Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 6 (2010), 093, 9 pages      arXiv:1012.1419      https://doi.org/10.3842/SIGMA.2010.093
Contribution to the Proceedings of the Workshop “Supersymmetric Quantum Mechanics and Spectral Design”

Pseudo-Bosons from Landau Levels

Fabio Bagarello
Dipartimento di Metodi e Modelli Matematici, Facoltà di Ingegneria, Università di Palermo, I-90128 Palermo, Italy

Received October 25, 2010, in final form December 02, 2010; Published online December 12, 2010

Abstract
We construct examples of pseudo-bosons in two dimensions arising from the Hamiltonian for the Landau levels. We also prove a no-go result showing that non-linear combinations of bosonic creation and annihilation operators cannot give rise to pseudo-bosons.

Key words: non-hermitian Hamiltonians; pseudo-bosons.

pdf (226 kb)   ps (161 kb)   tex (14 kb)

References

  1. Bagarello F., Pseudobosons, Riesz bases and coherent states, J. Math. Phys. 51 (2010), 023531, 10 pages, arXiv:1001.1136.
  2. Bagarello F., Construction of pseudobosons systems, J. Math. Phys. 51 (2010), 053508, 12 pages, arXiv:1003.4620.
  3. Bagarello F., Mathematical aspects of intertwining operators: the role of Riesz bases, J. Phys. A: Math. Theor. 43 (2010), 175203, 11 pages, arXiv:1003.2288.
  4. Bagarello F., Calabrese F., Pseudo-bosons arising from Riesz bases, Boll. Dip. Met. Mod. Mat. Palermo 2 (2010), 15-26.
  5. Bagarello F., Two-parameters pseudo-bosons, Internat. J. Theoret. Phys., to appear, arXiv:1010.0204.
  6. Bagarello F., (Regular) pseudo-bosons versus bosons, J. Phys. A: Math. Theor. 44 (2011), 015205, 11 pages.
  7. Besnard F., Number operator algebras and deformations of e-Poisson algebras, Lett. Math. Phys. 55 (2001), 113-125, math-ph/0006012.
  8. Trifonov D.A., Pseudo-boson coherent and Fock states, in Proceedings of the 9th International Workshop on "Complex Structures, Integrability and Vector Fields" (August 25-29, 2008, Sofia), Editors K. Sekigawa, V. Gerdjikov and S. Dimiev, World Scientific Publishing Co., 2009, 241-250, arXiv:0902.3744.
  9. Bagarello F., Examples of Pseudo-bosons in quantum mechanics, Phys. Lett. A 374 (2010), 3823-3827, arXiv:1007.4349.
  10. Ali S.T., Bagarello F., Gazeau J.-P., Modified Landau levels, damped harmonic oscillator and two-dimensional pseudo-bosons, J. Math. Phys. 51 (2010), 123502, 11 pages, arXiv:1010.4221.
  11. Young R.M., An introduction to nonharmonic Fourier series, Academic Press, New York, 1980.
  12. Bagarello F., Pseudo-bosons, so far, submitted.
  13. Kuru S., Tegmen A., Vercin A., Intertwined isospectral potentials in an arbitrary dimension, J. Math. Phys. 42 (2001), 3344-3360, quant-ph/0111034.
    Kuru S., Demircioglu B., Onder M., Vercin A., Two families of superintegrable and isospectral potentials in two dimensions, J. Math. Phys. 43 (2002), 2133-2150, quant-ph/0201099.
    Aghababaei Samani K., Zarei M., Intertwined Hamiltonians in two-dimensional curved spaces, Ann. Physics 316 (2005), 466-482, math-ph/0411030.
  14. Bagarello F., Extended SUSY quantum mechanics, intertwining operators and coherent states, Phys. Lett. A 372 (2008), 6226-6231, arXiv:0904.0199.
    Bagarello F., Vector coherent states and intertwining operators, J. Phys. A: Math. Theor. 42 (2009), 075302, 11 pages, arXiv:0904.0201.
    Bagarello F., Intertwining operators between different Hilbert spaces: connection with frames, J. Math. Phys. 50 (2009), 043509, 13 pages, arXiv:0904.0203.

Previous article   Next article   Contents of Volume 6 (2010)