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Abstract. We review the relation of N=4 superconformal multi-particle models on the real
line to the WDVV equation and an associated linear equation for two prepotentials, F and U .
The superspace treatment gives another variant of the integrability problem, which we also
reformulate as a search for closed flat Yang–Mills connections. Three- and four-particle
solutions are presented. The covector ansatz turns the WDVV equation into an algebraic
condition, for which we give a formulation in terms of partial isometries. Three ideas for
classifying WDVV solutions are developed: ortho-polytopes, hypergraphs, and matroids.
Various examples and counterexamples are displayed.
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1 Introduction

Over the past decade, there has been substantial progress in the construction of N=4 supercon-
formal multi-particle mechanics (in one space dimension) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. In 2004
a deep connection between these physical systems and the so-called WDVV equation [11, 12]
was discovered [4], relating Calogero-type models with D(2, 1;α) superconformal symmetry to
a branch of mathematics concerned with solving this equation [13, 14, 15, 16, 17, 18, 19]. Here,
we describe physicists’ attempts to take advantage of the mathematical literature on this subject
and to develop it further towards constructing and classifying such multi-particle models.

There exist different versions of the WDVV equation in the literature, so let us be more
specific. Originally, the WDVV equation appeared as a consistency relation in topological field
theory, where the puncture operator singles out one of the coordinates, so that the associa-
ted Frobenius algebra is unital and carries a constant metric [11, 12, 13]. A few years later,
a more general form of the WDVV equation appeared as a condition on the prepotential F̃
of Seiberg–Witten theory (four-dimensional N=2 super Yang–Mills theory) [20, 21, 22]. Here,
the distinguished coordinate is absent, and so the Frobenius structure constants do not lead to
a natural metric. This so-called generalized WDVV equation takes the form

ÃiÃ
−1

k Ãj = ÃjÃ
−1

k Ãi ∀ i, j, k = 1, . . . , n (1)

?This paper is a contribution to the Proceedings of the Workshop “Supersymmetric Quantum Me-
chanics and Spectral Design” (July 18–30, 2010, Benasque, Spain). The full collection is available at
http://www.emis.de/journals/SIGMA/SUSYQM2010.html
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for a collection of n × n matrix functions (Ãi)`m = −∂i∂`∂mF̃ . However, any invertible linear
combination of these matrices yields an admissible metric

η =
∑
i

ηiÃi so that Ãiη
−1Ãj = Ãjη

−1Ãi. (2)

It is easy to see that this metric can be absorbed in a redefinition [14, 15],

Ai := η−1Ãi −→
[
Ai,Aj

]
= 0 with

∑
iη
iAi = 1,

giving a formulation equivalent to (1). For a constant metric, e.g. η = Ã1 = const, we fall
back to the more special case which arose in topological field theory. Since 1999, Veselov and
collaborators have been constructing particular solutions to (2), introducing so-called ∨-systems
and featuring a constant metric η =

∑
i x

iÃi [15, 17, 18, 19].

In comparison, N=4 supersymmetric multi-particle models are determined by two prepo-
tentials, F and U , the first of which is subject to the generalized WDVV equation [4]. Here,
the conformal invariance imposes a supplementary condition on our matrices, which amounts to
choosing the Euclidean metric∑

i

xiÃi = 1 −→ Ãi = Ai,

and so one may drop the label ‘generalized’. The map to Veselov’s formulation is achieved by
a linear coordinate change, xi → xjM i

j with η = MM⊥ [23].

The goal of the paper is fourfold. First, we would like to review the appearance of the
WDVV equation in the construction of one-dimensional multi-particle models with su(1, 1|2)
symmetry [4, 5, 6, 7, 8, 9, 10]. In particular, we draw the attention of the mathematical readers
to the second prepotential U , which enlarges the WDVV structure in a canonical fashion, and to
the superspace formulation, which yields an alternative formulation of the integrability condition.
Second, we plan to provide some explicit three- and four-particle examples for the physical model
builders. Third, we intend to rewrite Veselov’s notion of ∨-systems in a manner we hope is more
accessible to physicists, using the notion of partial isometry and providing further examples.
Fourth, we want to advertize some novel attempts to attack the classification problem for the
WDVV equation. The standard ansatz for the propotential employs a collection of covectors,
which are subject to intricate algebraic conditions. These relations may be visualized in terms
of certain polytopes, or in terms of hypergraphs, or by a particular kind of matroid. Neither of
these concepts is fully satisfactory; the classification problem remains open. However, for low
dimension and a small number of covectors they can solve the problem.

2 Conformal quantum mechanics: Calogero system

As a warm-up, we introduce n + 1 identical particles with unit mass, moving on the real line,
with coordinates xi and momenta pi, where i = 1, 2, . . . , n+ 1, and define their dynamics by the
Hamiltonian1

H = 1
2pipi + VB

(
x1, . . . , xn+1

)
. (3)

For the quantum theory, we impose the canonical commutation relations (~ = 1)

[xi, pj ] = iδj
i.

1Equivalently, it describes a single particle moving in Rn+1 under the influence of the external potential VB .
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Together with the dilatation and conformal boost generators

D = −1
4

(
xipi + pix

i
)

and K = 1
2x

ixi,

the Hamiltonian (3) spans the conformal algebra so(2, 1) in 1 + 0 dimensions,

[D,H] = −iH, [H,K] = 2iD, [D,K] = iK,

if and only if (xi∂i + 2)VB = 0, i.e. the potential is homogeneous of degree −2. If one further
demands permutation and translation invariance and allows only two-body forces, one ends up
with the Calogero model,

VB =
∑
i<j

g2

(xi − xj)2
.

3 N=4 superconformal extension: su(1, 1|2) algebra

Our goal is to N=4 supersymmetrize conformal multi-particle mechanics. The most general
N=4 extension of so(2, 1) is the superalgebra D(2, 1;α), but here we specialize to D(2, 1; 0) '
su(1, 1|2) B su(2). Further, we break the outer su(2) to u(1) by allowing for a central charge C.
The set of generators then gets extended [24]

(H,D,K) → (H,D,K,Qα, Sα, Ja, C) with α = 1, 2 and a = 1, 2, 3

and hermiticity properties (Qα)† = Q̄α and (Sα)† = S̄α.

The nonvanishing (anti)commutators of su(1, 1|2) read

[D,H] = −iH, [H,K] = 2iD,

[D,K] = +iK, [Ja, Jb] = iεabcJc,

{Qα, Q̄β} = 2Hδα
β, {Qα, S̄β} = +2i(σa)α

βJa − 2Dδα
β − iCδα

β,

{Sα, S̄β} = 2Kδα
β, {Q̄α, Sβ} = − 2i(σa)β

αJa − 2Dδβ
α + iCδβ

α,

[D,Qα] = − i
2Qα, [D,Sα] = + i

2Sα,

[K,Qα] = +iSα, [H,Sα] = −iQα,

[Ja, Qα] = −1
2(σa)α

βQβ, [Ja, Sα] = −1
2(σa)α

βSβ,

[D, Q̄α] = − i
2Q̄

α, [D, S̄α] = + i
2 S̄

α,

[K, Q̄α] = +iS̄α, [H, S̄α] = −iQ̄α,

[Ja, Q̄
α] = 1

2Q̄
β(σa)β

α, [Ja, S̄
α] = 1

2 S̄
β(σa)β

α.

To realize this algebra on the (n+1)-particle state space, we must enlarge the latter by adding

Grassmann-odd degrees of freedom, ψiα and ψ̄iα = ψiα
†
, with i = 1, . . . , n+ 1 and α = 1, 2, and

subject them to canonical anticommutation relations,

{ψiα, ψ
j
β} = 0, {ψ̄iα, ψ̄jβ} = 0 and {ψiα, ψ̄jβ} = δα

βδij .

In the absence of a potential (subscript ‘0’), the generators are given by the bilinears

Q0α = piψ
i
α, Q̄α0 = piψ̄

iα and S0α = xiψiα, S̄α0 = xiψ̄iα,

H0 = 1
2pipi, D0 = −1

4(xipi + pix
i), K0 = 1

2x
ixi, J0a = 1

2 ψ̄
iα(σa)α

βψiβ,
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where σa denote the Pauli matrices. Surprisingly however, the free generators fail to obey the
su(1, 1|2) algebra, and interactions are mandatory! The minimal deformation touches only the
supercharge and the Hamiltonian,

Qα = Q0α − i [S0α, V ], Q̄α = Q̄α0 − i[S̄α0 , V ] and H = H0 + V,

keeping S = S0, S̄ = S̄0, D = D0, K = K0 and J = J0.
Being a Grassmann-even function of ψ, ψ̄ and x, the potential V may be expanded in even

powers of the fermionic variables. It turns out that we must go to fourth order for closing the
algebra, i.e. [2, 4, 6]

V = VB(x)− Uij(x)〈ψiαψ̄jα〉+ 1
4Fijkl(x)〈ψiαψjαψ̄kβψ̄lβ〉, (4)

where the angle brackets 〈· · · 〉 denote symmetric (or Weyl) ordering. The functions Uij and Fijkl
are totally symmetric in their indices and homogeneous of degree −2 in {x1, . . . , xn+1}. For
completeness, we also give the interacting supercharge,

Qα =
(
pj − ixiUij(x)

)
ψjα − i

2x
iFijkl(x)〈ψjβψ

kβψ̄lα〉. (5)

4 The structure equations for (F,U):
WDVV, Killing, inhomogeneity

Inserting the minimal ansatz (4) for V into the su(1, 1|2) algebra and demanding closure, one
finds that

Uij = ∂i∂jU and Fijkl = ∂i∂j∂k∂lF

are determined by two scalar prepotentials U and F , which are subject to so-called structure
equations [2, 4, 6],

(∂i∂k∂pF )(∂p∂l∂jF )− (∂i∂l∂pF )(∂p∂k∂jF ) = 0, xi∂i∂j∂kF = −δjk, (6)

∂i∂jU − (∂i∂j∂kF )∂kU = 0, xi∂iU = −C. (7)

The left equations (6a) and (7a) are homogeneous quadratic in F (known as the WDVV equa-
tion) [11, 12] and homogeneous linear in U (a type of Killing equation). The right equations (6b)
and (7b) introduce well-defined inhomogeneities, so that the prepotential must be of the form

F = −1
2x

2 lnx+ Fhom and U = −C lnx+ Uhom (8)

with Fhom of degree −2 and Uhom of degree 0 in x. This also shows the redundancies

U ' U + const and F ' F + quadratic polynomial,

which for F is also apparent in the twice-integrated form of (6b),

(xi∂i − 2)F = −1
2x

ixi.

It is convenient to separate the center-of-mass dynamics from the relative particle motion,
since the two decouple in all equations. The center-of-mass motion is already nonlinear but
explicitly solved by (8) without homogeneous terms (the central charge is additive). In new
relative-motion coordinates, which again we name xi but with i = 1, 2, . . . , n, the configuration
space is reduced to Rn. The Killing-type equation (7a) implies, as its compatibility condition,
the WDVV equation (6a) contracted with ∂jU . Furthermore, the contraction of (6a) with xi is
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trivially valid, thanks to (6b). This effectively projects the WDVV equation to n−1 dimensions.
Since its symmetry is that of the Riemann tensor, it comprises as many independent equations,
namely 1

12n(n− 1)2(n− 2) in number. In particular, (6a) is empty for up to three particles and
a single condition for four particles.

The leading part of the potential is also determined by U and F ,2

VB = 1
2(∂iU)(∂iU) + ~2

8 (∂i∂j∂kF )(∂i∂j∂kF ) > 0,

and the expressions in (5) simplify to

xiFijkl = −∂j∂k∂lF and xiUij = −∂jU.

Therefore, finding a pair (F,U) amounts to defining an su(1, 1|2) invariant (n + 1)-particle
model. For more than three particles, however, this is a difficult task, and very little is known
about the space of solutions.

5 Superspace approach: inertial coordinates in Rn+1

When analyzing supersymmetric systems, it is often a good idea to employ superspace methods.
This is also possible for the case at hand, where the construction of a classical Lagrangian seems
straightforward in N=4 superspace [25, 26, 27, 28, 29].

For each particle, we introduce a standard untwisted N=4 superfield

u
A(t, θa, θ̄a) = uA(t) +O(θ, θ̄) with A = 1, . . . , n+ 1,

obeying the constraints3

D2
u
A = 0 = D

2
u
A −→ ∂t[D

a, Da]u
A = 0 −→ [Da, Da]u

A = 2gA

with constants gA, which will turn out to be the coupling parameters. The general N=4 super-
conformal action for these fields takes the form4

S = −
∫

dtd2θd2θ̄G(u) = 1
2

∫
dt
[
GAB(u)u̇Au̇B −GAB(u)gAgB + fermions

]
already written in [1], with a superpotential G(u) subject to the conformal invariance condition

G−GAuA = 1
2cAu

A

for arbitrary constants cA, so that it is of the form G = −1
2cu lnu+ terms of degree one.

Generically, such sigma-model-type actions do not admit a multi-particle interpretation, how-
ever, unless the target space is flat. This requirement imposes a nontrivial condition on the
target-space metric GAB(u) [9],

Riemann(GAB) = 0 ←→ GA[BXG
XYGY C]D = 0.

Equivalently, there must exist so-called inertial coordinates xi, with i = 1, 2, . . . , n+1, such that

S =

∫
dt
[

1
2δij ẋ

iẋj − V cl
B (x) + fermions

]
.

2Here and later, we sometimes reinstate ~ to ease the interpretation.
3The constants gA can be SU(2)-rotated into the constraints, so thatD2

u
A = iga=−D2

u
A but [Da, Da]u

A = 0.
4Subscripts on G denote derivatives with respect to u, i.e. GA = ∂G/∂uA etc.
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The goal is, therefore, to find admissible functions uA = uA(x) and compute the corresponding
G and V cl

B . The above flatness requirement leads to a specific integrability condition for uAi :=
∂iu

A, namely

∂xi

∂uA
(
u(x)

)
≡
(
(u••)

−1
)i
A

=: wA,i
!

= ∂iwA ≡
∂wA
∂xi

(x), (9)

which says that the transpose of the inverse Jacobian for u → x is again a Jacobian for a map
w → x. This defines a set of functions wA(x) dual to ua(x), in the sense that their Jacobians
are inverses [9],

wA,iu
B
i = δ B

A ←→ wA,iu
A
j = δij .

Equivalent versions of the integrability condition (9) are [9]

u
[A
i∂ju

B]
i = 0 ←→ w[A,i∂jwB],i = 0, (10)

fijk := −wA,i∂kuAj is totally symmetric,

fijk = ∂i∂j∂kF and fim[kfl]mj = 0,

which includes the WDVV equation for F . In contrast, there is no formulation purely in terms
of U .

Conformal invariance restricts uA to be homogeneous quadratic in x, hence wA to be homoge-
neous of degree zero (including logarithms!), thus fijk is of degree −1. The second prepotential U
is also determined by uA(x) via

U(x) = −gAwA(x) so that C = −xi∂iU = cAg
A,

and automatically fulfills the Killing-type equation (7a). The classical bosonic potential then
reads

V cl
B = 1

2(∂iU)(∂iU) = 1
2g
AgBwA,iwB,i.

Finally, for the superpotential G(u) the integrability condition becomes

uAiu
B
jGAB = −δij ←→ GAB = −wA,iwB,i = −∂AwB = −∂BwA,

so that, up to an irrelevant u-linear shift of G,

wA = −GA ←→ G = −uAwA,

and we have

U = gAGA and fijk = −1
2u

A
iu
B
ju
C
kGABC −→ V cl

B = −1
2g
AgBGAB.

However, knowing the superpotential does not suffice: the relation between xi and uA is needed
to determine U(x) and F (x). On the other hand, if a solution F to the WDVV equation can be
found, this problem reduces to a linear one [9]:

uAij + fijku
A
k = 0 or wA,ij − fijkwA,k = 0, with fijk = ∂i∂j∂kF. (11)

Finally, we remark again that the center-of-mass degree of freedom can be decoupled, so that
all indices may run form 1 to n only.
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6 Structural similarity to closed flat Yang–Mills connections

It is instructive to rewrite our integrability problem in terms of n×n-matrix-valued differential
forms, in a compact formulation closer to Yang–Mills theory. To this end, we define(

uAi
)

:= u,
(
−∂i∂jF

)
:= f and

(
−∂i∂j∂kFdxk

)
:= A = Akdx

k. (12)

Since Ak = ∂kf and ∂i∂j∂kF = wA,i∂ku
A
j , we have

A = df → dA = 0 and A = u−1du → dA+A∧A = 0,

from which we learn that

0 = A ∧A = 1
2d[f ,df ] = −du−1 ∧ du, (13)

which is nothing but the WDVV equation again. Hence, we are looking for connections A
which are at the same time closed and flat. Dealing with a topologically trivial configuration
space Rn, it implies that A is simultaneously exact and pure gauge. The exactness is already
part of the definition (12), and the pure-gauge property is what relates A with u. We remark
that A and f are symmetric matrices while u is not. Furthermore, the inhomogeneity (6b)
demands that xi∂if = 1. The task is to solve (13) for f and for u, which then yield ∂3F and
~∇U = −2u−1~g.

Of course, we cannot ‘solve’ the WDVV equation by formal manipulations. But even given
a solution A (and hence f), it is nontrivial to construct an associated matrix function u. For
this, we must integrate the linear matrix differential equation (11),

du> = Au>, (14)

which qualifies u as covariantly constant in the WDVV background. The formal solution reads

u> =
∞∑
k=0

f (k) with f (0) = 1, f (1) = f and dff (k) = df (k+1),

up to right multiplication with a constant matrix. The matrix functions f (k) are local because

d(dff (k)) = −df ∧ df (k) = −df ∧ dff (k−1) = −A ∧Af (k−1) = 0

due to the WDVV equation. Likewise, one has

fdf (k) = fdff (k−1) = d
(
ff (k) − f (k+1)

)
.

Note that the naive guess u> = ef is wrong since [f , df ] = d(f2 − 2f (2)) 6= 0.
We provide two explicit examples for n = 2, with the notation

xi=1 =: x, xi=2 =: y and x2 + y2 =: r2.

Starting from the B2 solution with a radial term [6, 9]

F = −1
2x

2 lnx− 1
2y

2 ln y − 1
4(x+ y)2 ln(x+ y)− 1

4(x− y)2 ln(x− y) + 1
2r

2 ln r, (15)

we have

f =
1

2

(
ln
[
(x2 − y2)x

2

r2

]
ln x+y

x−y
ln x+y

x−y ln
[
(x2 − y2)y

2

r2

])− 1

r2

(
x2 xy

xy y2

)
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with (x∂x + y∂y)f = 1 and, hence,

A = df =
(x2 − y2)2

xyr4

(
ydx 0

0 xdy

)
+

4x2y2

(x2 − y2)r4

(
xdx− ydy xdy − ydx

xdy − ydx xdx− ydy

)
.

It is easy to check that indeed A ∧A = 0 but [A,f ] 6= 0. The solution to (14) turns out to be

u =
Γ

r4

(
xr4 yr4

x y4 y x4

)
Γ=1−→

{
u1 = 1

2r
2,

u2 = 1
2x

2y2/r2

with an arbitrary non-degenerate constant matrix Γ, as may be checked by inserting it into (14).
One may also begin with a purely radial WDVV solution [9],

F = −1
2r

2 ln r −→ f = 1
2(ln r2)1+

x2 − y2

2r2
σ3 +

xy

r2
σ1,

and find

u = Γ

(
2x 2y

2x arctan y
x − y 2y arctan y

x + x

)
Γ=1−→

{
u1 = r2,

u2 = r2 arctan y
x .

For more generic weight factors in (15), u2 is expressed in terms of hypergeometric functions [9].

7 Three- and four-particle solutions

An alternative method for constructing solutions (F,U) attempts to find functions uA(x) sat-
isfying (10). It is successful for n + 1 = 3 since the WDVV equation is empty in this case.
Imposing also permutation invariance, a natural choice for three homogeneous quadratic sym-
metric functions of (xi) = (x, y, z) is

u1 = (x+ y + z)2,

u2 = (x− y)2 + (y − z)2 + (z − x)2,

u3 = [(2x− y − z)(2y − z − x)(2z − x− y)]2/3h(s), (16)

where h is an (almost) arbitrary function of the ratio

s =
[(2x− y − z)(2y − z − x)(2z − x− y)]2

[(x− y)2 + (y − z)2 + (z − x)2]3
.

Not surprisingly, (16) fulfils the integrability condition (10), so we are guaranteed to produce
solutions. It is straightforward to compute the Jacobians uAi and wA,i and proceed to the
prepotentials. Writing (gA) = (g1, g2, g3), the bosonic potential comes out as

V cl
B =

g2
1/24

(x+ y + z)2
+

1

324

[
(1− 2s)g2

2 + 2s
(hg2 − g3/ 3

√
s)2

(h+ 3sh′)2

]
×
(

1

(x− y)2
+

1

(y − z)2
+

1

(z − x)2

)
=

g2
1/24

(x+ y + z)2
+
g2

2 − 4s
2
3
−δg2g3 + 2s

1
3
−2δg2

3

324(1 + 3δ)2

(
1

(x− y)2
+

1

(y − z)2
+

1

(z − x)2

)
+

δ(2 + 3δ)

8(1 + 3δ)2

g2
2

(x− y)2 + (y − z)2 + (z − x)2
,
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where in the second equality we specialized to

h(s) = sδ ←→ u3 =
[(2x− y − z)(2y − z − x)(2z − x− y)]2/3+2δ

[(x− y)2 + (y − z)2 + (z − x)2]3δ
.

Putting g3 = 0 for simplicity, the corresponding prepotentials are

U = −g1

6
ln(x+ y + z)− g2

18(1 + 3δ)
ln(x− y)(y − z)(z − x)

− δg2

4(1 + 3δ)
ln
[
(x− y)2 + (y − z)2 + (z − x)2

]
,

F = −1
6(x+ y + z)2 ln(x+ y + z)− 1

4

[
(x− y)2 ln(x− y) + (y − z)2 ln(y − z)

+ (z − x)2 ln(z − x)
]

+ 1−6δ
36

[
(2x− y − z)2 ln(2x− y − z)

+ (2y − z − x)2 ln(2y − z − x) + (2z − x− y)2 ln(2z − x− y)
]

+ δ
4

[
(x− y)2 + (y − z)2 + (z − x)2] ln[(x− y)2 + (y − z)2 + (z − x)2

]
.

We recognize the roots of G2 plus a radial term in the coordinate differences. The potential
simplifies in two special cases:

δ = 0 ⇔ h = 1 : V cl
B (g1 = g3 = 0) is pure Calogero,

δ = 1
6 ⇔ h = s1/6 : V cl

B (g1 = g2 = 0) is pure Calogero.

In the full quantum potential, VB = V cl
B + ~2

8 F
′′′F ′′′, the couplings gA receive quantum correc-

tions.
Stepping up to four particles, i.e. n + 1 = 4, it becomes much more difficult to construct

solutions, since the integrability condition is no longer trivial. Our attempts to take a known
WDVV solution and exploit the linear equations (11) for uAi have met with success only spo-
radically. In most cases, the hypergeometric function 2F1 turns up in the expressions. A simple
permutation-symmetric example uses the A3 solution with a radial term,

F = −1
8

(∑
i

xi
)2

ln
∑
i

xi+ 1
8

∑
i<j

(xi − xj)2 ln(xi − xj)− 1
8

(∑
i<j

(xi − xj)2

)
ln
∑
i<j

(xi − xj)2,

for which we discovered [9]

u1 = (x+ y + z + w)2,

u2 = (x− y)2 + (x− z)2 + (x− w)2 + (y − z)2 + (y − w)2 + (z − w)2,

u3 = u2I

(
x+ y − z − w

pq

)
and u4 = u2I

(
p

q

)
,

with

p2 = (x− y + z − w) + 2
√

(w − x)(y − z), q2 = (x− y − z + w) + 2
√

(w − y)(x− z)

and I(x) =

∫ x

0

dt√
1− t4

.

The Jacobians and the bosonic potential are algebraic but not of Calogero type. It remains
a challenge to find (u2, u3, u4) for the A3 WDVV solution without radial term,

F = −1
8

(∑
i

xi
)2

ln
∑
i

xi − 1
8

∑
i<j

(xi − xj)2 ln(xi − xj).



10 O. Lechtenfeld, K. Schwerdtfeger and J. Thürigen

8 Covector ansatz for prepotential F

For the rest of the presentation, we concentrate on the WDVV equation in Rn,

(∂i∂k∂pF )(∂p∂l∂jF )− (∂i∂l∂pF )(∂p∂k∂jF ) = 0 with (xi∂i − 2)F = −1
2x

ixi,

since, together with U≡0, its solutions already produce genuine N=4 superconformal mechanics
models. Leaving aside a possible radial term

Frad = −r2 ln r with r2 :=
∑
i

(xi)2, (17)

we employ the standard ‘rank-one’ or ‘covector’ ansatz [2]

F = −1
2

∑
α

(α · x)2 lnα · x

containing a set {α} of covectors

α = (α1, α2, . . . , αn) ∈ (Rn)∗ or ∈ i(Rn)∗ −→ α(x) = α · x = αix
i,

subject to the normalization∑
α

αiαj = δij ←→
∑
α

α⊗ α = 1 (18)

which takes care of the inhomogeneity in (17). The WDVV equation turns into an algebraic
condition on the set of covectors [14, 15, 6],

∑
α,β

α · β
α · xβ · x

(αiβj − αjβi)(αkβl − αlβk) = 0 with α · β = δijαiβj . (19)

Apart from the normalization (18), the covectors are projective, so we may think of them as a
bunch of rays. Let us denote their number (the cardinality of {α}) by p. We may assume that
no two covectors are collinear. Since an orthogonal pair of covectors does not contribute to the
double sum, two mutually orthogonal subsets of covectors decouple in (19), and it suffices to
consider indecomposable covector sets. In n = 2 dimensions, (18) implies (19), but already for
the lowest nontrivial dimension n = 3 only partial results are known [2, 17, 4, 5, 18, 19, 6].

9 Partial isometry formulation of WDVV

Let us gain a geometric understanding of (19). Each of the 1
2p(p− 1) pairs (α, β) in the double

sum spans some plane π ∼ α∧β ∈ Λ2((Rn)∗), but not all of these planes need be different.
When we group the pairs according to these planes5, the tensor structure (α∧ β)⊗2 of (19) tells
us that this equation must hold separately for the subset of coplanar covectors pertaining to
each plane π,

∑
α,β∈π

α · β |α ∧ β|2

α · xβ · x
= 0 ∀π. (20)

5A given covector may occur in different pairs, thus in different groups. Covectors are not grouped, only their
pairs.
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Depending on the number q of covectors contained in a given plane π, one of three cases oc-
curs [15, 19]:

case (a) π contains zero or one covector −→ equation trivial,

case (b) π contains two covectors, π ∼ α ∧ β −→ orthogonality α · β = 0,

case (c) π contains q > 2 covectors −→ projector condition on π :∑
α∈π

α⊗ α = λπ1π =: λπPπ for λπ ∈ R and P 2
π = Pπ with rank(Pπ) = 2. (21)

The latter is the proper covector normalization for the planar subsystem, which implies the
(trivial) WDVV equation on π to hold. Establishing the projector condition (21) simultaneously
for all planes is a nontrivial problem, since covectors usually lie in more than one plane, which
imposes conditions linking the planes.

For a more quantitative formulation, we express (21) in terms of partial isometries. After
introducing a counting index a = 1, . . . , p for the covectors {α} = {α1, . . . , αp}, we collect their
components in an n× p matrix A. This defines a map

A : Rp → Rn given by A =
(
αia
)i=1,...,n

a=1,...,p
with AA> = 1n,

encoding the total normalization (18). For each nontrivial plane π, we select all αas ∈ π,
s = 1, . . . , q, via

Bπ : Rp → Rq by {αa} 7→ {αas}

and write the combination

Aπ : Rq → Rn by Aπ := AB>π =
(
αias

)i=1,...,n

s=1,...,q
.

Our projector condition then reads

AπA
>
π = λπPπ ←→ A>πAπ = λπQπ (22)

with projectors Pπ on Rn and Qπ on Rq of rank two and multipliers λπ, for any nontrivial

plane π. Therefore, A is a WDVV solution iff Aπ√
λπ

is a rank-2 partial isometry (22) for each

nontrivial plane π! An alternative version of (22) is

AπA
>
πAπ = λπAπ .

Note that A 6= AπBπ . Since the projectors are of rank 2, we may split Aπ over R2:

∃ Dπ : Rq → R2 and Cπ : R2 ← Rn such that Aπ = C>π Dπ .

The situation can be visualized in the following noncommutative diagram:

?>=<89:;Rp
Bπ

wwpppppppppppppp
A

#+NNNNNNNNNNNNN

NNNNNNNNNNNNN

Qπ FF
?>=<89:;Rq

Dπ
&&NNNNNNNNNNNNNN Aπ +3 ?>=<89:;Rn

Cπ
wwpppppppppppppp PπXX

?>=<89:;R2
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We illustrate the partial isometry formulation with the simplest nontrivial example, which
occurs at n = 3 and p = 6, by providing a one-parameter family of covectors {α, β, γ, α′, β′, γ′}(t)
via

A =
1

6


α β γ α′ β′ γ′

6t −3t −3t 0 3w −3w

0 3
√

3t −3
√

3t −2
√

3w
√

3w
√

3w

0 0 0 2
√

3 2
√

3 2
√

3

 with w =
√

2− 3t2. (23)

It is easily checked that AA> = 1. A quick analysis of linear dependence reveals that 12 of the
15 covector pairs are grouped into 4 planes of 3 pairs each, leaving 3 pairs ungrouped. 3 coplanar
pairs imply 3 coplanar covectors, hence there are 4 nontrivial planes containing q = 3 covectors,
namely

〈αβ γ〉, 〈αβ′γ′〉, 〈α′β γ′〉, 〈α′β′γ〉,

and 3 planes containing just two covectors, which are indeed orthogonal,

α · α′ = β · β′ = γ · γ′ = 0.

Let us test the projector condition (22) for two of the planes:

A〈αβ γ〉 =
1

2

2t −t −t
0
√

3 t −
√

3 t
0 0 0

 ⇒ AπA
>
π = 3

2 t
2 ·

1 0 0
0 1 0
0 0 0

 = 3
2 t

2 · Pπ,

A〈αβ′γ′〉 =
1

6

6t 3w −3w

0
√

3w
√

3w

0 2
√

3 2
√

3

 ⇒ AπA
>
π =

1− 1
2 t

2

6− 3t2

6−3t2 0 0
0 2−3t2 2w
0 2w 4

 ,

where the matrices on the right are idempotent. Hence, in both cases, Aπ is proportional to
a partial isometry, with a (parameter-dependent) multiplier λπ. The other two nontrivial planes
work in the same way. We have proven that (23) produces a family of WDVV solutions. This
scheme naturally extends to include imaginary covectors as well.

10 Deformed root systems and polytopes

It is known for some time [14, 15] that the set Φ+ of positive roots of any simple Lie algebra (in
fact, of any Coxeter system) is a good choice for the covectors. So let us take

{α} = Φ† = Φ+
L ∪ Φ+

S with αL · αL = 2 and αS · αS = 1 or 2
3 .

where the subscripts ‘L’ and ‘S’ pertain to long and short roots, respectively. Having fixed the
root lengths, we must introduce scaling factors {fα} = {fL, fS} in

F = −1
2

(
fL

∑
α∈Φ+

L

+fS

∑
α∈Φ+

S

)
(α · x)2 ln |α · x|.

The normalization condition (18) has a one-parameter solution,

(
fL

∑
α∈Φ+

L

+fS

∑
α∈Φ+

S

)
α⊗ α = 1 −→


fL =

1

h∨
+ (h− h∨)t,

fS =
1

h∨
+ (h− rh∨)t,

with t ∈ R,
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where h and h∨ are the Coxeter and dual Coxeter numbers of the Lie algebra, respectively. The
roots define a family of over-complete partitions of unity. Amazingly, all simple Lie algebra
root systems obey (20), and they do so separately for the pairs of long roots, for the pairs of
short roots and for the mixed pairs, of any plane π. This leads to the freedom (t) to rescale
the short versus the long roots and provides a one-parameter family of solutions to the WDVV
equation [15, 16, 6]. (In the simply-laced case there is only one solution, of course.)

For illustration we give two examples. Let {ei} be an orthonormal basis in Rn+1. For

An ⊕A1 : {α} =

{
ei − ej ,

∑
i

ei

∣∣∣ 1 ≤ i < j ≤ n+ 1

}
we find

FAn⊕A1 = − 1/2

n+ 1

∑
i<j

(xi − xj)2 ln(xi − xj) − 1/2

n+ 1

(∑
i

xi
)2

ln

(∑
i

xi
)

with center-of-mass decoupling, while for the non-simply-laced case (n = 2, p = 6) without
center of mass

G2 : {α} =
{

1√
3
(ei − ej), 1√

3
(ei + ej − 2ek)

∣∣∣ (i, j, k) cyclic
}

one gets

FG2 = −1− 24t

24

(
x1 − x2

)2
ln
(
x1 − x2

)
− 1 + 8t

24

(
x1 + x2 − 2x3

)2
ln
(
2x1 − x2 − x3

)
+ cyclic.

A natural question is whether one can deform the Lie algebraic root systems by changing
the angles between covectors but keep (20) valid. So which deformations respect the WDVV
equation? Based on a few examples, we conjecture that the (suitably rescaled and translated)
covectors should form the edges of some polytope in Rn. Non-concurrent pairs of edges then
have no reason to be coplanar with other edges, thus better be orthogonal. Concurrent edge
pairs, on the other hand, always belong to some polytope face, hence automatically combine
with further coplanar edges to a nontrivial plane π. The hope is that the polytope’s incidence
relations take care of the WDVV equation, e.g. in the form of (22). For p ≥ 1

2n(n+ 1), there is
enough scaling freedom to finally arrange the normalization (18) with {fα}.

 β’

γ’

α ’

α

γ

 β

This expectation is actually bourne out in the case of the An root system,
which, with p = 1

2n(n+ 1), is in fact the minimal irreducible system in each
dimension n and uniquely fixes {fα}. Starting with an arbitrary bunch of
1
2n(n + 1) rays in Rn, we reduce the freedom in their directions by impos-
ing firstly the n-simplex incidence relations and secondly the orthogonality
conditions for skew edges. Let us do some counting of moduli (minus global

translations, rotations and scaling):

ray moduli incidences simplex moduli orthogonality final moduli

# 1
2n

2(n− 1) −1
2(n− 2)(n2 − 1) 1

2(n− 1)(n+ 2) −1
2(n− 2)(n+ 1) n

n = 2, 3, 4 2, 9, 24 0,−4,−15 2, 5, 9 0,−2,−5 2, 3, 4

We find that the moduli space M(An) of these so-called orthocentric n-simplices is just n-
dimensional. It can be shown [23] that indeed it fits perfectly to a family of WDVV solutions
found earlier [17, 18, 19], lending support to our polytope idea. We remark that the previous
example (23) represents a one-parameter subset in M(A3).

Let us make this observation more explicit in the case of n = 4. Using the recursive con-
struction of orthocentric n-simplices presented in [6] for n = 4 and computing the corresponding
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scaling factors is feasible but algebraically involved. Therefore, we just present a ‘nice’ one-
parameter subfamily of solutions, with t ∈ R+ and w2 = t2 − 1

4 ,

A =
1

2t


w
√

2 0 w
2

√
2 −w

2

√
2 −w

2

√
2 w

2

√
2 1

2

√
2 −1

2

√
2 0 0

0 −w
3

√
6 w

2

√
6 w

6

√
6 w

2

√
6 w

6

√
6 1

6

√
6 1

6

√
6 −1

3

√
6 0

0 2w
3

√
3 0 2w

3

√
3 0 2w

3

√
3 1

6

√
3 1

6

√
3 1

6

√
3 −1

2

√
3

0 0 0 0 0 0 t t t t

.

For t2 = 5
4 we have the root system of A4, at t2 = 1

4 the first six covectors disappear and
leave A4

1. When 0 < t2 < 1
4 , the first six covectors are imaginary, and in the singular limit t2→0

we obtain the A3 roots and fundamental weights, but can no longer maintain our normalization.
A more familiar parametrization embeds the A4 root system into R5, in the hyperplane

orthogonal to the center-of-mass covector
∑

i ei, with s ∈ R+ and u2 = 20s2 − 10s+ 1,

A =
1

(1− 4s)
√

5


u 0 u 0 u 0 1− s −s −s −s
−u 0 0 u 0 u − s 1− s −s −s
0 u −u 0 0 −u − s −s 1− s −s
0 −u 0 −u −u 0 − s −s −s 1− s
0 0 0 0 0 0 4s− 1 4s− 1 4s− 1 4s− 1

 .

Now s = 0 yields the roots of A4, beyond s = 1
4(1− 1√

5
) the first six covectors turn imaginary,

and the singular limit s → 1
4 (u → i

2) gives the A3 roots and fundamental weights, orthogonal
also to

∑
i ei − 5e5. This pattern generalizes to an interpolation between the An roots and the

An−1 roots and fundamental weights.
What about deformations of other root or weight systems? We give two

more prominent examples in n = 3 dimensions. First, consider the p = 9
positive roots of B3 and observe that, from four copies of them, we can
assemble the edges of a truncated cube. It is possible to deform the latter
into a truncated cuboid while keeping the orthogonalities and producing
a six-parameter family of covectors,{

α · x
}

=
{
d1x

1, d2x
2, d3x

3; c3(c2x
1±c1x

2), c1(c3x
2±c2x

3), c2(c1x
3±c3x

1)
}
, ci, di ∈ R.

The normalization
∑

α fαα⊗α = 1 can be achieved with

{
fα
}

=

{
c2

0 + c2
1 − c2

2 − c2
3

c2 d2
1

,
c2

0 − c2
1 + c2

2 − c2
3

c2 d2
1

,
c2

0 − c2
1 − c2

2 + c2
3

c2 d2
1

;
1

c2 c2
3

,
1

c2 c2
1

,
1

c2 c2
2

}
,

c2 = c2
0 + c2

1 + c2
2 + c2

3.

One sees that the relevant combinations
√
fαα depend only the three ratios ci

c0
. It turns out

that we have constructed a three-dimensional moduli space of WDVV solutions [17, 18, 19].
Second, again using A3, it is possible to combine four copies of its three

positive vector weights with six copies of its four positive spinor weights
to the edge set of a rhombic dodecahedron, with each rhombic face being
dissected into two triangles. There exists a three-parameter family of defor-
mations in line with the orthogonalities, given by

α · x = d1x
1, β · x = d2x

2, γ · x = d3x
3;

α+ β + γ

2
,

α− β − γ
2

,
−α+ β − γ

2
,

−α− β + γ

2
,
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and re-normalization is achieved by

fα =
−d2

1 + d2
2 + d2

3

d2d2
1

, fβ =
d2

1 − d2
2 + d2

3

d2d2
2

, fγ =
d2

1 + d2
2 − d2

3

d2d2
3

;

fspinor =
2

d2
, d2 = d2

1 + d2
2 + d2

3.

In this case, the combinations
√
fαα depend only on the ratios di

dj
, and we again discover a two-

dimensional family of WDVV solutions [18, 19]. It seems that indeed the polytope’s incidence
relations imply the WDVV equation, thus allowing us to construct solutions F purely geomet-
rically, by guessing appropriate polytopes with certain edge multiplicities.

11 Hypergraphs

Sadly, our ortho-polytope concept fails, as may be seen from the first counterexample at (n, p) =
(3, 10):

A =
1

4
√

3


1 2 3 4 5 6 7 8 9 10

2
√

3 2
√

3 2
√

2 0
√

2 −
√

2
√

6 −
√

6 0 0

2
√

2 −2
√

2 0 4
√

3
√

3 −1 −1 −
√

6
√

2

0 0 0 0
√

3
√

3 3 3
√

6 3
√

2

 (24)

2

2
2

1
1

1

7

10

10

4

4

4

9

5

5

7 8

6

3

is properly normalized, AA> = 13, and may be checked
to fulfil the partial-isometry conditions (22) for each non-
trivial plane. It turns out, however, that there exists no
polyhedron whose edges are built from (suitably rescaled
copies of) all ten column vectors in (24). In the attempt
shown to the left, one of the would-be edges (labelled ‘9’)
runs inside the convex hull created by the others.

This lesson demonstrates that it may be better to restrict ourselves to the essential feature
of A, which is the coplanarity property of its columns α. Even though there is not always an
ortho-polytope, we may still hope that each n× p matrix A with

AA> = 1n and q(αa∧αb) = 2 ⇒ αa · αb = 0 ∀ a, b = 1, . . . , p

already obeys the crucial conditions (22) for all q > 2 planes.

1

6

7

3 4

5 810

2

9

Suppose we have m nontrivial planes and label them by µ =
1, . . . ,m. The qµ > 2 covectors in the plane πµ are grouped in the
subset {αaµs } ⊂ {αa}, with s = 1, . . . , qµ. A shorter way of encoding
this coplanarity information is by using only the labels rather than
denoting the covectors. Thus, we combine the aµs for each nontrivial
plane πµ in the subset {aµs |s = 1, . . . , qµ} =: Πµ ⊂ {1, . . . , p}, and then
write down the collection H(A) := {Π1,Π2, . . . ,Πm} ⊂ P({1, . . . , p})
of these (overlapping) subsets. Such subset collections are known as
simple hypergraphs [30]. They are graphically represented by writing

a vertex for each covector label and then, for each µ, by connecting all vertices whose labels
occur in Πµ. The resulting graph has p vertices and m connections Πµ, called hyperedges.
Note that a vertex represents a covector, and a hyperedge stands for a (nontrivial) plane,
thus gaining us one dimension in drawing6. As an example, the hypergraph for (24) reads

6Our simple hypergraphs contain only qµ-vertex hyperedges with qµ > 2, hence no one- or two-vertex hyper-
edges.
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{{1234}{1580}{2670}{179}{289}{356}{378}{457}{468}{490}} and is represented above (with
‘0’=‘10’). To the mathematically inclined reader, we note that our simple hypergraphs are not
of the most general kind: they are also

• linear : the intersection of two hyperedges has at most one vertex (uniqueness of planes)

• irreducible: the hypergraph is connected (the covector set does not decompose)

• complete: when adding the qµ = 2 planes, each vertex pair is contained in a hyperedge

• orthogonal : a nonconnected vertex pair is ‘orthogonal’ (property of the qµ = 2 planes)

Of course, two hypergraphs related by a permutation of labels are equivalent. Thus, our pro-
gram is to construct, for a given value of p, all orthogonal complete irreducible linear simple
hypergraphs and check the partial-isometry conditions (22) for each plane π. Unfortunately,
this is not so easy, because the orthogonality is not a natural hypergraph property but depends
on the dimension n of a possible covector realization. In fact, it is not guaranteed that such
a realization exists at all. Therefore, the classification of complete irreducible linear simple hy-
pergraphs with p vertices has to be amended by the construction of the corresponding covector
sets in Rn, subject to the orthogonality condition.

12 Matroids

Luckily, there is another mathematical concept which abstractly captures the linear dependence
in a subset of a power set, namely the notion of a matroid [31, 32, 33]. There exist several
equivalent definitions of a matroid, for example as the collection {Cµ} of all circuits Cµ ⊂
{1, . . . , p}, which are the minimal dependent subsets of our ground set {1, . . . , p}:

• The empty set is not a circuit.

• No circuit is contained in another circuit.

• If C1 6= C2 share an element e, then (C1 ∪ C2)\{e} is or contains another circuit.

Of course, we identify matroids related by permutations of the ground set.
The idea is that each circuit corresponds to a subset of linearly dependent covectors. Indeed,

every n× p matrix A produces a matroid. However, the converse is false: not every matroid is
representable in some Rn. If so, it is called an R-vector matroid, with rank r ≤ n. The rank
rµ = |Cµ| − 1 of an individual circuit Cµ is the dimension of the vector space spanned by its
covectors. Excluding one- and two-element circuits qualifies our matroids as simple. It may
happen that two rank-d circuits span the same vector space, for example if they agree in d of
their elements. Hence, it is useful to unite all rank-d circuits spanning the same d-dimensional
subspace in a so-called d-flat Fd, with 2 ≤ d < r. We call such a d-flat minimal if it arises
from a single circuit, i.e. |Fd| = d + 1. In this way, we may label the matroid more efficiently
by listing all 2-flats, 3-flats etc., all the way up to r− 1. Needless to say, we are only interested
in connected matroids, i.e. those which do not decompose as a direct sum. Also, for a given
dimension n we study only R-vector matroids of rank r = n and ignore those of smaller rank,
since they can already be represented in a smaller vector space. Finally, we need to implement
the orthogonality property. So let us call a matroid orthogonal , if any pair of covectors which
does not share a 2-flat is orthogonal. Note that further orthogonalities (inside 2-flats) may be
enforced by the representation.

A matroid of rank r can be represented geometrically in Rr−1 as follows. Mark a node for
every element of the ground set (the covectors). Then, connect by a line all covectors in one
2-flat, for all 2-flats. Next, draw a two-surface containing all covectors in one 3-flat, for all
3-flats, and so on. We illustrate this method on two examples, the A4 and the B3 matroid:
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1

1

2

2
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3

The A4 case has r = 4, and it is natural to label the ten covectors by pairs (ij), with
1 ≤ i < j ≤ 5. Then,

{Cµ} = {{(ij)(ik)(jk)}, {(ij)(ik)(j`)(k`)}, {(ij)(i`)(jk)(k`)}, {(ik)(i`)(jk)(j`)},
{(1i)

(
i
j

)(
j
k

)(
k
`

)
(1`)}} with

(
i
j

)
= (ij) or (j i)

lists ten circuits of rank 2, fifteen circuits of rank 3 and twelve circuits of rank 4. The former
represent ten 2-flats, the middle unite in triples to five 3-flats and the latter combine to the
trivial 4-flat,

{F2} = {{(ij)(ik)(jk)}},
{F3} = {{(ij)(ik)(i`)(jk)(j`)(k`)}},
{F4} = {{(12)(13)(14)(15)(23)(24)(25)(34)(35)(45)}}.

Orthogonality is required between pairs with fully distinct labels. The B3 example is of rank
three but less symmetric. We label the three short roots by i and the six long ones by î and ǐ,
with i = 1, 2, 3, and obtain sixteen rank-2 circuits grouping into seven 2-flats and thirty-nine
rank-3 circuits combining into the unique 3-flat (i 6= j 6= k 6= i),

{Cµ} = {{ijk̂}, {ijǩ}, {iĵǰ}, {̂iĵk̂}, {̂iǰǩ},
{ij îĵ}, {ij ǐǰ}, {ij îǰ}, {i î ǐĵ}, {i î ǐǰ}, {i îĵǩ}, {i ǐĵk̂}, {i ǐǰǩ}, {̂i ǐĵǰ}},

{F2} = {{1, 2, 3̂, 3̌}, {1, 3, 2̂, 2̌}, {2, 3, 1̂, 1̌}, {1̂, 2̂, 3̂}, {1̂, 2̌, 3̌}, {1̌, 2̂, 3̌}, {1̌, 2̌, 3̂}},
{F3} = {{1, 2, 3, 1̂, 2̂, 3̂, 1̌, 2̌, 3̌}}.

Here, we see that i ⊥ î and i ⊥ ǐ, but the realization in R3 actually enforces i ⊥ j as well.
The task then is to classify all connected simple orthogonal R-vector matroids for given

data (n, p). There are tables in the literature which, however, do not select for orthogonality.
Another disadvantage is the fact that matroids capture linear dependencies of covector subsets
at any rank up to r, while the WDVV equation sees only coplanarities. Therefore, it is enough
to write down only the 2-flats, which brings us back to the complete irreducible linear simple
hypergraphs again. Still, the advantage of matroids over hypergraphs is that they provide
a natural setting for the orthogonality property and the partial-isometry condition (22). Once
we have constructed a parametric representation of an R-vector matroid as a family of n ×
p matrices A, we may implement the orthogonalities and directly test (22) for all nontrivial
planes π. A good matroid is one which passes the test and thus yields a (family of) solution(s)
to the WDVV equation.

Another bonus is the possibility to reduce a good matroid to a smaller good one by graphical
methods. The two fundamental operations on a matroid M are the deletion and the contraction
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of an element a ∈ {1, . . . , p} (corresponding to a covector). In the geometrical representation
these look as follows

• deletion of a, denoted M\{a}: remove the node a and all minimal d-flats it is part of

• contraction of a, denoted M/{a}: remove the node a and identify all nodes on a line
with a, then remove the loops and identify the multiple lines created

Both operations reduce p by one. Deletion keeps the rank while contraction lowers it by one.
On the matrix A, the former means removing the column a (corresponding to the covector αa)
while the latter in addition projects orthogonal to αa. Connectedness has to be rechecked after
deletion, but simplicity and the R-vector property are hereditary for both actions! Furthermore,
contraction preserves the orthogonality, but deletion may produce a non-orthogonal matroid.
Since the contraction of a good matroid corresponds precisely to the restriction of ∨-systems
introduced by [18, 19], we are confident that it generates another good matroid. A similar state-
ment holds for the multiple deletion which produces a ∨-subsystem in the language of [18, 19].

The first nontrivial dimension is n = r = 3, where simple matroids (determined by {F2})
are identical with complete linear simple hypergraphs (given by {Hµ}). Their number grows
rapidly with the cardinality p:

number p of covectors 2 3 4 5 6 7 8 9 10 11 12

how many simple matroids? 0 1 2 4 9 23 68 383 5249 232928 28872972

of the above are connected 0 0 0 1 3 12 41 307 4844 227612 28639649

of the above are R-vector 0 0 0 1 3 11 38 ? ? ? ?

of the above are orthogonal 0 0 0 0 1 1 1 1 3 ? ?

Below, we list all good (X) and a few bad ( ) cases up to p = 10, with graphical/geometric
representation and the name of the corresponding root system. Parameters s, t, u indicate con-
tinuous moduli.

{{123}, {145}} A3\{6} R-vector but not orthogonal  

{{123}, {1456}} B3\{4, 5, 9} R-vector but not orthogonal  

{{123}, {145}, {356}} D(2, 1;α)\{7} R-vector but not orthogonal  

{{123}, {145}, {356}, {246}} = A3(s, t, u) X

{{123}, {145}, {356}, {347}, {257}, {167}} 6⊕ 4 of A3 = D(2, 1;α)(s, t) X

{{123}, {145}, {356}, {347}, {257}, {167}, {246}} Fano matroid – not R-vector  

{{123}, {145}, {356}, {347}, {257}, {248}, {1678}} B3\{9}(s, t) X

{{123}, {145}, {347}, {257}, {2489}, {1678}, {3569}} B3(s, t, u) X

{{150}{167}{259}{268}{456}{479}{480}{1234}{3578}{3690}} ⊂ AB(1, 3)(t) X

{{179}{289}{356}{378}{457}{468}{490}{1234}{1580}{2670}} ⊂ AB(1, 3)(t) X

The last two lines (with p = 10) arise from restrictions of a one-parameter deformation of the
p = 18 exceptional Lie superalgebra AB(1, 3) root system [18]. More precisely, the first of these
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two cases is rigid and can also be obtained from the E6 roots, while the second case retains the
deformation parameter.

We have developed a Mathematica program which automatically generates all hypergraphs
subject to the simplicity, linearity, completeness and irreducibility properties up to a given p.
Furthermore, hypergraphs that admit no orthogonal covector realization are ruled out, thereby
drastically reducing their number. For a generated hypergraph we then gradually build a pa-
rametrization of the most general admissible set of covectors whereby it turns out whether
the hypergraph is representable. A major step forward would be to completely automate this
process also; we are confident that this is feasible. Finally, on the surviving families A(s, t, . . .)
of covector sets, the program tests the partial-isometry property (22) equivalent to the WDVV
equation, for all nontrivial planes π.

A natural conjecture is that our class of hypergraphs or ma-
troids always produces WDVV solutions, rendering this final test
obsolete. However, running the program for a while reveals a coun-
terexample at (n, p) = (3, 10), given by the hypergraph to the right.
In this diagram, the hollow nodes indicate additional orthogonality
inside a plane spanned by four covectors. We must conclude that
a geometric construction of WDVV solutions is still missing.

Although the connected simple orthogonal R-vector matroids are not classified and the
WDVV property does not automatically follow from such a matroid, this approach is still useful
in exhausting all covector solutions for a small number of covectors at low dimension, i.e. for
a limited number of particles. In this way one of us has, in fact, proven [34, 35] that there are
no other four-particle solutions (n = 3) with p ≤ 10 beyond those determined in [18, 19]. The
matroid itself does not capture the moduli space of solutions with a given linear dependence
structure, but its systematic realization by an iterative algorithm will do so (as it did for n = 3).
Around a given solution, the local moduli space may be probed by investigating the zero modes
of the WDVV equation linearized around it.

13 Summary

We begin by listing the main points of this article:

• N=4 superconformal n-particle mechanics in d = 1 is governed by U and F

• U and F are subject to inhomogeneity, Killing-type and WDVV conditions

• a geometric interpretation via flat superpotentials gave new variants of the integrability

• there is a structural similarity to flat and exact Yang–Mills connections

• the general 3-particle system is constructed, with three couplings and one free function

• higher-particle systems exist, tedious to construct; hypergeometric functions appear

• the covector ansatz for F leads to partial isometry conditions with multipliers λπ

• finite Coxeter root systems and certain deformations thereof yield WDVV solutions

• certain solution families admit an ortho-polytope interpretation

• hypergraphs and matroids are suitable concepts for a classification of WDVV solutions

• the generation of candidates can be computer programmed

• not all connected simple orthogonal R-vector matroids are ‘good’

There remain a lot of open questions. First, can our hypergraph/matroid construction pro-
gram detect new WDVV solutions not already in the list of [18, 19]? Second, given a ‘good’
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matroid, can we generate its moduli space, e.g. by linearizing the WDVV equation around it?
Third, the explicit Hamiltonian of the N=4 four-particle Calogero system is still unknown.
Fourth, can one construct u as a path-ordered exponential of df in a practical way? Fifth,
what happens if we allow for twisted superfields in the superspace approach? We hope to come
back to some of these issues in the future.
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