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Abstract. In this paper we obtain necessary and sufficient conditions for a linear bounded
operator in a Hilbert space H to have a three-diagonal complex symmetric matrix with
non-zero elements on the first sub-diagonal in an orthonormal basis in H. It is shown that
a set of all such operators is a proper subset of a set of all complex symmetric operators
with a simple spectrum. Similar necessary and sufficient conditions are obtained for a linear
bounded operator in H to have a three-diagonal complex skew-symmetric matrix with non-
zero elements on the first sub-diagonal in an orthonormal basis in H.
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1 Introduction

In last years an increasing interest is devoted to the subject of operators related to bilinear forms
in a Hilbert space (see [1, 2, 3] and references therein), i.e. to the following forms:

[x, y]J := (x, Jy)H , x, y ∈ H,

where J is a conjugation and (·, ·)H is the inner product in a Hilbert space H. The conjugation J
is an antilinear operator in H such that J2x = x, x ∈ H, and

(Jx, Jy)H = (y, x)H , x, y ∈ H.

Recall that a linear operator A in H is said to be J-symmetric (J-skew-symmetric) if

[Ax, y]J = [x,Ay]J , x, y ∈ D(A), (1)

or, respectively,

[Ax, y]J = −[x,Ay]J , x, y ∈ D(A). (2)

If a linear bounded operator A in a Hilbert space H is J-symmetric (J-skew-symmetric) for
a conjugation J in H, then A is said to be complex symmetric (respectively complex skew-
symmetric). The matrices of complex symmetric (skew-symmetric) operators in certain bases
of H are complex symmetric (respectively skew-symmetric) semi-infinite matrices. Observe that
for a bounded linear operator A conditions (1) and (2) are equivalent to conditions

JAJ = A∗, (3)
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and

JAJ = −A∗,

respectively.
Recall that a bounded linear operator A in a Hilbert space H is said to have a simple spectrum

if there exists a vector x0 ∈ H (cyclic vector) such that

Lin{Akx0, k ∈ Z+} = H.

Observe that these operators are also called cyclic operators.
It is well known that a bounded self-adjoint operator with a simple spectrum has a bounded

semi-infinite real symmetric three-diagonal (Jacobi) matrix in a certain orthonormal basis
(e.g. [4, Theorem 4.2.3]).

The aim of our present investigation is to describe a class C+ = C+(H) (C− = C−(H)) of
linear bounded operators in a Hilbert space H, which have three-diagonal complex symmetric
(respectively skew-symmetric) matrices with non-zero elements on the first sub-diagonal in some
orthonormal bases of H. We obtain necessary and sufficient conditions for a linear bounded
operator in a Hilbert space H to belong to the class C+ (C−). The class C+ (C−) is a subset of
the class of all complex symmetric (respectively skew-symmetric) operators in H with a simple
spectrum. Moreover, it is shown that C+(H) is a proper subset.

Notations. As usual, we denote by R, C, N, Z, Z+ the sets of real numbers, complex
numbers, positive integers, integers and non-negative integers, respectively; Im z = 1

2i(z − z),
z ∈ C. Everywhere in this paper, all Hilbert spaces are assumed to be separable. By (·, ·)H
and ‖ · ‖H we denote the scalar product and the norm in a Hilbert space H, respectively. The
indices may be omitted in obvious cases. For a set M in H, by M we mean the closure of M in
the norm ‖ ·‖H . For {xn}n∈Z+ , xn ∈ H, we write Lin{xn}n∈Z+ for the set of linear combinations
of elements {xn}n∈Z+ . The identity operator in H is denoted by EH . For an arbitrary linear
operator A in H, the operators A∗, A, A−1 mean its adjoint operator, its closure and its inverse
(if they exist). By D(A) and R(A) we mean the domain and the range of the operator A. The
norm of a bounded operator A is denoted by ‖A‖. By PHH1

= PH1 we mean the operator of
orthogonal projection in H on a subspace H1 in H.

2 The classes C±(H)

LetM = (mk,l)
∞
k,l=0, mk,l ∈ C, be a semi-infinite complex matrix. We shall say thatM belongs

to the class M+
3 , if and only if the following conditions hold:

mk,l = 0, k, l ∈ Z+, |k − l| > 1, (4)

mk,l = ml,k, k, l ∈ Z+, (5)

mk,k+1 6= 0, k ∈ Z+. (6)

We shall say that M belongs to the class M−3 , if and only if the conditions (4), (6) hold and

mk,l = −ml,k, k, l ∈ Z+.

Let A be a linear bounded operator in an infinite-dimensional Hilbert space H. We say that A
belongs to the class C+ = C+(H) (C− = C−(H)) if and only if there exists an orthonormal
basis {ek}∞k=0 in H such that the matrix

M = ((Ael, ek))
∞
k,l=0, (7)

belongs to M+
3 (respectively to M−3 ).
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Let y0, y1, . . . , yn be arbitrary vectors in H, n ∈ Z+. Set

Γ(y0, y1, . . . , yn) := det((yk, yl)H)nk,l=0.

Thus, Γ(y0, y1, . . . , yn) is the Gram determinant of vectors y0, y1, . . . , yn.
The following theorem provides a description of the class C+(H).

Theorem 1. Let A be a linear bounded operator in an infinite-dimensional Hilbert space H.
The operator A belongs to the class C+(H) if and only if the following conditions hold:

(i) A is a complex symmetric operator with a simple spectrum;

(ii) there exists a cyclic vector x0 of A such that the following relations hold:

Γ(x0, x1, . . . , xn, x
∗
n) = 0, ∀n ∈ N, (8)

where

xk = Akx0, x∗k = (A∗)k x0, k ∈ N;

and Jx0 = x0, for a conjugation J in H such that JAJ = A∗.

Proof. Necessity. Let H be an infinite-dimensional Hilbert space and A ∈ C+(H). Let {ek}∞k=0

be an orthonormal basis in H such that the matrix M = (mk,l)
∞
k,l=0 belongs to M+

3 , where
mk,l = ((Ael, ek))

∞
k,l=0. Observe that

Ae0 = m0,0e0 +m1,0e1,

Aek = mk−1,kek−1 +mk,kek +mk+1,kek+1, k ∈ N. (9)

Suppose that

er ∈ Lin{Aje0, 0 ≤ j ≤ r}, 0 ≤ r ≤ n,

for some n ∈ N (for n = 0 it is trivial). By (9) we may write

en+1 =
1

mn+1,n
(Aen −mn−1,nen−1 −mn,nen) ∈ Lin{Aje0, 0 ≤ j ≤ n+ 1}.

Here m−1,0 := 0 and e−1 := 0. By induction we conclude that

er ∈ Lin{Aje0, 0 ≤ j ≤ r}, r ∈ Z+. (10)

Therefore Lin{Aje0, j ∈ Z+} = H, i.e. the operator A has a simple spectrum and e0 is a cyclic
vector of A.

Consider the following conjugation:

J
∞∑
k=0

xkek =
∞∑
k=0

xkek, x =
∞∑
k=0

xkek ∈ H.

Observe that

[Aek, el]J = (Aek, el) = ml,k = mk,l = (Ael, ek) = [Ael, ek]J , k, l ∈ Z+.

By linearity of the J-form [·, ·]J in the both arguments we get

[Ax, y]J = [Ay, x]J , x, y ∈ H.
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Thus, the operator A is J-symmetric and relation (3) holds. Notice that Je0 = e0. It remains
to check if relation (8) holds. Set

Hr := Lin{Aje0, 0 ≤ j ≤ r}, r ∈ Z+.

By (10) we see that e0, e1, . . . , er ∈ Hr, and therefore {ej}rj=0 is an orthonormal basis in Hr

(r ∈ Z+). Since Jej = ej , j ∈ Z+, we have

JHr ⊆ Hr, r ∈ Z+.

Then

(A∗)r e0 = (JAJ)r e0 = JArJe0 = JAre0 ∈ Hr, r ∈ Z+.

Therefore vectors e0, Ae0, . . . , A
re0, (A

∗)r e0, are linearly dependent and their Gram determinant
is equal to zero. Thus, relation (8) holds with x0 = e0.

Sufficiency. Let A be a bounded operator in a Hilbert space H satisfying conditions (i), (ii)
in the statement of the theorem. For the cyclic vector x0 we set

Hr := Lin{Ajx0, 0 ≤ j ≤ r}, r ∈ Z+.

Observe that

Ar+1x0 /∈ Hr, r ∈ Z+. (11)

In fact, suppose that for some k ∈ N, we have

Ar+jx0 ∈ Hr, 1 ≤ j ≤ k.

Then

Ar+k+1x0 = AAr+kx0 = A

r∑
t=0

αr,k;tA
tx0 =

r∑
t=0

αr,k;tA
t+1x0 ∈ Hr, αr,k;t ∈ C.

By induction we obtain

Ar+jx0 ∈ Hr, j ∈ Z+.

Therefore H = Hr. We obtain a contradiction since H is infinite-dimensional.
Let us apply the Gram–Schmidt orthogonalization method to the sequence x0, Ax0, A

2x0, . . . .
Namely, we set

g0 =
x0
‖x0‖H

, gr+1 =

Ar+1x0 −
r∑
j=0

(Ar+1x0, gj)Hgj∥∥∥Ar+1x0 −
r∑
j=0

(Ar+1x0, gj)Hgj

∥∥∥
H

, r ∈ Z+.

By construction we have

Hr = Lin{gj , 0 ≤ j ≤ r}, r ∈ Z+.

Therefore {gj}rj=0 is an orthonormal basis in Hr (r ∈ Z+) and {gj}j∈Z+ is an orthonormal basis
in H.

From (8) and (11) we conclude that

JAnx0 = JAnJx0 = (A∗)n x0 ∈ Hn, n ∈ Z+.
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Therefore

JHr ⊆ Hr, r ∈ Z+. (12)

Let

Jgr =
r∑
j=0

βr,jgj , βr,j ∈ C, r ∈ Z+.

Using properties of the conjugation and relation (12) we get

βr,j = (Jgr, gj)H = (Jgr, JJgj)H = (gr, Jgj)H = 0,

for 0 ≤ j ≤ r − 1. Therefore

Jgr = βr,rgr, βr,r ∈ C, r ∈ Z+.

Since ‖gr‖2 = ‖Jgr‖2 = |βr,r|2‖gr‖2, we have

βr,r = eiϕr , ϕr ∈ [0, 2π), r ∈ Z+.

Set

er := ei
ϕr
2 gr, r ∈ Z+.

Then {ej}rj=0 is an orthonormal basis in Hr (r ∈ Z+) and {ej}j∈Z+ is an orthonormal basis
in H. Observe that

Jer = Jei
ϕr
2 gr = e−i

ϕr
2 Jgr = ei

ϕr
2 gr = er, r ∈ Z+.

Define the matrix M = (mk,l)
∞
k,l=0 by (7). Notice that

mk,l = (Ael, ek)H = [Ael, ek]J = [el, Aek]J = [Aek, el]J = (Aek, el)H = ml,k,

where k, l ∈ Z+, and therefore M is complex symmetric.
If l ≥ k + 2 (k, l ∈ Z+), then

mk,l = (Ael, ek)H = [Ael, ek]J = [el, Aek]J = (el, JAek)H = 0,

since JAek ∈ Hk+1 ⊆ Hl−1, and el ∈ Hl 	Hl−1. Therefore M is three-diagonal.
Since er ∈ Hr, using the definition of Hr we get

Aer ⊆ Hr+1, r ∈ Z+.

Observe that

Aer /∈ Hr, r ∈ Z+.

In fact, in the opposite case we get

Aej ∈ Hr, 0 ≤ j ≤ r,

and AHr ⊆ Hr. Then Akx0 ∈ Hr, k ∈ Z+, and H = Hr. This is a contradiction since H is an
infinite-dimensional space.

Hence, we may write

Aer =
r+1∑
j=0

γr,jej , γr,j ∈ C, γr,r+1 6= 0.

Observe that

mr+1,r = (Aer, er+1)H = γr,r+1 6= 0, r ∈ Z+.

Thus, M∈M+
3 and A ∈ C+(H). �
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Remark 1. Condition (ii) of the last theorem may be replaced by the following condition which
does not use a conjugation J :

(ii)∗ there exists a cyclic vector x0 of A such that the following relations hold:

Γ(x0, x1, . . . , xn, x
∗
n) = 0, ∀n ∈ N, (13)

where

xk = Akx0, x∗k = (A∗)k x0, k ∈ N,

and the following operator:

L

∞∑
k=0

αkA
kx0 :=

∞∑
k=0

αk (A∗)k x0, αk ∈ C, (14)

where all but finite number of coefficients αk are zeros, is a bounded operator in H which
extends by continuity to a conjugation in H.

Let us show that conditions (i), (ii) ⇔ conditions (i), (ii)∗.
The necessity is obvious since the conjugation J satisfies relation (14) (with J instead of L).
Sufficiency. Let conditions (i), (ii)∗ be satisfied. Notice that

LAAkx0 = LAk+1x0 = (A∗)k+1 x0,

A∗LAkx0 = A∗ (A∗)k x0 = (A∗)k+1 x0, k ∈ Z+.

By continuity we get LA = A∗L. Then condition (ii) holds with the conjugation L.

Remark 2. Notice that conditions (13) may be written in terms of the coordinates of x0 in an
arbitrary orthonormal basis {un}∞n=0 in H:

x0 =

∞∑
n=0

x0,nun, Akx0 =

∞∑
n=0

x0,nA
kun, (A∗)k x0 =

∞∑
n=0

x0,n (A∗)k un.

By substitution these equalities in relation (8) we get some algebraic equations with respect to
the coordinates x0,n. If cyclic vectors of A are unknown, one can use numerical methods to find
approximate solutions of these equations. Then there should be cyclic vectors of A among these
solutions.

The following theorem gives an analogous description for the class C−(H).

Theorem 2. Let A be a linear bounded operator in an infinite-dimensional Hilbert space H.
The operator A belongs to the class C−(H) if and only if the following conditions hold:

(i) A is a complex skew-symmetric operator with a simple spectrum;

(ii) there exists a cyclic vector x0 of A such that the following relations hold:

Γ(x0, x1, . . . , xn, x
∗
n) = 0, ∀n ∈ N, (15)

where

xk = Akx0, x∗k = (A∗)k x0, k ∈ N; (16)

and Jx0 = x0, for a conjugation J in H such that JAJ = −A∗.
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Condition (ii) of this theorem may be replaced by the following condition:

(ii)∗ there exists a cyclic vector x0 of A such that relations (15), (16) hold and the following
operator:

L
∞∑
k=0

αkA
kx0 :=

∞∑
k=0

(−1)kαk (A∗)k x0, αk ∈ C,

where all but finite number of coefficients αk are zeros, is a bounded operator in H which
extends by continuity to a conjugation in H.

The proof of the latter facts is similar and essentially the same as for the case of C+(H).
The following example shows that condition (ii) (or (ii)∗) can not be removed from Theo-

rem 1.

Example 1. Let σ(θ) be a non-decreasing left-continuous bounded function on [0, 2π] with an
infinite number of points of increase and such that∫ 2π

0
lnσ′(θ)dθ = −∞. (17)

Consider the Hilbert space L2([0, 2π], dσ) of (classes of equivalence of) complex-valued func-
tions f(θ) on [0, 2π] such that

‖f‖2L2([0,2π],dσ) :=

(∫ 2π

0
|f(θ)|2dσ(θ)

) 1
2

<∞.

The condition (17) provides that algebraic polynomials of eiθ are dense in L2([0, 2π], dσ)
[5, p. 19]. Therefore the operator

Uf(θ) = eiθf(θ), f ∈ L2([0, 2π], dσ),

is a cyclic unitary operator in H, with a cyclic vector f0(θ) = 1. Set

Jf(θ) = f(θ), f ∈ L2([0, 2π], dσ).

Then

JUJf(θ) = Jeiθf(θ) = e−iθf(θ) = U−1f(θ) = U∗f(θ).

Thus, U is a complex symmetric operator with a simple spectrum and condition (i) of Theorem 1
is satisfied.

However, U /∈ C+(H). In fact, suppose to the contrary that there exists an orthonormal basis
{ej}j∈Z+ such that the corresponding matrixM = (mk,l)

∞
k,l=0 from (7) belongs to the class M+

3 .
Since U is unitary, we have

E =MM∗,

with the usual rules of matrix operations, E = (δk,l)
∞
k,l=0. However, the direct calculation shows

that the element of the matrixMM∗ in row 0, column 2 is equal to m0,1m2,1 6= 0. We obtained
a contradiction. Thus, U /∈ C+(H). Consequently, condition (ii) in Theorem 1 is essential and
can not be removed.

Proposition 1. Let H be an arbitrary infinite-dimensional Hilbert space. The class C+(H) is
a proper subset of the set of all complex symmetric operators with a simple spectrum in H.
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Proof. Consider an arbitrary infinite-dimensional Hilbert space H. Let V be an arbitrary
unitary operator which maps L2([0, 2π], dσ) (see Example 1) onto H. Then Û := V UV −1 is
a unitary operator in H with a simple spectrum and it has a cyclic vector x̂0 := V 1. Since
JUJ = U∗, we get

JV −1ÛV J = V −1Û∗V, V JV −1ÛV JV −1 = Û∗.

Observe that Ĵ := V JV −1 is a conjugation in H. Therefore Û is a complex symmetric operator
in H. Suppose that Û ∈ C+(H). Let F = {fk}∞k=0 be an orthonormal basis in H such that

the matrix M = (mk,l)
∞
k,l=0, mk,l = (Ûfl, fk)H , belongs to M+

3 . Observe that G = {gk}∞k=0,

gk := V −1fk, is an orthonormal basis in L2([0, 2π], dσ) and

(Ugl, gk)L2([0,2π],dσ) = (V −1ÛV gl, gk)L2([0,2π],dσ) = (Ûfl, fk)H = mk,l, k, l ∈ Z+.

Therefore U ∈ C+(L2([0, 2π], dσ)). This is a contradiction with Example 1. Consequently, we
have Û /∈ C+(H).

On the other hand, the class C+(H) is non-empty, since an arbitrary matrix from M+
3 with

bounded elements define an operator B in H which have this matrix in an arbitrary fixed
orthonormal basis in H. �

Remark 3. The classical Jacobi matrices are closely related to orthogonal polynomials [4]. Let
us indicate some similar relations for the class M+

3 . Choose an arbitraryM = (mk,l)
∞
k,l=0 ∈M+

3 ,
where mk,l ∈ C. Let {pn(λ)}∞n=0, deg pn = n, p0(λ) = 1, be a sequence of polynomials defined
recursively by the following relation:

mn,n−1pn−1(λ) +mn,npn(λ) +mn,n+1pn+1(λ) = λpn(λ), n = 0, 1, 2, . . . , (18)

where m0,−1 := 1, p−1 := 0. Set cn = mn,n+1, bn = mn,n, n ∈ Z+; and c−1 := 1. By (5), (18)
we get

cn−1pn−1(λ) + bnpn(λ) + cnpn+1(λ) = λpn(λ), n = 0, 1, 2, . . . . (19)

Let pn(λ) = µnλ
n + · · · , µn ∈ C, n ∈ Z+. Comparing coefficients by λn+1 in (19) we get

µn+1 =
1

cn
µn, n ∈ Z+.

By induction we see that

µn =

n−1∏
j=0

cj

−1 , n ∈ N, µ0 = 1.

Set

Pn(λ) =

n−1∏
j=0

cjpn(λ), n ∈ N, P0(λ) = 1, P−1(λ) = 0.

Multiplying the both sides of (19) by
n−1∏
j=0

cj , n ≥ 1, we obtain:

c2n−1Pn−1(λ) + bnPn(λ) + Pn+1(λ) = λPn(λ), n = 0, 1, 2, . . . .
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By Theorem 6.4 in [6] there exists a complex-valued function φ of bounded variation on R
such that

∫
R
Pm(λ)Pn(λ)dφ(λ) =

n−1∏
j=0

cj

2

δm,n, m, n ∈ Z+.

Therefore we get∫
R
pm(λ)pn(λ)dφ(λ) = δm,n, m, n ∈ Z+.

Polynomials {pn(λ)}∞n=0 were used in [7, 8] to state and solve the direct and inverse spectral
problems for matrices from M+

3 . Analogs of some facts of the Weyl discs theory were obtained
for the case of matrices from M+

3 with additional assumptions [9]: mn,n+1 > 0, n ∈ Z+, and

mn,n ∈ C : r0 ≤ Immn,n ≤ r1,

for some r0, r1 ∈ R, n ∈ Z+.
On the other hand, the direct and inverse spectral problems for matrices from M−3 were

investigated in [10].
Probably, some progress in the spectral theory of complex symmetric and skew-symmetric

operators would provide some additional information about corresponding polynomials and vice
versa.
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