the g-integration in equation (2.3) with v € RT, the expression
00

Ey(—t)dgt
0

-
is infinite unless v = qj%q for some j € Z. In that case it reduces to folfq E,(—t)dgt.

Proof. Property (2.5) can be rewritten as E,(t) = E,4(qt) [1 + (1 — g)t], which implies

Ey(—q7") = Eg(—¢" ") [1 - 1 — q)g *].

First we assume FE,(—q'7%7) is never zero for k € Z. The equation above then yields

|Eq(=a7*)| > |Eq(=¢'*y)[q and Sign(Ey(—q~*7)) # Sign(Ey(—¢' ")) for k > N € N
In( L1t _ 00
with N > nl;((fl/*;)). This implies that Y. E,(—¢ *y)g~* will not converge, therefore the
k=N
integral (2.3) will not exist.
If E,(—q'~*y) = 0 holds for some k € Z, the unicity of the zeroes in equation (2.6) implies

k—1—1

that v = ql__q for some k € Z and [ € N, or v = % for some j € Z. The integration then

reduces to the proposed expression for the same reason as in equation (2.7). |

Now we can construct integration on R from the quantum sphere integration according
to the principle of Gaussian-induced integration. The two differential calculi lead to different
Gaussians and integrations. For constants a, 8 € R, the relations

Ojeqz (—ax2) = —a,uxjeqz (—ax2) and gqu (—BXQ) = —qu_Q;ijqz (—Bxg)

imply that ey2(—ax?) and E,.2(—fx?) are Gaussians according to equation (2.31) for the un-
barred and barred calculus respectively. Define the following two integrations for v, A € R on
polynomials weighted with undetermined radial functions,

/ Ry (x)f(xQ) = /7.00 dgr rm+k_1f(7“2) Ry(x) and
'\/~R‘71” 0

m—1
Sq
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A
/ng()\) Rk(x)f(x2) :/0 dgr Tm+k_1f(r2) /S;n—1 Ry(x).

The Taylor expansion of the function f in the origin is assumed to converge on RT for the
first integration and on [0, A] for the second integration. These integrations correspond to the
Gaussian-induced integrations.

Theorem 5. The integrations defined above satisfy
/ =0 on PR ey (70[X2) for a,vyeR* and
v RY

/ 8 =0 on P®Eq2(—5x2) Jor BeR*.

1
= (Tt
Proof. The first property is well-known, see e.g. [14, 34]. In order to prove the second property
we consider the expression

— -~ —2 . _ —
[ oS0 =am R [ (@ e)is - [ fa s
B (M) B () Br(X)
for a spherical harmonic Sy € Sg. If £ # 1 the right-hand side is always zero, because of
Lemma 5 and the expression for meq in Theorem 4. In case k = 1 the spherical harmonics are
q

the monomials ¢, i = 1,...,m. Therefore we calculate using equation (2.26), Leibniz rule (2.2)
and equation (2.4)

/ gf(XQ)xl _ meN/ (8i22f(x2))xj$i+/ f(q72x2)cji
7N B (M)

B (M)

_ 2 (Fq2(%) c’ m—2 A m+1 1 gt 2 m A m—1g( —2 2
= |:q . dq'l"T‘ m@r f('l" )+ [5] q2/0 quT f(q T ):|

m Cjz' A A
m m aq -2 2 m—1 2.2
) {q /0 dgrr™ 0% f (¢ %) + [m]q/o dgrr™ (g 7r )]

When we substitute f(x?) = x*E_2(—fx?) with { € N and 8 € RT and use equation (2.6) we
obtain

/Bm( ) )ajx”sk(x)qu(—ﬁx?):o Vi,
7 \/(1-¢?)8

This proves the second part of the theorem because of the Fischer decomposition in Lemma 1. W

Remark 3. The properties
/ i =0 on P®egp (—ax2) for o,y € Rt and
Ry

/ =0 on P®Eg. (—Bx2) for peR*t
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also hold. They do not correspond to Gaussian-induced integration for those calculi in the strict
sense. However it is a straightforward generalization, the generalized Gaussian satisfies the
relation

10 gy (x) = gy (%)
(or —n;:ggn(x) = 2'g,(¢71x)) in stead of equation (2.31).

Since fv-Rm Ep(— x?) will be infinite for general -y, similar to Lemma 6, the finite integration
q

needs to be used on PR E2(— x2). As in equation (2.7) this integration corresponds to a specific
infinite integration,

/ = / on P® Eg (—ﬁxQ) for peRT.
Bm(%) (%).Raﬂ
1 \Va-a?)8 V(i-¢2)8

Theorem 5 therefore shows that for integration on P ®eg2 (—ax?) there is a bigger choice since v
does not depend on «. However, it is straightforward to calculate

T (2 +1)

21 2 2
X“Sre 2 (—ax®) = dro — / e2(—ax
L-Rg" a2 ( ) qu(%)alq%l(“r?_l) Ry a2 ),

which implies the integrals for different v on P ® eqz(—aXQ) are proportional to each other.

In the sense of equation (2.32) the only difference between the integrations for different -
is the value I(gy) while the functional Z does not depend on 7. For strict Gaussian-induced
integration in the unbarred case, only one choice gives an I(g,) which is finite.

4.2 Bochner’s relations for the Fourier transform on ]RZ"’

The exponential exp 5(x|y) on a quantum space satisfies

9 expp(xly) = expp(x[y)y’, (4.2)

see [23, 29, 36]. From now on expp(x|y) stands for the exponential on Ry*. It is uniquely
determined from equation (4.2) and the normalization exp;(0[y) = 1. In order to define the
Fourier transform according to [23] the Fourier kernel needs to be combined with the Gaussian
induced integrations for the unbarred calculus in Theorem 5 and evaluated on P ® eqz(—aXQ).
It turns out that the Fourier transform defined by the generalized Gaussian-induced integration
for the unbarred calculus in Remark 3 will lead to interesting properties, see Section 5. This
choice also corresponds to the one dimensional theory in equation (2.34). The Fourier transform

can be defined on each space P @ E (-8 %2) First we will extend this space. Define
2 252

Vﬁ =PQEp <—B);> , pe R and Va =P R ey (—aqﬂ> , aeRT.

The different spaces V, (or Vg) are not necessarily disjunct since equation (2.5) implies
Vq—Qja C Vq—Qj—Qa and Vquﬁ C Vq2j+2ﬂ for j € N.

Therefore we define V|, = U520 Vy—2iq and V[ﬁ} = U;";qu% g for o, € R*. Since, for j € N,

Vezia C Va, Vi) can also be identified with U]?‘i V,-2;, and V[B} with U2 V254

—00 " q J=—00
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Definition 3. The first Fourier transform 7]}‘531 on R7" is a map V[ﬁ] — Vj1/p) for each § € R,

—+ 1+4g¢
2 Va-s ¢

In the sullsequent Corollary 2, it will be proven that the Fourier transform does indeed map
elements of V[ﬂ} to Vi1/g). First we need the following technical lemma. For a polynomial P,

we define [P]] by the equation [P ]Jaé = &P — [%P] in Diff(Rf"). So in the undeformed

Euclidean case, [P]] = P3].

f(x) expp(Eix|y).

Lemma 7. For Sy € Sy the relation ZN[@]-S;{(X)]{J:I = [k]2Sk(x) holds with 0; = C},0".

Proof. The lemma is proven by calculating the expression » [0 [0;Sk(x)]x?] in two different
ways. The expression is equal to

> |08kl o] = 3108 (x0) e,
5l 5l
It can also be calculated using formulas (2.22) and (2.28)
> [01x2[0;5u(0)] = ) pa? [9;54(x)] + Zq [0210:Sk(x)]] = nlk]g2Sk(x),
J J
which proves the lemma. |

Remark 4. Using the same techniques for a general polynomial P € Py, yields

, 2 _
Z [(%P]C(X)H l'l = [k}quk(x) + (q /LQ 1)X2APk(x).
gl

Equations (4.1) and (4.2) imply that the quantum sphere integral of the Fourier kernel will
yield the first g-Bessel function. This result can be generalized by introducing spherical har-
monics in the integration.

Theorem 6. For S € Sk, the following relation holds,

T (21/y2¢?)

1 —+k 1
Sk(x) expp (ix|y) = 2™ (T A Sk(y)-
/83117,( ( ¢ (2)) ( /y) 3 +k—1
Proof. First we prove that the relation
k+ 12!
ARG (x x) expp(ix|y) = zk+2lW eXpR(iX]y)yﬂSk(y) 4. (4.3)
q2.

holds, where - - - stands for terms of the form P(x) expp(ix|y)q*(y) with P € @;5oP;. In case
k =0, equation (4.2) implies that AL expy(ix|y) = (—1)" expz(ix|y)y? holds. Now we proceed
by induction on k. Assuming equation (4.3) holds for k — 1 we calculate, using equations (2.28)
and (2.22)

1
[k’i]q2
1

(K]

AL Sy(x) exp(ixly) = 5= AR 27 [0,5.9% (%)) exp (ix|y)

- —— g2 AEH (9,5, (x)] exp s (ix|y)
q
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k+1] 2 _ ; .
[ [k] jq pASHT[0;Sk (X)) 0; exp g ix]y)
q
[k + 1] 2! 1 ¥
—erin Hzl?ﬂ exp 5 (ix|y)y” [k} - [958k ()] iy
q?

q

Lemma 7 then proves that equation (4.3) holds for every k. We also used the fact that for
Sp € Sp, [Spl] € Sy which follows from the fact that 97 and A commute. Equation (4.3) then
yields

|, Suex) expglixly)
S X

q )

2(3))" :
) (A5 expy ) (¢ = O

X

2j

_2(Ce(3)" & (~1)] y
= qqu Z [7] Q'FqQ(j‘i‘k"f'%)ES ).

=0

Comparing this with equation (2.14) proves the theorem. |

This theorem allows to calculate the Fourier transform of an element of P ® E2(— Bxf) inside
one of the irreducible blocks of its U, (so(m))-decomposition.

Corollary 2. The Fourier transform in Definition 3 of a function
Sk(x)y(x?) € P® B, (—/5’;2> C Vig

with Sy € S is given by
FES0(x)0 ()] (v) = () Se(y) Fh 1 [0 (52)

(1) 1+ 2

N /\/ a8 %1, (.2 Jﬂ+k—1(77't|q )
= (+i)F—= dgr r™ T2y (r?) 2 — (Y
) 1 0 q ( ) (Tt)7+k—1 ( )

with v and t two real commuting variables.

These formulae are the Bochner’s relations for the Fourier transform on Ry*. For the classical
Bochner’s relations, see e.g. [19].
This corresponds exactly to the one dimensional case for B = 1. Since liml,u =1+g,
m—r

Corollary 2 for m = 1 and k£ = 0 reduces to

T9 (rt]
7*)
\/7 \/7 1
dqx ) eq(ixt) / dgrip(r )7 for < ——.
% / ( ) q (T’t) 1 1—gq
Corollary 2 form=1,k=1and S; ==z is
(1) 2
Tie = Ji ' (rtlg®) 1
11q dq:vx¢(a:2)eq(ixt) =1 / ' qqu‘T‘21/}(7“2)27l t for t*< T
v 0 (rt)2 q

This agrees with

eq(iu) =T

[

q

() (%) [ o)

which can be easily calculated.
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5 Properties of the Fourier transform

The Fourier transform is determined by its Bochner’s relations, see Corollary 2. The second
Fourier transform is immediately defined here by its Bochner’s relations.

Definition 4. The second Fourier transform fﬂ:&Fm on R;" is a map Vi, — V[l /o) for each a € RT.
q

For a function S,(y)¢(y?) € P ® E (—Z—Z) the transform is given by

1
c(vay)

Fap [Se@ ) (y?)] () = (£0)"Si(x) Filp [0 (),

for an arbitrary v € RT with
2.2
(m_pym  ad’y? g
B / m m_q _ ( a m >
c(Vay) = e dpuu? " Ep(—u)=d(v,/—, = —1
( f)/) Fqg(%) 0 q q ( ) fy ,LL 2

—2j
—d [y k-1 for j,keN.
" 2

The second Fourier transform does not depend on the choice of v as can be seen from the
expressions in the subsequent Theorem 7. From the properties of ¢(y/ary) it is clear that the
definition does not depend on which V, the element of V,; is chosen to be in. Although the
Fourier transform on each space V|, is denoted by the same symbol, each Fourier transform
should be regarded as an independent operator. In Section 7 these different transforms will be
combined in order to construct the Fourier transform on the Hilbert space corresponding to the
harmonic oscillator.

Theorem 7. The Fourier transforms in Definitions 3 and 4 are each others inverse, i.e. for
each a, B € RT

o Frny = id and m O =1ids .
J_-‘]Rzzn qu Via] qu fRZIn V[ﬁ]

Proof. This is a consequence of Corollary 2 and Theorem 3. It can also be obtained directly
from the relations,

2 2
—+ [ (ztr-1) (X2, X
P [ (22) st (-2)] @)
) ) 2,2
= (&0)fa s TP Oy Si(y)e <—Oéqy> :
2,2
.7:]1:{? {agJ“k’”ijQjSk(y)eqz <—ozq/i’>] (x)
2 2
o Nk (m—l-k—l) X 2 X
— (et (wm ) S(x) B, (—w) ,

2(5+1) (5+ B +k)
. L q 2
with C; = T

. These follow immediately from the calculations before Theorem 3. H

Partial derivatives and multiplication with variables are operations which are defined on V,
and Vg and therefore also on V|, and Vig. In this section we investigate how they interact with
the Fourier transforms.
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Theorem 8. For f € V[g] and g € Vo) with o, B € R*, the following relations hold:
. —=+ ; .=t
(1) Frnlr! fX)](y) = Fi0) Frp [f(X)](¥),
.. ; Fi o7
(i) Faply’9()](x) = qua%]:ﬁgz l9(¥)](x),

R F(0)](y) = Fig™y Fay [F(2)] (¥),
[939(y)] (%) = Fia! Figp [9(y)] ().

H,

Proof. In order to prove (i) we choose f(x) of the form Si(x)¥(x?) € P ® Ep (—5%2) for

an arbitrary 8 € R*. We use the Fischer decomposition of 275 (x) in Lemma 5 and define
Y (r?) = r%(r?). Then,

Fiep [27 510 (x) ] (v) = ()1 Sk (9) F 44 [0 (v2)

. .
y*97Si(y) ?qﬁﬁ%[w](ﬁ) o ﬂ)mﬂ P Sp(y)  =a8

4 (i)Y OOkY) __9okY)
() N[%—Fk’—l]qz 2 [%"‘k—l]qQ 2tk

Sy
holds. Applying Lemma 3(i) then yields
Fiap [+ Sk )9 (x*)] (¥)
= () Sp () FE 0] (v7) + ()0 [07Su(y)] FH 1 [8](a%?).
Now we calculate the right-hand side, using equations (2.25) and (2.26) and Lemma 3(ii),
Fi0) Fam [Sk ()9 (x%)] (¥)
= — (&)Y S () p0 T o W] (7%) + (205 [ Sk(9)] Fhyps [0 (65)
= ()" S ) F k[0 (%) + (£0)F 1 [0984(9)] Fips 0] (357).

This proves property ().
Property (ii) can be calculated using the exact same techniques. Consider Si(y)v¥(y?) €
P @egp (—a#). Combining Lemma 5 for the barred calculus with Lemma 3(7) yields

c(vVa) fﬁ:&n [V Sk(y)v (y?)] (%)

— Nk+1,.5 q,7Y 2 (ii)kil B q,y _92 9
()7 27 S (x) Fi [0] (x7) + o (0751 ()] F&7 [ (a72%).

Equation (2.27) and Lemma 3(7i) imply that this expression is equal to

(Vo) T )]0,

Properties (i7i) and (iv) follow from properties (i) and (i¢) and Theorem 7. As an illustration
we calculate property (iv) directly. Consider Sy(y)y(y?) € P ® €2 (—a#) for an arbitrary
a € RT. Using equation (2.25) in the left-hand side of the second property yields

Fit [09k(y) e (v2)] (%) = Fid [ (900 (v%)) Sk(3)] (%) + Fap [(0780) (9)(a%y?) ] ().

The property [ dgtf(qt) = % o dgtf(t) yields

(Vo) Fiy (@S )0 (@) (0) = egra (P S (0FY L, [v] (a7).
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For Sii+1 € Sk41, Lemma 3(iéi) implies

(Vo) T [Ses1 ()01 (v2)) (%) = (£ S () F8 ., [0] (%)

and for Si_1 € Sk_1 Lemma 4 yields

c(vay) ufig@ [Sk—1(y)y? (8§§¢(y2))] (%)

Ttk — 1],
— (ii)k—l)(?Sk,l(X)]:%lk_l[qp] (XQ) _ Wu(ii)k_lskl(x>f%1k_2[¢] (q—2X2)

From these calculations combined with Lemma 5 and taking Siy; and Si_; as defined by
278y = Spy1 + x2S)_1, we obtain

e(Vy) Fip [0)Sk ()0 (v*)] (x)
= ()" [Sha(y) Fiul g ¥ [](x*) + xS (x X)F [1(6)]
= (i) 12T S, (x )fqlk [1(%).

This proves property (iv). |

The behavior of the Fourier transforms with respect to the Laplacian and norm squared can
be calculated from Theorem 8. For }'Rm acting on each space V[b’} and for me acting on each

space V,), the relations
—+ 2 —=+ —t 9 —===*
]:Rglox :—Ayo]:Rgba ]:RQLOA;:—Y O]:Rgn
=+ 2 _ * + + _ 2 +
]:Rg” oy“=-Ao }-RZ”’ fR,qﬂ oAy = —x o]:]RgL

hold. This implies that the Fourier transforms map the two Hamiltonians for the harmonic
oscillator in (2.30) into each other,

?ﬁ? ohy=hyo ?ign and ’7:]1:%2” ohy =hjo fﬂzgn. (5.1)

6 Funk—Hecke theorem on RZ’L

The polynomials on the quantum sphere correspond to P/(R? — 1) with (R? — 1) the ideal
generated by the relation R —1. The Fischer decomposition in Lemma 1 implies that this space
is isomorphic to S = @),—, Sk. The inner product on the quantum sphere (-|-) : S x § — C

o= [ sy (6.1)

q

is positive definite, symmetric and O,4(m)-invariant, see [15, Proposition 14]. In particular
Sk L S when k # I. The symmetry can be obtained from the results in [14] or from the
subsequent Lemma 9.

In [32] the polynomials of degree I in x and y, (x;y)?) which satisfy

206) Y = [l]y-2 (s y) Dy

were determined. In particular this implies that the exponential on Ry takes the form

oo
expp (xly) = Z

=0 q

,21
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For later convenience we define (x|y)®) = [l][l]q (x;y)D so
q

o (x|y) Y = [y {xly) Dy,
These polynomials satisfy the following Funk—Hecke theorem, see [18] for the classical version.

Theorem 9. For Si € Sy, the relation

/gm1 Sk(x) (x]y)? = ar 1Sk (y)y' "

q )

holds with
2L ()"l if k+ 1 dil>k
— P - g is even and | > k,
_ e ] T (H52)
Al = . .
0 if k+1 is odd,
0 if l < k.
Proof. This follows immediately from Theorem 6. |

This will lead to the reproducing kernel for the spherical harmonics. First the following
technical lemma is needed.

Lemma 8. Forl >0 and o € R, the following relation holds:

(_1)jqj(j—1)<l> M:
- i) 2 Tla+1—j)

l

j=

Proof. The calculation (l) , = (l.*l) +q% (131)q2 is straightforward. Applying this yields

) q j—1 q2
: -1 |
cll) = Z(—l)j(l) Tplatl—j) _ <z - 1) pilelati=g)

j=0 i) pTela+1-7) jzo i Jga Tala+1-j)

-1 |
- Z(_l)jqj(jﬂ) (l - 1) Pp(a+1— j‘_ 1)

7=0 J q2 FqQ(a —.7)
-1 |

oo l—1 Teola+l—1-—7) . |
) e Y I—1-— — Jo —

jz(:)( ) q J ng qu(a +1-— ]) ([OZ + ]]q2 {Ot ]]qQ)

¢**[l — 1] 20l — 1].
This relation shows that C[1] = 0 and by induction C[l] =0, for [ > 0. [ |
We define the coefficients c A of the g-Gegenbauer polynomials (2.13) as

L3]

14 n,A,n—27
—t ", 6.2
(q’ l1+gq ) = “ (62)

Theorem 10. The polynomials

1 o Y
Fuxly) =Cn ) ¢ X2 (x|y) (1=20) 2
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+n71]q2 qu (%71)
2T 2(5)™

with c?’)‘ as defined in equation (6.2) and C,, = ks satisfy

/Sm_lsk<x)Fn<x|y>=6kn5k<y) for Sy €Sy (6.3)

Proof. If n — k is odd or n < k then the left-hand side of equation (6.3) is zero because of the
expression for oy ; in Theorem 9. So we consider the case n > k and n — k even. The left-hand
side of equation (6.3) can then be calculated using Theorem 9

5]
o Y .
[ Si0Faely) = o> [ s iy By
syt =0 U
n—k
2 n,2—1 —k
=C, ¢ > ogn—2; | Sk(y)y" .
§=0
Therefore we calculate
n—k
2
n, 5 —1
ZC] Ok,n—2j
§=0
n—k
_ 2 (=170 Tpe(B—14n-7j) 2 2L 2(3)™[n — 24],!
n—k
1 3 n—
= 20 ()™ 2 (—l)iqﬂ(y—l)( 2k> Pp(3 —1+n—7)
L (% - 1)[%%](12' §=0 J /g Fq?(kJrngm —J)
When n — k > 0 this expression is zero because of Lemma 8 for | = (n — k)/2 and a =
(k4+n+m)/2 — 1. This implies
n—k
2 2 a0 = 6 2y ()" ! _ Ok
=’ YT (B - B k-1, Cn]
which proves the theorem. |

This theorem implies that for bases {Slil)} of §j,, which are orthonormal with respect to the
inner product in equation (6.1), the reproducing kernel satisfies

dim Sy,

Fuxly)= > (5 x)s (v).

=1

The reproducing kernel can be written symbolically as a ¢-Gegenbauer polynomial, keeping in
mind that (x|y)7 should be replaced by (x|y)"). In [11] an overview of Gegenbauer polynomials
appearing as reproducing kernels for classical, Dunkl and super harmonic analysis is given. For
completeness we prove that (S ,(Cl) (x))* is still a spherical harmonic.

Lemma 9. The antilinear involutive antihomomorphism x on P satisfies (X2lSk)* c x2S,.
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Proof. It is immediately clear that for Sy € S, (xQZSk(x))* = x? (S(x))* holds. Induction
and equation (2.28) yield

1 ™ L L .
(u00) = gy Y et atoRok - S (x).
47" 4, i=1
First we will prove the relation
m . . . . . . .
> QUi gl gk L Gk Gy (x) =0 (6.4)

ilzil+17l'l+27"':ik::1

foriy,..., 511 €{1,...,m},l=k—1,k—2,...,1 by induction. This clearly holds for [ = k—1,
since equation (2.20) implies

ST O ON O Ok Sp(x) = 9202 - B2 AS(x).
ih_1,ip=1
Then we assume it holds for [ + 1 and calculate

m
ettt g2 L gtk Git iz L L Gk
g Oy a+ight+ xR OO - - O Sk (x)

U1yt =1

m
- § : CfililJrlxl-*_2 ""rkaaclaac2 axksk(x)
ilail+17"'7ik:1
m m

bg Y DR 9105 55 ).
U1yt =1 8t=1
The first line after the equality is zero since S € S;. The second one can be simplified by using
relation (2.21):

m m
Soat > ohaiter . agRoR 0 030500 - - 0 Sy (%)
s=1 t,il+2,...,ik:1
This is zero because of the induction step.
Then we use equation (2.22) to calculate

. 1 m o L .
AS;(x) = u[k] N Z O OO . Ok Sy (x)
4= 4, i=1
1 m , A o ,
FOG T Y a0 O )
8] 4e eyt =1
which implies S} € Sy, by using equation (6.4) consecutively. |

7 The Fourier transform on the Hilbert space
of the harmonic oscillator
The Fourier transforms have been defined on specific spaces of polynomials weighted with

Gaussians. The Fourier transform can be extended to the Hilbert space structure developed
n [14]. First we repeat the basic ideas of [7, 14]. Define the functions

2 _ 2%
¢0:e2<—> and  Py=E.|-LT TX)
q qm/2u 0 q )
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which are the ground states corresponding to the Hamiltonians in equation (2.30). A g¢-
deformation of the raising operators is given by

alt =bu(q)(z7 — " *87)A and @t =by(q)(a’ —q"_Q_%g)A%,
with (for now) undetermined coefficients b,(q) and b,(q). In [14] the relation b,(q) = bn(q¢™')

was assumed, which we do not assume here. These operators can be used to construct the
functions

Yt =apt ooty and g =yt Ayt
These are the eigenfunctions of the Hamiltonians of the harmonic oscillator:

H [n+ Tn/2]q2 w;n“ and

R i Z /2 i
9 qn+m/2 9

A (7.1)

Note that the functions /% are not linearly independent. These two types of functions
generate vector spaces, which we denote by II(V) and II(V). They are both representation of
the abstract vector space V which consists of linear combinations of abstract elements Wir "1,
The maps I1: V — II(V) and II : V — II(V) given by

M) = gt and T =
are isomorphisms. The vector space V is an inner product space with the inner product (:|-)
developed in [14],

(u,v) = /-Rm (ﬁ(u))* II(v) + (H(u))*ﬁ(v) (7.2)

The value of 7y is not important. The harmonic oscillator H on V is defined such that holl = IToH
and h* oIl = I o H and is hermitian with respect to the inner product. The closure of V with
respect to the topology induced by (:|-) is denoted by H.

The behavior of the Fourier transforms with respect to the Hamiltonians of the harmonic
oscillator was obtained in equation (5.1). This can be refined to the raising operators.

Lemma 10. For the Fourier transform FE m in Definition 4, the expression Fi m o an V[a] —
Vig/a] Satisfies

b, .
fﬂ:{m oalt = +ig?™ (@) @t o J-'f{m.
q

Proof. A direct calculation or the equations in the proof of Theorem 7 yield ]:fgm o A1/ =
q
g"2AV4 o ]-'Hifm. Combining this with Theorem 8 then yields the lemma. |
q

It is clear that II(V) C V[ -3 ® V[ql—%]‘ It can be easily checked that the sum of V[q_%]
and V[ql—%] is in fact direct. This implies that the Fourier transform can be trivially defined
on II(V). The Fourier transform of ¢ € II(V), with the unique decomposition ¢ = f + g with

fe V[q,%} and g € V[ 1= is defined as

Fiep (0) = Fie () + Fi (9) (7.3)

with the right hand side given in Definition 4. Now we define the Fourier transform on V.
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Definition 5. The Fourier transform F* : V — V is given by

2

Ft—¢ %1 'o fﬂizn oll,

with F, the Fourier transform on TI(V) as in equation (7.3).
q

Now we impose the condition b,(q) = ¢> "b,(q) on the undetermined coefficients by, by,.
Theorem 11. The Fourier transform F* on V satisfies
FE[0 ] = ()"0
Proof. The definition of F* shows that this statement is equivalent with Fﬂi% [pini1] =

m2 Gy el m2 —_
(+£0)"q + @Z);" ' The proof of Theorem 7 implies Fi., [¥0] = q¢ 1 1py. Lemma 10 then proves the
q
theorem by induction. [ ]

This immediately implies the following conclusions.
Corollary 3. The Fourier transform on V can be continuously extended to H and satisfies
FT o F* = idy
and the Parseval theorem

(FE(f)IF£(9)) = (flg)  for f.geM.

Corollary 4. The Fourier transform on H can be written symbolically as

arcsinh <iH>
F* = exp T T - _m
2 In (a) 2

Proof. This identity follows from evaluating the expression on W» using equation (7.1). W

The Fourier transform fgm on II(V) can therefore be written as
q

: 1-¢° [,2
w2 ¢ | arcsinh (W [x — A]) m
4 IIoll 1oexp il§ ln(%) -3

The Parseval theorem in Corollary 3 and the inner product (7.2) imply the following relation
for f,g € TI(V):

The results in [14] show that this can be refined to
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8 The g-Fourier transform on Euclidean space

The techniques developed in this paper can also be applied to the theory of the ¢g-Dirac operator
on undeformed Euclidean space R™, see [10]. We consider the polynomials in m commuting

variables: C[x1,...,2;]. The classical Laplace operator and norm squared are given by
m m
— 2 2 _ 2
A—Z@zj and r —ij.
j=1 j=1

The spherical harmonics are the homogeneous null-solutions of the Laplace operator, Hp =
R[x1,...,2Tm|x N Ker A. The g-Fourier transforms of a function Hy(z)y(r?) with Hy € H;, are
given by

. L T myle?)
Fy [Ho(@) e (r?)] (y) = (i) Hy(y) /0 dgr ( )m+,§_1 kL (r?),
TTy) 2
voo Jw . (arryle?)
FE ()@ = G @) g [ i )
Ttq’ 2 rry)®

The fact that these transforms are each others inverse when evaluated on the appropriate func-
tion spaces follows immediately from equations (3.1) and (3.2). The operators Dj, j =1,...,m
are defined in [10, equation (25) and Definition 2]. They are a g-deformation of the partial
derivatives on R™. Similarly to equation (2.25) for the partial derivatives on g-Euclidean space
the g-derivatives on Euclidean space satisfy

2
Dif(r®) = (1+ )z (0% f(r*)) + f(¢°r*) Ds,
see Lemma 6 in [10].
m
The g-Laplace operator on R™ can be defined as A, = DJQ-. The polynomial null-solution of
j=1

this g-Laplace operator correspond to the classical spaces Hy. This shows that the g-deformation
is purely radial. This can also be seen from the fact that the Howe dual pair of this construction
is (O(m),Uy(sl2)). This implies that there is no spherical deformation and a radial deformation
identical to the one from quantum Euclidean space.

Using the results from the previous sections and [10] it is straightforward to prove that

—=+ =t
Dj"rq [f(&)] = iZ‘Fq [‘(L’Jf(g)]
holds. Also the theory of the harmonic oscillator and the corresponding Hilbert space can be
trivially translated to this setting.
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