Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 6 (2010), 035, 8 pages      arXiv:0909.2242      https://doi.org/10.3842/SIGMA.2010.035

Monomial Crystals and Partition Crystals

Peter Tingley
Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

Received February 10, 2010, in final form April 12, 2010; Published online April 21, 2010

Abstract
Recently Fayers introduced a large family of combinatorial realizations of the fundamental crystal B0) for ^sln, where the vertices are indexed by certain partitions. He showed that special cases of this construction agree with the Misra-Miwa realization and with Berg's ladder crystal. Here we show that another special case is naturally isomorphic to a realization using Nakajima's monomial crystal.

Key words: crystal basis; partition; affine Kac-Moody algebra.

pdf (304 kb)   ps (267 kb)   tex (180 kb)

References

  1. Berg C., (l,0)-JM partitions and a ladder based model for the basic crystal of ^sll, arXiv:0901.3565.
  2. Fayers M., Partition models for the crystal of the basic Uq(^sln)-module, J. Algebraic Combin., to appear, arXiv:0906.4129.
  3. Foda O.,, Leclerc B., Okado M., Thibon J.-Y., Welsh T.A., Branching functions of An–1(1) and Jantzen-Seitz problem for Ariki-Koike algebras, Adv. Math. 141 (1999), 322-365, q-alg/9710007.
  4. Frenkel E., Reshetikhin N., The q-characters of representations of quantum affine algebras and deformations of W-algebras, in Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998), Contemp. Math., Vol. 248, Amer. Math. Soc., Providence, RI, 1999, 163-205, math.QA/9810055.
  5. Hernandez D., Nakajima H., Level 0 monomial crystals, Nagoya Math. J. 184 (2006), 85-153, math.QA/0606174.
  6. Hong J., Kang S.-J., Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, Vol. 42, Amer. Math. Soc., Providence, RI, 2002.
  7. Jimbo M., Misra K.C., Miwa T., Okado M., Combinatorics of representations of Uq(^sl(n)) at q=0, Comm. Math. Phys. 136 (1991), 543-566.
  8. Kang S.-J., Lee H., Higher level affine crystals and Young walls, Algebr. Represent. Theory 9 (2006), 593-632, math.QA/0310430.
  9. Kashiwara M., On crystal bases, in Representations of Groups (Banff, AB, 1994), CMS Conf. Proc., Vol. 16, Amer. Math. Soc., Providence, RI, 1995, 155-197.
  10. Kashiwara M., Realizations of crystals, in Combinatorial and Geometric Representation Theory (Seoul, 2001), Contemp. Math., Vol. 325, Amer. Math. Soc., Providence, RI, 2003, 133-139, math.QA/0202268.
  11. Kim J.-A., Monomial realization of crystal graphs for Uq(An(1)), Math. Ann. 332 (2005), 17-35.
  12. Misra K., Miwa T., Crystal base for the basic representation of Uq(^sln), Comm. Math. Phys. 134 (1990), 79-88.
  13. Nakajima H., t-analogs of q-characters of quantum affine algebras of type An, Dn, in Combinatorial and Geometric Representation Theory (Seoul, 2001), Contemp. Math., Vol. 325, Amer. Math. Soc., Providence, RI, 2003, 141-160, math.QA/0204184.
  14. Tingley P., Three combinatorial models for ^sln crystals, with applications to cylindric plane partitions, Int. Math. Res. Not. IMRN 2008 (2008), no. 2, Art. ID rnm143, 40 pages, math.QA/0702062.

Previous article   Next article   Contents of Volume 6 (2010)