Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 7 (2011), 029, 14 pages      arXiv:1012.0808      https://doi.org/10.3842/SIGMA.2011.029
Contribution to the Proceedings of the Workshop “Supersymmetric Quantum Mechanics and Spectral Design”

Supersymmetry Transformations for Delta Potentials

David J. Fernández C. a, Manuel Gadella b and Luis Miguel Nieto b
a) Departamento de Física, Cinvestav, AP 14-740, 07000 México DF, Mexico
b) Departamento de Física Teórica, Atómica y Optica, Facultad de Ciencias, 47041 Valladolid, Spain

Received November 30, 2010, in final form March 19, 2011; Published online March 22, 2011

Abstract
We make a detailed study of the first and second-order SUSY partners of a one-dimensional free Hamiltonian with a singular perturbation proportional to a Dirac delta function. It is shown that the second-order transformations increase the spectral manipulation possibilities offered by the standard first-order supersymmetric quantum mechanics.

Key words: first and second-order SUSY; singular potentials.

pdf (395 kb)   tex (193 kb)

References

  1. Seba P., Some remarks on the δ'-interaction in one dimension, Rep. Math. Phys. 24 (1986), 111-120.
  2. Kurasov P., Distribution theory for discontinuous test functions and differential operators with generalized coefficients, J. Math. Anal. Appl. 201 (1996), 297-323.
  3. Coutinho F.A.B., Nogami Y., Fernando Perez J., Generalized point interactions in one-dimensional quantum mechanics, J. Phys. A: Math. Gen. 30 (1997), 3937-3945.
  4. Toyama F.M., Nogami Y., Transmission-reflection problem with a potential of the form of the derivative of the delta function, J. Phys. A: Math. Theor. 40 (2007), F685-F690.
  5. Fülöp T., Tsutsui I., A free particle on a circle with point interaction, Phys. Lett. A 264 (2000), 366-374, quant-ph/9910062.
  6. Hejcik P., Cheon T., Irregular dynamics in a solvable one-dimensional quantum graph, Phys. Lett. A 356 (2006), 290-293, quant-ph/0512239.
  7. Christiansen P.L., Arnbak H.C., Zolotaryuk A.V., Ermakov V.N., Gaididei Y.B., On the existence of resonances in the transmission probability for interactions arising from derivatives of Dirac's delta function, J. Phys. A: Math. Gen. 36 (2003), 7589-7600.
  8. Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H., Solvable models in quantum mechanics, Texts and Monographs in Physics, Springer-Verlag, New York, 1988.
  9. Albeverio S., Kurasov P., Singular perturbations of differential operators. Solvable Schrödinger type operators, London Mathematical Society Lecture Note Series, Vol. 271, Cambridge University Press, Cambridge, 2000.
  10. Gadella M., Kuru S., Negro J., Self-adjoint Hamiltonians with a mass jump: general matching conditions, Phys. Lett. A 362 (2007), 265-268.
  11. Gadella M., Negro J., Nieto L.M., Bound states and scattering coefficients of the −aδ(x)+bδ'(x) potential, Phys. Lett. A 373 (2009), 1310-1313.
  12. Fernández C., Palma G., Prado H., Resonances for Hamiltonians with a delta perturbation in one dimension, J. Phys. A: Math. Gen. 38 (2005), 7509-7518.
  13. Gadella M., Heras F.J.H., Negro J., Nieto L.M., A delta well with a mass jump, J. Phys. A: Math. Theor. 42 (2009), 465207, 11 pages.
  14. Álvarez J.J., Gadella M., Heras F.J.H., Nieto L.M., A one-dimensional model of resonances with a delta barrier and mass jump, Phys. Lett. A 373 (2009), 4022-4027.
  15. Witten E., Dynamical breaking of supersymmetry, Nuclear Phys. B 185 (1981), 513-554.
  16. Mielnik B., Factorization method and new potentials with the oscillator spectrum, J. Math. Phys. 25 (1984), 3387-3389.
  17. Fernández D.J., New hydrogen-like potentials, Lett. Math. Phys. 8 (1984), 337-343, quant-ph/0006119.
  18. Andrianov A.A., Borisov N.V., Ioffe M.V., Quantum systems with identical energy spectra, JETP Lett. 39 (1984), 93-97.
  19. Andrianov A.A., Borisov N.V., Ioffe M.V., The factorization method and quantum systems with equivalent energy spectra, Phys. Lett. A 105 (1984), 19-22.
  20. Sukumar C.V., Supersymmetric quantum mechanics of one-dimensional systems, J. Phys. A: Math. Gen. 18 (1985), 2917-2936.
  21. Sukumar C.V., Supersymmetric quantum mechanics and the inverse scattering method, J. Phys. A: Math. Gen. 18 (1985), 2937-2955.
  22. Sukumar C.V., Supersymmetry, potentials with bound states at arbitrary energies and multi-soliton configurations, J. Phys. A: Math. Gen. 19 (1986), 2297-2316.
  23. Sukumar C.V., Supersymmetry and potentials with bound states at arbitrary energies. II, J. Phys. A: Math. Gen. 20 (1987), 2461-2481.
  24. Beckers J., Dehin D., Hussin V., Symmetries and supersymmetries of the quantum harmonic oscillator, J. Phys. A: Math. Gen. 20 (1987), 1137-1154.
  25. Alves N.A., Drigo Filho E., The factorization method and supersymmetry, J. Phys. A: Math. Gen. 21 (1988), 3215-3225.
  26. Lahiri A., Roy P.K., Bagchi B., Supersymmetry in quantum mechanics, Internat. J. Modern Phys. A 5 (1990), 1383-1456.
  27. Roy B., Roy P., Roychoudhury R., On solutions of quantum eigenvalue problems: a supersymmetric approach, Fortschr. Phys. 39 (1991), 211-258.
  28. de Lange O.L., Raab R.E., Operator methods in quantum mechanics, The Clarendon Press, Oxford University Press, New York, 1991.
  29. Baye D., Phase-equivalent potentials for arbitrary modifications of the bound spectrum, Phys. Rev. A 48 (1993), 2040-2047.
  30. Sparenberg J.-M., Baye D., Supersymmetric transformations of real potentials on the line, J. Phys. A: Math. Gen. 28 (1995), 5079-5095.
  31. Bagchi B., Supersymmetry in quantum and classical mechanics, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Vol. 116. Chapman & Hall/CRC, Boca Raton, FL, 2001.
  32. Cooper F., Khare A., Sukhatme U., Supersymmetry in quantum mechanics, World Scientific Publishing Co., Inc., River Edge, NJ, 2001.
  33. Mielnik B., Rosas-Ortiz O., Factorization: little or great algorithm?, J. Phys. A: Math. Gen. 37 (2004), 10007-10035.
  34. Andrianov A.A., Cannata F., Nonlinear supersymmetry for spectral design in quantum mechanics, J. Phys. A: Math. Gen. 37 (2004), 10297-10321, hep-th/0407077.
  35. Plyushchay M., Nonlinear supersymmetry: from classical to quantum mechanics, J. Phys. A: Math. Gen. 37 (2004), 10375-10384, hep-th/0402025.
  36. Sukumar C.V., Supersymmetric quantum mechanics and its applications, AIP Conf. Proc. 744 (2005), 166-235.
  37. Fernández D.J., Fernández-García N., Higher-order supersymmetric quantum mechanics, AIP Conf. Proc. 744 (2005), 236-273, quant-ph/0502098.
  38. Dong S.-H., Factorization method in quantum mechanics, Fundamental Theories of Physics, Vol. 150, Springer, Dordrecht, 2007.
  39. Andrianov A.A., Sokolov A.V., Factorization of nonlinear supersymmetry in one-dimensional quantum mechanics. I. General classification of reducibility and analysis of the third-order algebra, J. Math. Sci. 143 (2007), 2707-2722, arXiv:0710.5738.
  40. Sokolov A.V., Factorization of nonlinear supersymmetry in one-dimensional quantum mechanics. II. Proofs of theorems on reducibility, J. Math. Sci. 151 (2008), 2924-2936, arXiv:0903.2835.
  41. Fernández D.J., Supersymmetric quantum mechanics, AIP Conf. Proc. 1287 (2010), 3-36, arXiv:0910.0192.
  42. Fernández D.J., Glasser M.L., Nieto L.M., New isospectral oscillator potentials, Phys. Lett. A 240 (1998), 15-20.
  43. Fernández D.J., Hussin V., Mielnik B., A simple generation of exactly solvable anharmonic oscillators, Phys. Lett. A 244 (1998), 309-316.
  44. Rosas-Ortiz J.O., New families of isospectral hydrogen-like potentials, J. Phys. A: Math. Gen. 31 (1998), L507-L513, quant-ph/9803029.
  45. Rosas-Ortiz J.O., Exactly solvable hydrogen-like potentials and factorization method, J. Phys. A: Math. Gen. 31 (1998), 10163-10179, quant-ph/9806020.
  46. Contreras-Astorga A., Fernández D.J., Supersymmetric partners of the trigonometric Pöschl-Teller potentials, J. Phys. A: Math. Theor. 41 (2008), 475303, 18 pages, arXiv:0809.2760.
  47. Díaz J.I., Negro J., Nieto L.M., Rosas-Ortiz O., The supersymmetric modified Pöschl-Teller and delta-well potentials, J. Phys. A: Math. Gen. 32 (1999), 8447-8460, quant-ph/9910017.
  48. Uchino T., Tsutsui I., Supersymmetric quantum mechanics with a point singularity, Nuclear Phys. B 662 (2003), 447-460, quant-ph/0210084.
  49. Uchino T., Tsutsui I., Supersymmetric quantum mechanics under point singularities, J. Phys. A: Math. Gen. 36 (2003), 6821-6846, hep-th/0302089.
  50. Fülöp T., Tsutsui I., Cheon T., Spectral properties on a circle with a singularity, J. Phys. Soc. Japan 72 (2003), 2737-2746, quant-ph/0307002.
  51. Correa F., Nieto L.M., Plyushchay M.S., Hidden nonlinear su(2|2) superunitary symmetry of N=2 superextended 1D Dirac delta potential problem, Phys. Lett. B 659 (2008), 746-753, arXiv:0707.1393.
  52. Correa F., Jakubsky V., Nieto L.M., Plyushchay M.S., Self-isospectrality, special supersymmetry, and their effect on the band structure, Phys. Rev. Lett. 101 (2008), 030403, 4 pages, arXiv:0801.1671.
  53. Correa F., Jakubsky V., Plyushchay M.S., Finite-gap systems, tri-supersymmetry and self-isospectrality, J. Phys. A: Math. Theor. 41 (2008), 485303, 35 pages, arXiv:0806.1614.
  54. Correa F., Plyushchay M.S., Hidden supersymmetry in quantum bosonic systems, Ann. Physics 322 (2007), 2493-2500, hep-th/0605104.
  55. Jakubsky V., Nieto L.M., Plyushchay M.S., The origin of hidden supersymmetry, Phys. Lett. B 692 (2010), 51-56, arXiv:1004.5489.
  56. Andrianov A.A., Ioffe M.V., Spiridonov V., Higher-derivative supersymmetry and the Witten index, Phys. Lett. A 174 (1993), 273-279, hep-th/9303005.
  57. Andrianov A.A., Ioffe M.V., Cannata F., Dedonder J.-P., Second order derivative supersymmetry, q deformations and the scattering problem, Internat. J. Modern Phys. A 10 (1995), 2683-2702, hep-th/9404061.
  58. Bagrov V.G., Samsonov B.F., Darboux transformation of the Schrödinger equation, Phys. Particles Nuclei 28 (1997), 374-397.
  59. Fernández D.J., SUSUSY quantum mechanics, Internat. J. Modern Phys. A 12 (1997), 171-176, quant-ph/9609009.
  60. Flügge S., Practical quantum mechanics, Springer-Verlag, Berlin, 1999.
  61. Mielnik B., Nieto L.M., Rosas-Ortiz O., The finite difference algorithm for higher order supersymmetry, Phys. Lett. A 269 (2000), 70-78, quant-ph/0004024.
  62. Fernández D.J., Salinas-Hernández E., The confluent algorithm in second order supersymmetric quantum mechanics, J. Phys. A: Math. Gen. 36 (2003), 2537-2543, quant-ph/0303123.
  63. Fernández D.J., Salinas-Hernández E., Wronskian formula for confluent second-order supersymmetric quantum mechanics, Phys. Lett. A 338 (2005), 13-18, quant-ph/0502147.
  64. Fernández D.J., Muñoz R., Ramos A., Second order SUSY transformations with 'complex energies', Phys. Lett. A 308 (2003), 11-16, quant-ph/0212026.
  65. Rosas-Ortiz O., Muñoz R., Non-Hermitian SUSY hydrogen-like Hamiltonians with real spectra, J. Phys. A: Math. Gen. 36 (2003), 8497-8506, quant-ph/0302190.
  66. Fernández-García N., Rosas-Ortiz O., Gamow-Siegert functions and Darboux-deformed short range potentials, Ann. Physics 323 (2008), 1397-1414, arXiv:0810.5597.

Previous article   Next article   Contents of Volume 7 (2011)