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Abstract. In this paper we obtain necessary and sufficient conditions for a linear bounded
operator in a Hilbert space H to have a three-diagonal complex symmetric matrix with
non-zero elements on the first sub-diagonal in an orthonormal basis in H. It is shown that
a set of all such operators is a proper subset of a set of all complex symmetric operators
with a simple spectrum. Similar necessary and sufficient conditions are obtained for a linear
bounded operator in H to have a three-diagonal complex skew-symmetric matrix with non-
zero elements on the first sub-diagonal in an orthonormal basis in H.
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1 Introduction

In last years an increasing interest is devoted to the subject of operators related to bilinear forms
in a Hilbert space (see [1, 2, 3] and references therein), i.e. to the following forms:

[xvy]J = (337Jy)H7 a:,yEH,

where J is a conjugation and (-, -)z is the inner product in a Hilbert space H. The conjugation J
is an antilinear operator in H such that J?z =z, z € H, and

(Jz, Jy)a = (y, %) H, xz,y € H.
Recall that a linear operator A in H is said to be J-symmetric (J-skew-symmetric) if

[Az,yl; = [, Ayl;,  =z,y € D(A), (1)
or, respectively,

[Az, 4]y = =[x, Ayls, =,y € D(A). (2)

If a linear bounded operator A in a Hilbert space H is J-symmetric (J-skew-symmetric) for
a conjugation J in H, then A is said to be complex symmetric (respectively complex skew-
symmetric). The matrices of complex symmetric (skew-symmetric) operators in certain bases
of H are complex symmetric (respectively skew-symmetric) semi-infinite matrices. Observe that
for a bounded linear operator A conditions (1) and (2) are equivalent to conditions

JAJ = A*, (3)
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and
JAJ = — A",

respectively.
Recall that a bounded linear operator A in a Hilbert space H is said to have a simple spectrum
if there exists a vector zog € H (cyclic vector) such that

Lin{Akzy, k€ Z,} = H.

Observe that these operators are also called cyclic operators.

It is well known that a bounded self-adjoint operator with a simple spectrum has a bounded
semi-infinite real symmetric three-diagonal (Jacobi) matrix in a certain orthonormal basis
(e.g. [4, Theorem 4.2.3)).

The aim of our present investigation is to describe a class Cy = Cy(H) (C_ = C_(H)) of
linear bounded operators in a Hilbert space H, which have three-diagonal complex symmetric
(respectively skew-symmetric) matrices with non-zero elements on the first sub-diagonal in some
orthonormal bases of H. We obtain necessary and sufficient conditions for a linear bounded
operator in a Hilbert space H to belong to the class C; (C-). The class Cy (C-) is a subset of
the class of all complex symmetric (respectively skew-symmetric) operators in H with a simple
spectrum. Moreover, it is shown that C (H) is a proper subset.

Notations. As usual, we denote by R, C, N, Z, Z, the sets of real numbers, complex
numbers, positive integers, integers and non-negative integers, respectively; Imz = %(z - Z),
z € C. Everywhere in this paper, all Hilbert spaces are assumed to be separable. By (-, )g
and || - ||z we denote the scalar product and the norm in a Hilbert space H, respectively. The
indices may be omitted in obvious cases. For a set M in H, by M we mean the closure of M in
the norm |- ||z. For {z, }nez, , 2n € H, we write Lin{z, },cz, for the set of linear combinations
of elements {x,},ez,. The identity operator in H is denoted by Ey. For an arbitrary linear
operator A in H, the operators A*, A, A~! mean its adjoint operator, its closure and its inverse
(if they exist). By D(A) and R(A) we mean the domain and the range of the operator A. The
norm of a bounded operator A is denoted by [|A|. By Pgl = Py, we mean the operator of
orthogonal projection in H on a subspace Hy in H.

2 The classes C1(H)

Let M = (mk,l)z?zzm mg,; € C, be a semi-infinite complex matrix. We shall say that M belongs
to the class 9)?;, if and only if the following conditions hold:

mg =0, kal€Z+a |k_l| > 1, (4)
Mk = MYk, k,l€Zy, (5)
mgk+1 70,  k€Zs. (6)

We shall say that M belongs to the class 93, if and only if the conditions (4), (6) hold and
my | = —Myk, k,l e L.

Let A be a linear bounded operator in an infinite-dimensional Hilbert space H. We say that A
belongs to the class Cy = C{(H) (C- = C_(H)) if and only if there exists an orthonormal
basis {e}32, in H such that the matrix

M = ((Aey, ex)) =0 (7)

belongs to M3 (respectively to M3 ).
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Let yo,y1,...,yn be arbitrary vectors in H, n € Z. Set

LYo, y1,- - Yn) = det((Yr, Y1) H)ji—o-

Thus, I'(yo, y1,- - -, Yn) is the Gram determinant of vectors yo, y1, - . -, Yn-
The following theorem provides a description of the class Cy(H).

Theorem 1. Let A be a linear bounded operator in an infinite-dimensional Hilbert space H.
The operator A belongs to the class C(H) if and only if the following conditions hold:

(i) A is a complex symmetric operator with a simple spectrum;

(7i) there exists a cyclic vector xo of A such that the following relations hold:
D(xzo,z1,...,Tn,x,) =0, VneN, (8)
where

z, = Az, xy = (A*)k 0, keN;

and Jxg = xg, for a conjugation J in H such that JAJ = A*.

Proof. Necessity. Let H be an infinite-dimensional Hilbert space and A € C(H). Let {ex}32,
be an orthonormal basis in H such that the matrix M = (my,;)35_, belongs to 9MJ, where
my, = ((Aey, ex))7—o- Observe that

Aeg = mopeg +miper,

Aer, = mp_1 per—1 + Mg ger + Mpt1 k€k+1, k e N. (9)
Suppose that

eTELin{Ajeo, 0<j<r} 0<r<mn,
for some n € N (for n = 0 it is trivial). By (9) we may write

1

(Aey, — Mp—1nen—1 — Mpnen) € Lin{A’¢y, 0 <j <n+1}.
mn—i—l,n

En+1 =

Here m_1,0 := 0 and e_; := 0. By induction we conclude that

er € Lin{Ae, 0 < j <7}, r€ZLy. (10)

Therefore Lin{AJey, j € Z+} = H, i.e. the operator A has a simple spectrum and e is a cyclic
vector of A.
Consider the following conjugation:

o (o) o0
szk6k22ﬁ6k7 x:kaekEH.
k=0 k=0

k=0

Observe that
[Aey, er] s = (Aeg, e) = myp = my; = (Aey, ex) = [Aeyg, ex] s, k,leZs.
By linearity of the J-form [-,-]; in the both arguments we get

[Az,yl; = [Ay, 2], x,y € H.
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Thus, the operator A is J-symmetric and relation (3) holds. Notice that Jey = eg. It remains
to check if relation (8) holds. Set

H, :=Lin{Aley, 0<j <7}, reZ,.

By (10) we see that eg,e1,...,e, € H,, and therefore {ej}§:0 is an orthonormal basis in H,
(r € Z4). Since Jej = ej, j € Z4, we have

JH, C H,, re€Z,.
Then
(A*) eg = (JAJ) eg = JA " Jeg = JAeq € H,, =/

Therefore vectors eg, Aeg, ..., Aeq, (A*)" eg, are linearly dependent and their Gram determinant
is equal to zero. Thus, relation (8) holds with z¢ = eo.

Sufficiency. Let A be a bounded operator in a Hilbert space H satisfying conditions (), (i)
in the statement of the theorem. For the cyclic vector zy we set

H, :=Lin{AMzp, 0<j <71}, recZ.
Observe that

Ay ¢ H,, recZ,. (11)
In fact, suppose that for some k£ € N, we have

A"z € Hy, 1<j<k.
Then

T T
Ar+k+1£€0 = AATJ"kxO = Azar,k;tAtxO = Zar,k;tAt-HxO € H,, Qr kit € C.

t=0 t=0

By induction we obtain
A"y € Hy, jEZL,.

Therefore H = H,. We obtain a contradiction since H is infinite-dimensional.
Let us apply the Gram-Schmidt orthogonalization method to the sequence xq, Azg, A%z, . . . .
Namely, we set

T
N Artlgy — E:(](AT+1$Oagj)ng
) B j=
B ol rn = 1 - 1 7
HA”L xog— > (AT xo,gj)ngHH
=0

90 re Z+.
By construction we have
H, = Lin{g;, 0 <j <r}, re’Z,.
Therefore {g;}_ is an orthonormal basis in H, (r € Z4) and {g;};ez, is an orthonormal basis
in H.
From (8) and (11) we conclude that

JA rg = JA"Jxg = (A*)n xo € Hy, n e Z+.
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Therefore
JH, C H,, re’Z;. (12)
Let

T
Jgr = Brjgi, By €C,  reZ.
j=0

Using properties of the conjugation and relation (12) we get
Brj = (Jgr,9))m = (Jgr, JJgj)u = (9r, Jgj)m = 0,

for 0 < j < r — 1. Therefore
Jgr = Brrgr, Brr € C, reZy.

Since ||gr[I> = 17g: 11> = [Brr[*llgr
Bry = €7, ©r € [0,27), r €Ly,

|?, we have

Set
i er
er:=¢€"2 gp, re .

Then {e;}7_, is an orthonormal basis in H, (r € Z4) and {e;}jez, is an orthonormal basis
in H. Observe that

S or Sor
L L

JeT:Jei%gT:e_ Jgr =¢€"2 g, = e, r€ly.
Define the matrix M = (my)75_, by (7). Notice that
miy = (Aey, ex)n = [Aey, ex] s = ler, Aex]s = [Aer, el s = (Aey, e) g = myk,

where k,l € Z,, and therefore M is complex symmetric.
Ifi>k+2(kl€Zy), then

my = (Aey, ep)n = [Aey, ey = [er, Aex) s = (e, JAer) g = 0,

since JAey € Hi11 C Hy—1, and ¢ € H; & H;_1. Therefore M is three-diagonal.
Since e, € H,, using the definition of H, we get

Ae, C Hyy1, re’Z;.
Observe that
Ae, ¢ H,, Y/
In fact, in the opposite case we get
AejeH,, 0<j<m

and AH, C H,. Then A*zy € H,, k € Z,, and H = H,. This is a contradiction since H is an
infinite-dimensional space.
Hence, we may write

r+1
Ae, = Z’Vr,jejv Yrj € C, Vror+1 7’5 0.
7=0
Observe that

m?"+1,7" = (Ae’r‘v eT+1)H = 71”77"—{-1 7& 0, re Z+
Thus, M € M and A € C(H). u
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Remark 1. Condition (i7) of the last theorem may be replaced by the following condition which
does not use a conjugation J:

(74)* there exists a cyclic vector zg of A such that the following relations hold:
I(zo,z1,...,Tn,z,) =0, VneN, (13)
where
_ Ak * N
x, = A%z, x = (A")" xo, k e N,
and the following operator:
o o
LY apAFzg = ap (A,  apeC, (14)
k=0 k=0
where all but finite number of coefficients «;, are zeros, is a bounded operator in H which

extends by continuity to a conjugation in H.

Let us show that conditions (i), (i) < conditions (i), (i7)*.
The necessity is obvious since the conjugation J satisfies relation (14) (with J instead of L).
Sufficiency. Let conditions (i), (#i)* be satisfied. Notice that

LAA*zg = LA 3y = (A" 2,
A LARzg = A" (A 2o = (A 2y, keZ.
By continuity we get LA = A*L. Then condition (i7) holds with the conjugation L.

Remark 2. Notice that conditions (13) may be written in terms of the coordinates of xy in an
arbitrary orthonormal basis {u,}°, in H:

o0 o0 oo
k k *\k s\ k
T = E Z0,nUn, APxg = E zonA Uy, (A" xg = g xom (A%)" up,.
n=0 n=0 n=0

By substitution these equalities in relation (8) we get some algebraic equations with respect to
the coordinates xg . If cyclic vectors of A are unknown, one can use numerical methods to find
approximate solutions of these equations. Then there should be cyclic vectors of A among these
solutions.

The following theorem gives an analogous description for the class C_(H).

Theorem 2. Let A be a linear bounded operator in an infinite-dimensional Hilbert space H.
The operator A belongs to the class C_(H) if and only if the following conditions hold:

(i) A is a complex skew-symmetric operator with a simple spectrum;

(7i) there exists a cyclic vector xo of A such that the following relations hold:
[(xg,x1,...,Tn,x)) =0, VneN, (15)
where
z, = APz, xy = (A*)k xo, keN; (16)

and Jxg = xg, for a conjugation J in H such that JAJ = —A*.
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Condition (i7) of this theorem may be replaced by the following condition:

(73)* there exists a cyclic vector zp of A such that relations (15), (16) hold and the following

operator:
oo oo
LZakAkxo = Z(—l)kaik (A*)k xo, ay € C,
k=0 k=0

where all but finite number of coefficients «;, are zeros, is a bounded operator in H which
extends by continuity to a conjugation in H.

The proof of the latter facts is similar and essentially the same as for the case of C(H).
The following example shows that condition (ii) (or (i)*) can not be removed from Theo-
rem 1.

Example 1. Let 0(6) be a non-decreasing left-continuous bounded function on [0, 27] with an
infinite number of points of increase and such that

/QW Ino’(0)df = —oo. (17)
0

Consider the Hilbert space L%([0,27],do) of (classes of equivalence of) complex-valued func-
tions f(6) on [0, 27] such that

27 %
17122000000 = ( / |f(9)2d0(9)> < .

The condition (17) provides that algebraic polynomials of € are dense in L?([0,27], do)
[5, p. 19]. Therefore the operator

Uf(0) =€“f0),  feL*(0,2n],do),

is a cyclic unitary operator in H, with a cyclic vector fo(f) = 1. Set
J£(60) = f(0), f e L*([0, 27, do).

Then
JUJF(0) = Je[(0) = e f(6) = U £(6) = U™ f(0).

Thus, U is a complex symmetric operator with a simple spectrum and condition (7) of Theorem 1
is satisfied.

However, U ¢ C1(H). In fact, suppose to the contrary that there exists an orthonormal basis
{ej}jez, such that the corresponding matrix M = (mg;)75—, from (7) belongs to the class ms.
Since U is unitary, we have

E=MM*,

with the usual rules of matrix operations, £ = (6,)75_,- However, the direct calculation shows
that the element of the matrix MM™* in row 0, column 2 is equal to mg 1ma 1 # 0. We obtained
a contradiction. Thus, U ¢ C4(H). Consequently, condition (ii) in Theorem 1 is essential and
can not be removed.

Proposition 1. Let H be an arbitrary infinite-dimensional Hilbert space. The class Cy(H) is
a proper subset of the set of all complex symmetric operators with a simple spectrum in H.
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Proof. Consider an arbitrary infinite-dimensional Hilbert space H. Let V be an arbitrary
unitary operator which maps L?([0,27],do) (see Example 1) onto H. Then U:=VUV-!is
a unitary operator in H with a simple spectrum and it has a cyclic vector Zy := V1. Since
JUJ = U™, we get

JVIOvI =viUrv,  vavoiovavel = U

Observe that J := VJAV*1 is a conjugation in H. Therefore Uis a complex symmetric operator
in H. Suppose that U € C(H). Let F = {fr}};2, be an orthonormal basis in H such that
the matrix M = (my1)75—g, Mk = (Uf, fi) i, belongs to M7. Observe that G = {gx}32,,
g := V71 fi, is an orthonormal basis in L%([0, 27], do) and

(Ugis 9k) 12([0,27),d0r) = (Vﬁlfjv.ghgk)LQ([O,QWLdU) = (Ui, fi)u = My, k,leZy.

Therefore U € C4(L?([0,27],do)). This is a contradiction with Example 1. Consequently, we
have U ¢ C, (H).

On the other hand, the class C{ (H) is non-empty, since an arbitrary matrix from ./\/l;)r with
bounded elements define an operator B in H which have this matrix in an arbitrary fixed
orthonormal basis in H. |

Remark 3. The classical Jacobi matrices are closely related to orthogonal polynomials [4]. Let
us indicate some similar relations for the class M7 . Choose an arbitrary M = (my)5_, € M3,
where my; € C. Let {pn(\)}>2, degpn = n, po(A) = 1, be a sequence of polynomiéls defined
recursively by the following relation:

mn,n—lpn—l()\) + mn,npn()\) + mmn—i—lpn-‘rl()\) - )\pn()\)a n=20,1,2,..., (18)

where mo 1 := 1, p_1 := 0. Set ¢, = My pt1, by = Mpp, n € Zy; and ¢y := 1. By (5), (18)
we get

Cn—1Pn—1(A) + bppn(A) + cnpnt1(A) = Apn(A), n=0,1,2,.... (19)
Let pp(\) = pn A" + -+, pup, € C, n € Z,. Comparing coefficients by \"*1 in (19) we get

1
Hnt1 = ;Um n € Ly.

n
By induction we see that
-1

n—1
Hn = HCJ ) n €N, po = 1.
j=0
Set
n—1
PN = [ epa(y), neN,  RX) =1, Py =0.
=0

n—1
Multiplying the both sides of (19) by [] ¢j, n > 1, we obtain:
j=0

2 1P 1(N) + 0 Pa(N) + Poi(A) = AP, (), n=0,1,2,....
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By Theorem 6.4 in [6] there exists a complex-valued function ¢ of bounded variation on R
such that

2

n—1
/ PuNPa(Nde(N) = | [[ ¢i | Omn»  mineZy.
R .
7=0
Therefore we get

/R PP NASON) = Groms  mum € T

Polynomials {py(\)}72, were used in [7, 8] to state and solve the direct and inverse spectral
problems for matrices from i)ﬁé|r Analogs of some facts of the Weyl discs theory were obtained
for the case of matrices from 9)??{ with additional assumptions [9]: my, 41 > 0, n € Z4, and

Mpn € C: 1o <Immy,, <1y,

for some rg,r1 € R, n € Z.

On the other hand, the direct and inverse spectral problems for matrices from 95 were
investigated in [10].

Probably, some progress in the spectral theory of complex symmetric and skew-symmetric
operators would provide some additional information about corresponding polynomials and vice
versa.
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