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Abstract. The orthogonality relations of multivariate Krawtchouk polynomials are dis-
cussed. In case of two variables, the necessary and sufficient conditions of orthogonality is
given by Grünbaum and Rahman in [SIGMA 6 (2010), 090, 12 pages]. In this study, a simple
proof of the necessary and sufficient condition of orthogonality is given for a general case.
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1 Introduction

Consider

X(n,N) = {x = (x0, x1, . . . , xn−1) ∈ Nn0 | |x| = N},

where N0 is the set of nonnegative integers and |x| = x0 + x1 + · · · + xn−1. We recall the
multinomial coefficient(

N

x

)
=

(
N

x0, . . . , xn−1

)
= (−1)x1+···+xn−1

(−N)x1+···+xn−1

x1! · · ·xn−1!

for x ∈ X(n,N). Let Mn(R) be the set of all n× n matrices over a set R. We fix x ∈ X(n,N)
and A = (aij)1≤i,j≤n−1 ∈Mn−1(C). We define the functions φA(x;m) ofm = (m0, . . . ,mn−1) ∈
X(n,N) by the following generating function

ΦN (A;x) =
n−1∏
i=0

n−1∑
j=0

aijtj

xi

=
∑

m∈X(n,N)

(
N

m

)
φA(x;m)tm, (1)

where tm = tm0
0 tm1

1 · · · t
mn−1

n−1 and a0j = ai0 = 1 for 0 ≤ i, j ≤ n− 1. We know a hypergeometric
expression of φA(x;m)

φA(x;m) =
∑

∑
i,j cij≤N

(cij)∈Mn−1(N0)

n−1∏
i=1

(−xi)n−1∑
j=1

cij

n−1∏
j=1

(−mj)n−1∑
i=1

cij

(−N)∑
i,j cij

∏
(1− aij)cij∏

cij !
, (2)

where Mn−1(N0) is the set of square matrices of degree n−1 with nonnegative integer elements.
We prove the formula (2) in the last section of this paper.
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This type of hypergeometric functions was originally defined by Aomoto and Gel’fand for
general parameters. We are interested in the aspects of discrete orthogonal polynomials of these
functions with weights

bn(x;N ;η(i)) =

(
N

x

) n−1∏
j=0

η
xj
ji

for η(i) = (η0i, . . . , ηn−1i) ∈ C∗n (i = 1, 2), where C∗ = C\{0}. For a special case, when
n = 2, they are well known and called the Krawtchouk polynomials. For general values of n,
the author shows that such orthogonal polynomials appear as the zonal spherical functions of
Gel’fand pairs of complex reflection groups [3]. In general, the author and H. Tanaka give the
orthogonality relation of φA(x;m)s by using the character algebras [4]. R.C. Griffiths shows
that the polynomials defined by the generating function (1) are mutually orthogonal [1]. In their
paper [2], Grünbaum and Rahman discuss and determine the necessary and sufficient conditions
of the orthogonality of φA(x;m)s for A ∈ M2(C), which are proved by analytic methods. In
these four literature, the authors consider the case that weights bn(x;N ;η(i)) are positive.

In this study, we give a linear algebraic proof of the Grünbaum and Rahman’s condition
for general values of n and for arbitrary weights including the complex case. Our proof of the
sufficient condition is close to [1] and [4].

For A ∈ Mn−1(C), we define a matrix A0 = (aij)0≤i,j≤n−1 ∈ Mn(C) by substituting a0j =
ai0 = 1 (0 ≤ ∀ i, j ≤ n− 1). Our main result is as follows:

Theorem 1. The following are equivalent.

(a) The orthogonality relation∑
x∈X(n,N)

bn(x;N ;η(1))φA(x;m)φA(x;m′) = δm,m′
ηm(2)(
N
m

)
holds for ∀m,m′ ∈ X(n,N).

(b) A relation

A∗0D1A0 = ζD2 (3)

holds for some N th root of unity ζ. Here A∗0 is the conjugate transpose of A0 and Di =
diag(η0i, η1i, . . . , ηn−1i) ∈ GLn(C) is a diagonal matrix (i = 1, 2).

Remark 1. We assume that the diagonal elements of D1 and D2 appearing in the above-
mentioned theorem are real. Thus, one can recover the formula (1.18) of Grünbaum and Rah-

man’s paper [2] by substituting n = 3 and A =

[
1− u1 1− u2
1− v1 1− v2

]
∈M2(C). In this case, since

the diagonal elements of A∗0D1A0 and D2 are positive, ζ = 1.

Remark 2 ([4]). We assume that a pair of finite groups (G,H) is a Gel’fand pair and A0 is
the table of the zonal spherical functions of (G,H). Let D0, . . . , Dn−1 be the double cosets
of H in G, and d0, . . . , dn be the dimensions of the irreducible components of 1GH . Put D1 =
diag(|D0|, . . . , |Dn−1|) and D2 = diag(|G|/d0, . . . , |G|/dn−1). Then (3) holds from the orthogo-
nality relation of the zonal spherical functions. Furthermore φA(x;m)’s are realized as the zonal
spherical functions of a Gel’fand pair (G o SN , H o SN ). Therefore they satisfy the orthogonality
relation (a) in the theorem. In general, A0 is an eigenmatrix of a character algebra is considered
in [4].

This paper organized as follows. First, we prove the main theorem in the next section.
Second, we prove (2) in the last section. It seems to be the first explicit proof of this fact.
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2 Proof of Theorem 1

Let ei = (δ0i, δ1i, . . . , δni) be an ith unit vector (0 ≤ i ≤ n − 1). We put s = (s0, s1, . . . , sn−1)
and t = (t0, t1, . . . , tn−1). We compute

n−1∏
i=0

(
sieiA0

tt
)xi =

n−1∏
i=0

n−1∑
j=0

aijtj

xi
n−1∏
i=0

sxii = ΦN (A,x)
n−1∏
i=0

sxii . (4)

By multiplying (4) with multinomial coefficient, we have

∑
x∈X(n,N)

(
N

x

) n−1∏
i=0

(
sieiA0

tt
)xi =

(
n−1∑
i=0

sieiA0
tt

)N
=
(
sA0

tt
)N
. (5)

First, we assume (3), and then change the variables, say

s = uA∗0D1,

where u = (u0, u1, . . . , un−1). This change of variables is same as si = ηi1eiA0
tu. We substi-

tute s for (5). Then, the right side of (5) gives

(
sA tt

)N
=
(
uζD2

tt
)N

=
(
uD2

tt
)N

=
∑

m∈X(n,N)

(
N

m

) n∏
i=0

(ηi2uiti)
mi . (6)

Under this substitution, we consider the left side of (5) and have

∑
x∈X(n,N)

(
N

x

) n−1∏
i=0

(
sieiA0

tt
)xi =

∑
x∈X(n,N)

(
N

x

) n−1∏
i=0

sxii

n−1∏
i=0

(
eiA0

tt
)xi

=
∑

x∈X(n,N)

(
N

x

) n−1∏
i=0

(
ηi1eiA0

tu
)xi n−1∏

i=0

(
eiA0

tt
)xi

=
∑

x∈X(n,N)

(
N

x

) n−1∏
i=0

ηi1
xi

n−1∏
i=0

(
eiA0

tu
)xi n−1∏

i=0

(
eiA0

tt
)xi .

We expand the last two products of the above-mentioned formula in terms of umtm
′
’s;

n−1∏
i=0

(
eiA0

tu
)xi n−1∏

i=0

(
eiA0

tt
)xi =

∑
m,m′∈X(n,N)

(
N

m

)(
N

m′

)
φA(x;m)φA(x;m′)umtm

′
.

Now, the left side of (5) gives

∑
m,m′∈X(n,N)

(
N

m

)(
N

m′

) ∑
x∈X(n,N)

n−1∏
i=0

ηxii1

(
N

x

)
φA(x;m)φA(x;m′)

umtm
′
. (7)

By comparing coefficients of uktk
′

of (6) with (7), we conclude that

∑
x∈X(n,N)

n−1∏
i=0

ηxii1

(
N

x

)
φA(x;m)φA(x;m′) =

n−1∏
i=0

ηmi
i2(

N
m

) δmm′ . (8)
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Conversely, we assume (8) and substitute it for (7). Then, we reverse the above-mentioned
computations and observe that (5) gives(

uD2
tt
)N

=
(
uA∗0D1A0

tt
)N
.

This means that uζ(u, t)D2
tt = uA∗0D1A0

tt holds for some Nth root of unity ζ(u, t). We have
A∗0D1A0 = diag(ζ(e0, e0)η02, . . . , ζ(en−1, en−1)ηn−12). We put eij(θ, ε) = cos θei + ε sin θej for
|ε| > 0. We define

ζε(θ) =
eij(θ, ε)A

∗
0D1A0

teij(θ, ε)

eij(θ, ε)D2
teij(θ, ε)

=
ζ(ei, ei) cos2 θηi2 + ζ(ej , ej)ε

2 sin2 θηj2

cos2 θηi2 + ε2 sin2 θηj2
.

Since ζε(
π
2 ) = ζ(εej , εej) does not depend on ε, we have ζ(εej , εej) = ζ(ej , ej). By taking ε as

Arg(
−ε2ηj2
ηi2

) 6= 0, we have that ζε(θ) is a continuous function from [0, π2 ] to the set of the Nth
root of unities. Therefore ζε(θ) is a constant function, especially ζε(0) = ζ(ei, ei) = ζε(

π
2 ) =

ζ(εej , εej) (0 ≤ i < j ≤ n− 1). Consequently we have

ζD2 = A∗0D1A0

for some Nth root of unity ζ.

3 Proof of (2)

Here we give a proof of the formula (2) through direct computations. We need the following
lemma.

Lemma 1. Put p = (p0, . . . , pn−1) ∈ Nn0 with |p| ≤ N . For m = (m0, . . . ,mn−1) ∈ X(n,N)
and z = (z0, . . . , zn−1) ∈ X(n,N − |p|) with m− z ∈ Nn0 , we have

(
N − |p|
z

)
=

(
N

m

)n−1∏
i=0

(−mi)mi−zi

(−N)|p|
.

Proof. We compute

(
N−|p|
z

)
=

(
N

m

)
(N − |p|)!

N !

n−1∏
i=0

(
mi

mi−zi, zi

)
(mi − zi)! =

(
N

m

)n−1∏
i=0

(−1)mi−zi(−mi)mi−zi(
N
|p|
)
|p|!

=

(
N

m

)(−1)|p|
n−1∏
i=0

(−1)mi−zi(−mi)mi−zi

(−N)|p|
=

(
N

m

)n−1∏
i=0

(−mi)mi−zi

(−N)|p|
. �

Now, we can prove the formula (2). We put bij = 1− aij and ci = (ci0, . . . , cin−1). We compute

ΦN (A;x) =

n−1∏
i=0

n−1∑
j=0

aijtj

xi

=

n−1∏
i=0


n−1∑
j=0

tj −
n−1∑
j=0

bijtj


xi

=
n−1∏
i=0


xi∑
pi=0

(−1)pi
(

xi
xi − pi, pi

)n−1∑
j=0

tj

xi−pin−1∑
j=0

bijtj

pi




Orthogonality Relations for Multivariate Krawtchouk Polynomials 5

=
∑

0≤pi≤xi
(0≤i≤n−1)

(−1)|p|

n−1∑
j=0

tj

N−|p|
n−1∏
i=0

(
xi

xi − pi, pi

)n−1∑
j=0

bijtj

pi

=
∑

0≤pi≤xi
(0≤i≤n−1)

(−1)|p|
∑
|ci|=pi,
|z|=N−|p|

(
N − |p|
z

)
tz

n−1∏
i=0

(
xi

xi − pi, pi

) n−1∏
i=0

(
pi
ci

) n−1∏
i,j=0

b
cij
ij t

cij
j

=
∑

0≤|p|≤N

(−1)|p|
∑
|ci|=pi,
|z|=N−|p|

(
N − |p|
z

)n−1∏
i=0

(−1)|ci|(−xi)|ci|
n−1∏
i,j=0

cij !

tz
n−1∏
i,j=0

b
cij
ij t

cij
j

=
∑

m∈X(n,N)

(
N

m

)
∑

∑
ij cij≤N

n−1∏
j=0

(−mj)n−1∑
i=0

cij

(−N)∑
ij cij

n−1∏
i=1

(−xi)|ci|
n−1∏
i,j=0

cij !

n−1∏
i,j=0

b
cij
ij

 tm.

In the last equation, we use |p| =
∑

ij cij , mi−zi =
n−1∑
i=0

cij ≥ 0 and Lemma 1. Since b0j = bi0 = 0

for any i and j, we have the formula.
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