Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 6 (2010), 045, 14 pages      arXiv:1001.3416      https://doi.org/10.3842/SIGMA.2010.045
Contribution to the Special Issue “Noncommutative Spaces and Fields”

The Noncommutative Ward Metric

Olaf Lechtenfeld a, b and Marco Maceda c
a) Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany
b) Centre for Quantum Engineering and Space-Time Research, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
c) Departamento de Fisica, UAM-Iztapalapa, A.P. 55-534, C.P. 09340, México D.F., México

Received January 31, 2010, in final form May 27, 2010; Published online June 02, 2010

Abstract
We analyze the moduli-space metric in the static non-Abelian charge-two sector of the Moyal-deformed CP1 sigma model in 1+2 dimensions. After carefully reviewing the commutative results of Ward and Ruback, the noncommutative Kähler potential is expanded in powers of dimensionless moduli. In two special cases we sum the perturbative series to analytic expressions. For any nonzero value of the noncommutativity parameter, the logarithmic singularity of the commutative metric is expelled from the origin of the moduli space and possibly altogether.

Key words: noncommutative geometry; CP1 sigma model.

pdf (277 kb)   ps (195 kb)   tex (25 kb)

References

  1. Zakrzewski W.J., Low-dimensional sigma models, Adam Hilger, Ltd., Bristol, 1989.
  2. Manton N.S., Sutcliffe P., Topological solitons, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004.
  3. Manton N.S., A remark on the scattering of BPS monopoles, Phys. Lett. B 110 (1982), 54-56.
  4. Ward R.S., Slowly-moving lumps in the CP1 model in (2+1) dimensions Phys. Lett. B 158 (1985), 424-428.
  5. Ruback P.J., Sigma model solitons and their moduli space metrics, Comm. Math. Phys. 116 (1988), 645-658.
  6. Dunajski M., Manton N.S., Reduced dynamics of Ward solitons, Nonlinearity 18 (2005), 1677-1689, hep-th/0411068.
  7. Lee B.-H., Lee K., Yang H.S., The CP(n) model on noncommutative plane Phys. Lett. B 498 (2001), 277-284, hep-th/0007140.
  8. Furuta K., Inami T., Nakajima H., Yamamoto M., Low-energy dynamics of noncommutative CP1 solitons in 2+1 dimensions, Phys. Lett. B 537 (2002), 165-172, hep-th/0203125.
  9. Lechtenfeld O., Popov A.D., Noncommutative multi-solitons in 2+1 dimensions, J. High Energy Phys. 2001 (2001), no. 11, 040, 32 pages, hep-th/0106213.
    Lechtenfeld O., Popov A.D., Scattering of noncommutative solitons in 2+1 dimensions, Phys. Lett. B 523 (2001), 178-184, hep-th/0108118.
  10. Chu C.-S., Lechtenfeld O., Time-space noncommutative Abelian solitons, Phys. Lett. B 625 (2005), 145-155, hep-th/0507062.
  11. Klawunn M., Lechtenfeld O., Petersen S., Moduli-space dynamics of noncommutative Abelian sigma-model solitons, J. High Energy Phys. 2006 (2006), no. 6, 028, 18 pages, hep-th/0604219.
  12. Furuuchi K., Instantons on noncommutative R4 and projection operators, Progr. Theoret. Phys. 103 (2000), 1043-1068, hep-th/9912047.
    Furuuchi K., Equivalence of projections as gauge equivalence on noncommutative space, Comm. Math. Phys. 217 (2001), 579-593, hep-th/0005199.
  13. Abramowitz M., Stegun I.A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1992.
  14. Li L.-W., Kang X.-K., Leong M.-S., Spheroidal wave functions in electromagnetic theory, John Wiley & Sons, New York, 2002.
  15. Gel'fand I.M., Yaglom A.M., Integration in functional spaces and its applications in quantum physics, J. Math. Phys. 1 (1960), 48-69.
  16. Levit S., Smilansky U., A theorem on infinite products of eigenvalues of Sturm-Liouville type operators, Proc. Amer. Math. Soc. 65 (1977), 299-302.
  17. Kirsten K., Spectral functions in mathematics and physics, Chapman-Hall, London, 2001.
    Kirsten K., Loya P., Computation of determinants using contour integrals, Amer. J. Phys. 76 (2008), 60-64, arXiv:0707.3755.
  18. Rubey M., Hebisch W., Extended rate, more GFUN, math.CO/0702086.

Previous article   Next article   Contents of Volume 6 (2010)