Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 6 (2010), 023, 14 pages      arXiv:0911.3562      https://doi.org/10.3842/SIGMA.2010.023
Contribution to the Proceedings of the Workshop “Geometric Aspects of Discrete and Ultra-Discrete Integrable Systems”

Epsilon Systems on Geometric Crystals of Type An

Toshiki Nakashima
Department of Mathematics, Sophia University, 102-8554, Chiyoda-ku, Tokyo, Japan

Received September 14, 2009, in final form January 28, 2010; Published online March 19, 2010

Abstract
We introduce an epsilon system on a geometric crystal of type An, which is a certain set of rational functions with some nice properties. We shall show that it is equipped with a product structure and that it is invariant under the action of tropical R maps.

Key words: geometric crystal; epsilon system; tropical R map.

pdf (299 kb)   ps (210 kb)   tex (20 kb)

References

  1. Berenstein A., Kazhdan D., Geometric and unipotent crystals, GAFA 2000 (Tel Aviv, 1999), Geom. Funct. Anal. (2000), Special Volume, Part I, 188-236, math.QA/9912105.
  2. Kashiwara M., Nakashima T., Okado M., Affine geometric crystals and limit of perfect crystals, Trans. Amer. Math. Soc. 360 (2008), 3645-3686, math.QA/0512657.
  3. Kashiwara M., Nakashima T., Okado M., Tropical R maps and affine geometric crystals, Represent. Theory, to appear, arXiv:0808.2411.
  4. Kuniba A., Okado M., Takagi T., Yamada Y., Geometric crystals and tropical R for Dn(1), Int. Math. Res. Not. 2003 (2003), no. 48, 2565-2620, math.QA/0208239.
  5. Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.
  6. Kac V.G., Peterson D.H., Defining relations of certain infinite-dimensional groups, in Arithmetic and Geometry, Editors M. Artin and J. Tate, Progress in Mathematics, Vol. 36, Birkhäuser Boston, Boston, MA, 1983, 141-166.
  7. Peterson D.H., Kac V.G., Infinite flag varieties and conjugacy theorems, Proc. Nat. Acad. Sci. USA 80 (1983), 1778-1782.
  8. Kumar S., Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, Vol. 204, Birkhäuser Boston, Boston, MA, 2002.
  9. Nakashima T., Geometric crystals on Schubert varieties, J. Geom. Phys. 53 (2005), 197-225, math.QA/0303087.
  10. Nakashima T., Geometric crystals on unipotent groups and generalized Young tableaux, J. Algebra 293 (2005), 65-88, math.QA/0403234.
  11. Nakashima T., Affine geometric crystal of type G2(1), in Lie Algebras, Vertex Operator Algebras and Their Applications, Contemp. Math., Vol. 442, Amer. Math. Soc., Providence, RI, 2007, 179-192, math.QA/0612858.
  12. Nakashima T., Universal tropical R map of sl2 and prehomogeneous geometric crystals, in New Trends in Combinatorial Representation Theory, RIMS Kôkyûroku Bessatsu, B11, Res. Inst. Math. Sci. (RIMS), Kyoto, 2009, 101-116.

Previous article   Next article   Contents of Volume 6 (2010)