
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 5 (2009), 104, 16 pages

Bethe Ansatz Solutions to Quasi Exactly Solvable

Difference Equations?

Ryu SASAKI †, Wen-Li YANG ‡§ and Yao-Zhong ZHANG §

† Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
E-mail: ryu@yukawa.kyoto-u.ac.jp

‡ Institute of Modern Physics, Northwest University, Xian 710069, P.R. China
E-mail: wlyang@nwu.edu.cn

§ School of Mathematics and Physics, The University of Queensland,
Brisbane, QLD 4072, Australia
E-mail: yzz@maths.uq.edu.au

Received September 20, 2009, in final form November 10, 2009; Published online November 18, 2009
doi:10.3842/SIGMA.2009.104

Abstract. Bethe ansatz formulation is presented for several explicit examples of quasi
exactly solvable difference equations of one degree of freedom which are introduced recently
by one of the present authors. These equations are deformation of the well-known exactly
solvable difference equations of the Meixner–Pollaczek, continuous Hahn, continuous dual
Hahn, Wilson and Askey–Wilson polynomials. Up to an overall factor of the so-called
pseudo ground state wavefunction, the eigenfunctions within the exactly solvable subspace
are given by polynomials whose roots are solutions of the associated Bethe ansatz equations.
The corresponding eigenvalues are expressed in terms of these roots.
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1 Introduction

Bethe ansatz method is one of the well-known solution methods for exactly solvable quantum
systems (see, e.g. [1]) as well as for various spin models and statistical lattice models. In recent
years the concept of exactly solvable quantum systems was drastically enlarged to include various
examples of the so-called ‘discrete’ quantum mechanical systems [2, 3, 4, 5, 6, 7], in which the
Schrödinger equation is a difference equation instead of differential. Known examples of exactly
solvable ‘discrete’ quantum mechanics are deformations of exactly solvable quantum mechanics,
in which the momentum operators appear in exponentiated forms instead of polynomials in
ordinary quantum mechanics. Their eigenfunctions are (q-)Askey scheme of hypergeometric
orthogonal polynomials [8, 9], which are deformations of the classical orthogonal polynomials,
e.g. the Hermite, Laguerre and Jacobi polynomials. It is interesting to note that these examples
are exactly solvable both in the Schrödinger and Heisenberg pictures [4, 5]. That is, for each
Hamiltonian of these examples, the Heisenberg operator solution for a special coordinate called
the ‘sinusoidal’ coordinate can be constructed, as well as the complete set of the eigenvalues and
the corresponding eigenfunctions. The eigenfunctions consist of the above-mentioned (q-)Askey
scheme of hypergeometric orthogonal polynomials in the ‘sinusoidal’ coordinate. See [6, 7] for
a comprehensive introduction of the ‘discrete’ quantum mechanics and the recent developments.
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The domain of the Hamiltonian, its hermiticity (self-adjointness), the exact Heisenberg ope-
rator solutions, the creation-annihilation operators and the dynamical symmetry algebras are
explained in some detail.

In this paper we present Bethe ansatz formulations and solutions for a family of Quasi-Exactly
Solvable (QES) difference equations, which were recently introduced by one of the present au-
thors [10, 11]. One of the main purposes of the present paper is to provide a good list of explicit
Bethe-ansatz equations for the quasi-exactly solvable difference equations (2.11), (3.11), (3.15),
(4.9), (4.17), and (5.5). The list will be helpful for future research in various contexts of math-
ematical physics. A quantum mechanical system is called quasi-exactly solvable (QES), if only
a finite number (≥ 2) of eigenvalues and corresponding eigenvectors can be obtained exactly
[12, 13]. Among various characterisation/identification of QES systems [12, 13, 14, 15], we
promoted a simple view that a QES system is obtained by a certain deformation of an exactly
solvable quantum system. As shown explicitly for ordinary quantum mechanics by Sasaki–
Takasaki [15], the deformation procedure applies to systems of many degrees of freedom as well
as for single degree of freedom systems. This is in sharp contrast to the sl(2, R) characterisa-
tion [13], whose applicability is limited to essentially single degree of freedom systems. Recently
the deformation procedure was applied to exactly solvable ‘discrete’ quantum systems of one
and many degrees of freedom to obtain corresponding ‘discrete’ QES systems [10, 11, 16]. In
this paper we present Bethe ansatz solutions for these QES difference equations.

There are only a very limited number of examples of (quasi) exactly solvable difference
equations which have been solved so far by the Bethe ansatz method. To our knowledge,
the Bethe ansatz solutions were known only for some QES difference equations in connection
with Uq(sl(2)) [17], and for exactly solvable difference equations [18, 19, 20] of the elliptic
Rusijsenaars–Schneider system. Here we apply the Bethe ansatz formulation to several explicit
examples of QES difference equations [10, 11] as deformation of exactly solvable ‘discrete’ quan-
tum mechanics [2, 3], which are difference analogues of the well-known quasi exactly solvable
systems, the harmonic oscillator (with/without the centrifugal potential) deformed by a sextic
potential and the 1/ sin2 x potential deformed by a cos 2x potential. As will be shown explicitly
in the main text, these Bethe ansatz equations (2.11), (3.11), (3.15), (4.9), (4.17), and (5.5) can
be considered as deformations of the equations (2.16), (4.14), (5.9) determining the roots of the
corresponding (q-)Askey scheme of hypergeometric orthogonal polynomials [9] (the Meixner–
Pollaczek, continuous Hahn, continuous dual Hahn, Wilson and Askey–Wilson polynomials and
their restrictions) which constitute the eigenfunctions of the undeformed exactly solvable quan-
tum systems. The general structure of the quasi exactly solvable difference equations to be
discussed in this paper and their solutions were explained in some detail in [10, 11, 16], inclu-
ding the domains of the Hamiltonians, the Hilbert spaces and hermiticity and the role played
by the pseudo ground state wavefunctions.

This paper is organised as follows. In Section 2, a QES discrete quantum mechanics is solved
in the Bethe ansatz formalism. The Hamiltonian of the system is obtained by ‘crossing’ those
of the Meixner–Pollaczek and the continuous Hahn polynomials as derived in [11]. Section 3
provides the Bethe ansatz formulation of the QES discrete quantum mechanical systems which
are deformations of the harmonic oscillator with a sextic potential as derived in [10]. The cor-
responding eigenfunctions are deformations of the Meixner–Pollaczek and the continuous Hahn
polynomials. Section 4 gives the Bethe ansatz solutions of the QES discrete quantum mechanical
systems which are deformations of the harmonic oscillator with a centrifugal barrier and a sextic
potential as derived in [10]. The corresponding eigenfunctions are deformations of the continuous
dual Hahn and the Wilson polynomials. Section 5 offers a Bethe ansatz solution to a difference
equation analogue of a QES system with the 1/ sin2 x potential deformed by a cos 2x potential as
derived in [10]. The corresponding eigenfunctions are deformations of the Askey–Wilson poly-
nomials and their various restrictions [8, 9]. The final section is for a summary and comments.
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2 Difference equation of the Meixner–Pollaczek type

In this section we will discuss Bethe ansatz solutions for the discrete quantum mechanics ob-
tained by deforming that of the Meixner–Pollaczek polynomials in [11]. To be more precise,
the corresponding discrete quantum mechanics is obtained by crossing those of the Meixner–
Pollaczek and the continuous Hahn polynomials, that is, with the quadratic potential function
of the continuous Hahn polynomial multiplied by a constant phase factor e−iβ of the Meixner–
Pollaczek type. It was shown in [11] that this system is quasi exactly solvable. The corresponding
Hamiltonian is:

H def=
√
V (x) e−i∂x

√
V (x)∗ +

√
V (x)∗ e+i∂x

√
V (x)− V (x)− V (x)∗ + αMx (2.1)

= A†A+ αMx, αM
def= −2M sinβ, M∈ Z+, (2.2)

A†
def=

√
V (x) e−

i
2
∂x −

√
V (x)∗ e

i
2
∂x , A

def= e−
i
2
∂x

√
V (x)∗ − e

i
2
∂x

√
V (x), (2.3)

V (x) def= (a1 + ix)(a2 + ix)e−iβ, a1, a2 ∈ C, Re(a1) > 0, Re(a2) > 0.

It should be noted that the Hamiltonian is no longer positive semi-definite but the hermiticity
is preserved. Let us introduce the so-called pseudo ground state wavefunction φ0(x) [10, 11]:

φ0(x)
def= eβx

√
Γ(a1 + ix)Γ(a2 + ix)Γ(a∗1 − ix)Γ(a∗2 − ix),

as the zero mode of the A operator (2.3), Aφ0 = 0. The similarity transformed Hamiltonian H̃
in terms of φ0,

H̃ def= φ−1
0 ◦ H ◦ φ0 = V (x)

(
e−i∂x − 1

)
+ V (x)∗

(
ei∂x − 1

)
+ αMx (2.4)

= (a1 + ix)(a2 + ix)e−iβ
(
e−i∂x− 1

)
+ (a∗1 − ix)(a∗2 − ix)eiβ

(
ei∂x− 1

)
− 2M sinβx,

acts on the polynomial part of the wavefunction. In the exactly solvable Meixner–Pollaczek case
with V (x) = (a + ix)e−iβ and the continuous Hahn case with V (x) = (a1 + ix)(a2 + ix), the
eigenfunctions are of the form

φ0(x)P (η(x))

in which P (η(x)) is a polynomial in

η(x) = x.

After the deformation, it is obvious that H̃ maps a polynomial in η(x) = x into another and it
is easy to verify

H̃xn = 2(−M+ n) sinβ xn+1 + lower order terms, n ∈ Z+.

This means that the system is not exactly solvable without the compensation term, but it is
quasi exactly solvable, since H̃ has an invariant polynomial subspace of degree M:

H̃VM ⊆ VM, (2.5)

VM
def= Span

[
1, x, x2, . . . , xM

]
, dimVM = M+ 1. (2.6)

Let Ψ(x) be one of the eigenfunctions of H̃ and E be the corresponding eigenvalue:

H̃Ψ(x) = EΨ(x),
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namely,

(a∗1 − ix)(a∗2 − ix)eiβ (Ψ(x+ i)−Ψ(x))

+ (a1 + ix)(a2 + ix)e−iβ (Ψ(x− i)−Ψ(x))− 2M sinβxΨ(x) = EΨ(x). (2.7)

Equations (2.5) and (2.6) imply that the eigenfunctions in the subspace VM have the following
form

Ψ(x) =
M∏
l=1

(η(x)− η(xl)) =
M∏
l=1

(x− xl), (2.8)

where {xl | l = 1, . . . ,M} are some parameters which will be specified later by the associated
Bethe ansatz equations (2.11) below. Substituting the above equation into (2.7) and dividing
both sides by Ψ(x), we have

E = −V (x)− V (x)∗ − 2M sinβ x+ V (x)
M∏
l=1

x− xl − i

x− xl
+ V (x)∗

M∏
l=1

x− xl + i

x− xl
. (2.9)

The r.h.s. of (2.9) is a meromorphic function of x, whereas the l.h.s. is a constant. To make
them equal, we must null the residues of the r.h.s. It is easy to see that the singularities of the
r.h.s. only appear at x = xj , j = 1, . . . ,M and x = ∞. The residues at x = xj vanish if the
parameters {xj} satisfy the following Bethe ansatz equations

M∏
l 6=j

xj − xl − i

xj − xl + i
=
V (xj)∗

V (xj)
η(xj + i)− η(xj)
η(xj)− η(xj − i)

(2.10)

=
V (xj)∗

V (xj)
e2iβ (a∗1 − ixj)(a∗2 − ixj)

(a1 + ixj)(a2 + ixj)
, j = 1, . . . ,M. (2.11)

Throughout this paper we use the complex conjugate potential function V (x)∗ in the ‘analytical’
sense in x, that is, for complex x

V (x) = (a1 + ix)(a2 + ix)e−iβ, V (x)∗ = (a∗1 − ix)(a∗2 − ix)eiβ, x ∈ C.

This convention is necessary for the above two equations (2.10), (2.11) to be valid, since the
Bethe roots {xj} are in general complex. One can check that the r.h.s. of (2.9) is indeed regular
at x = ∞, i.e., the residue at x = ∞ vanishes. By the Liouville theorem the r.h.s. of (2.9)
is a constant provided that (2.11) is satisfied. One can get the value of the corresponding
eigenvalue E by taking the limit of x→∞ for the r.h.s. of (2.9). Here we present the result:

E = M(M− 1) cosβ +M
(
(a1 + a2)e−iβ + (a∗1 + a∗2)e

iβ
)

+ 2 sinβ
M∑
l=1

xl, (2.12)

where {xl} satisfy the Bethe ansatz equation (2.11). The final term can be written as

2 sinβ
M∑
l=1

η(xl). (2.13)

The wavefunction Ψ(x) (2.8) becomes the eigenfunction of H̃ in the subspace VM (2.6) provided
that the roots of the polynomial Ψ(x) (2.8) are the solutions of (2.11), and then the corresponding
eigenvalue is given by (2.12). Since all the roots {xl} are on the same footing, it is natural that
the eigenvalue E depends on the symmetric combination of them (2.13).
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A few corollaries ensue from these results. For the special case of β = 0, the Hamilto-
nian (2.1) is exactly solvable and the corresponding eigenvectors are related to the continuous
Hahn polynomials. In fact, we obtain from (2.12)

lim
β→0

E = M(M+ a1 + a2 + a∗1 + a∗2 − 1), (2.14)

which is the eigenvalue corresponding to the degree M continuous Hahn polynomial [2, 3, 6].
The Bethe ansatz equation (2.11) now determines the zeros of the continuous Hahn polynomial.
For a1, a2 ∈ R+, and a2 →∞ limit, the above Hamiltonian H (2.1) divided by a2 reduces to an
exactly solvable one corresponding to the Meixner–Pollaczek polynomials [2, 3, 6]. Correspon-
dingly the eigenvalue formula (2.12) gives

lim
a2→∞

E/a2 = 2M cosβ. (2.15)

The latter is the eigenvalue of the degree M Meixner–Pollaczek polynomial [6]. Note that the
parameter β is related to the standard parameter φ of the Meixner–Pollaczek polynomials as
β = π

2 − φ. The corresponding Bethe ansatz equation

M∏
l 6=j

xj − xl − i

xj − xl + i
= e2iβ (a1 − ixj)

(a1 + ixj)
, j = 1, . . . ,M, (2.16)

now determines the zeros of the degreeMMeixner–Pollaczek polynomial. As shown in § 4 of [2],
this equation reduces to that determines the zeros of the Hermite polynomial in an appropriate
limit.

3 Difference equation analogue of harmonic oscillator
deformed by sextic potential

There are two types of difference equations which are difference analogues of the sextic potential
Hamiltonian [10]. The Hamiltonian is given by

H def=
√
V (x) e−i∂x

√
V (x)∗ +

√
V (x)∗ ei∂x

√
V (x)− (V (x) +V (x)∗) + αM(x), (3.1)

Type I : V (x) def= (a+ ix)(b+ ix)V0(x), V0(x)
def= c+ ix, a, b, c ∈ R+, (3.2)

αM(x) def= 2Mx2,

Type II : V (x) def= (a+ ix)(b+ ix)V0(x),

V0(x)
def= (c+ ix)(d+ ix), a, b, c, d ∈ R+, (3.3)

αM(x) def= M (M− 1 + 2(a+ b+ c+ d))x2. (3.4)

Here as usual V (x)∗ is the ‘analytical’ complex conjugate of V (x).

3.1 Type I theory

Here we will consider the difference equation of type I, while the difference equation of type II will
be given in the next subsection. If V is replaced by V0 in (3.2) and the last term in (3.1), αM(x),
is removed, H becomes the exactly solvable Hamiltonian of a difference analogue of the har-
monic oscillator, or the deformed harmonic oscillator in ‘discrete’ quantum mechanics [2, 3]. Its
eigenfunctions consist of the Meixner–Pollaczek polynomials, with a special phase angle β = 0,
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which is a deformation of the Hermite polynomials [2, 3, 21]. The quadratic polynomial factor
(a + ix)(b + ix) can be considered as multiplicative deformation, although the parameters a, b
and c are on the equal footing. On the other hand one can consider it as a multiplicative
deformation by a linear polynomial in x:

V (x) = (a+ ix)V01(x), V01(x)
def= (b+ ix)(c+ ix),

with V01 describing another difference version of an exactly solvable analogue of the harmonic
oscillator [2, 3]. Its eigenfunctions consist of the continuous Hahn polynomials.

Next let us introduce the similarity transformation in terms of the pseudo ground state
wavefunction φ0(x) as the zero mode of the A operator (2.3), Aφ0 = 0:

φ0(x)
def=

√
Γ(a+ ix)Γ(a− ix)Γ(b+ ix)Γ(b− ix)Γ(c+ ix)Γ(c− ix),

H̃ def= φ−1
0 ◦ H ◦ φ0 = V (x)

(
e−i∂x − 1

)
+ V (x)∗

(
ei∂x − 1

)
+ 2Mx2. (3.5)

Since the parity is conserved, that is

H|x→−x = H,

it is easy to verify the action of the Hamiltonian H̃ (3.5) on monomials of x:

H̃xn =



[n/2+1]∑
j=0

an,jx
n+2−2j , n ≤M− 2, an,j ∈ R,

[M/2]∑
j=0

a′n, jx
M−2j , n = M, a′n,j ∈ R.

(3.6)

Here [m] is the standard Gauss’ symbol denoting the greatest integer not exceeding or equal
to m. According to the parity of the polynomials, there are two types of invariant subspaces VM
of H̃:

H̃ VM ⊆ VM, (3.7)

VM
def=

{
Span

[
1, η(x), . . . , η(x)k, . . . , η(x)M/2

]
, M : even,

x Span
[
1, η(x), . . . , η(x)k, . . . , η(x)(M−1)/2

]
, M : odd,

η(x) = x2, (3.8)

dimVM =
{
M/2 + 1, M : even,
(M+ 1)/2, M : odd.

3.1.1 The case of even M

Let us introduce a positive integer N such that M = 2N . Equations (3.7) and (3.8) imply that
the eigenfunctions of H̃ in the subspace VM are of the form

Ψ(x) =
N∏

l=1

(η(x)− η(xl)) =
N∏

l=1

(x− xl)(x+ xl). (3.9)

Analogous calculation shows that the polynomial Ψ(x) becomes the eigenfunction of H̃ if the
roots of the polynomial satisfy the Bethe ansatz equations

N∏
l 6=j

(xj − xl − i)(xj + xl − i)
(xj − xl + i)(xj + xl + i)

=
V (xj)∗

V (xj)
η(xj + i)− η(xj)
η(xj)− η(xj − i)

(3.10)
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=
(a− ixj)(b− ixj)(c− ixj)(2xj + i)
(a+ ixj)(b+ ixj)(c+ ixj)(2xj − i)

, j = 1, . . . , N. (3.11)

The corresponding eigenvalue E is given by

E =
1
3
M(M− 1)(M− 2) + (a+ b+ c)M(M− 1) + 2(ab+ ac+ bc)M− 4

N∑
l=1

x2
l , (3.12)

where {xl} satisfy the Bethe ansatz equations (3.11). Again the final term is symmetric in {xj}
and can be written as −4

∑N
j=1 η(xj).

3.1.2 The case of odd M

Let us introduce a positive integer N such that M = 2N + 1. (3.7) and (3.8) imply that the
eigenfunctions of H̃ in the subspace VM are of the form

Ψ(x) = x
N∏

l=1

(η(x)− η(xl)) = x
N∏

l=1

(x− xl)(x+ xl). (3.13)

Analogous calculation shows that the polynomial Ψ(x) becomes the eigenfunction of H̃ if the
roots of the polynomial satisfy the Bethe ansatz equations

(xj − i)
(xj + i)

N∏
l 6=j

(xj − xl − i)(xj + xl − i)
(xj − xl + i)(xj + xl + i)

=
V (xj)∗

V (xj)
(η(xj + i)− η(xj))
(η(xj)− η(xj − i))

(3.14)

=
(a− ixj)(b− ixj)(c− ixj)(2xj + i)
(a+ ixj)(b+ ixj)(c+ ixj)(2xj − i)

, j = 1, . . . , N. (3.15)

The corresponding eigenvalue E is given by

E =
1
3
M(M− 1)(M− 2) + (a+ b+ c)M(M− 1) + 2(ab+ ac+ bc)M− 4

N∑
l=1

x2
l , (3.16)

where {xl} satisfy the Bethe ansatz equations (3.15). The expression for the eigenvalue is exactly
the same as the even M case (3.12).

In this example, exactly solvable limits are also obtained by making one or two parameters
go to infinity; for example a → ∞ or both a → ∞ and b → ∞. In the former case (a → ∞),
the scaled Hamiltonian (3.1) H/a gives that of the continuous Hahn polynomials with real
parameters b and c. The eigenvalue formulas (3.12) and (3.16) reduce to that of the continuous
Hahn polynomials [2, 3, 6]:

lim
a→∞

E/a = M(M+ 2(b+ c)− 1). (3.17)

The Bethe ansatz equations (3.11) and (3.15) are equivalent to (2.11) with β = 0 and a1 = b ∈
R+, a2 = c ∈ R+. This assertion can be easily verified since the solutions of (2.11) are always
paired {xj ,−xj} including a zero xj = 0 for odd M. In the latter case (a → ∞, b → ∞), the
scaled Hamiltonian (3.1) H/(ab) gives that of the Meixner–Pollaczek polynomials with β = 0,
a = c. The eigenvalue formulas (3.12) and (3.16) reduce to that of the Meixner–Pollaczek
polynomials [2, 3, 6]:

lim
a,b→∞

E/(ab) = 2M. (3.18)

Again the Bethe ansatz equations (3.11) and (3.15) are equivalent to (2.11) with β = 0 and
a1 = c ∈ R+.
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3.2 Type II theory

Another difference analogue of the sextic potential Hamiltonian has the same form as (3.1),
with only the potential function V (x) and the compensation term αM(x) are different:

V (x) def= (a+ ix)(b+ ix)V0(x), V0(x)
def= (c+ ix)(d+ ix), a, b, c, d ∈ R+,

αM(x) def= M (M− 1 + 2(a+ b+ c+ d))x2.

This Hamiltonian can be considered as a deformation by a quadratic polynomial factor (a +
ix)(b + ix) of the exactly solvable ‘discrete’ quantum mechanics having the continuous Hahn
polynomials as eigenfunctions [3], another difference analogue of the harmonic oscillator. See
the comments in Section 5 of [16].

The pseudo ground state wavefunction φ0(x) is

φ0(x)
def=

√
Γ(a+ ix)Γ(a− ix)Γ(b+ ix)Γ(b− ix)Γ(c+ ix)Γ(c− ix)Γ(d+ ix)Γ(d− ix).

Again it has no node and it is square integrable. The similarity transformed Hamiltonian acting
on the polynomial space is

H̃ def= φ−1
0 ◦ H ◦ φ0 = V (x)

(
e−i∂x − 1

)
+ V (x)∗

(
ei∂x − 1

)
+M (M− 1 + 2(a+ b+ c+ d))x2. (3.19)

It is straightforward to verify the relationship (3.6) and to establish the existence of the invari-
ant polynomial subspaces. In the following subsections, we present Bethe ansatz solutions to
eigenfunctions and eigenvalues of the Hamiltonian (3.19).

3.2.1 The case of even M

Let us introduce a positive integer N such that M = 2N and a polynomial function Ψ(x) of
the form (3.9). Then Ψ(x) becomes the eigenfunction of H̃ (3.19) with an even M: M = 2N
provided that the roots of the polynomial satisfy the Bethe ansatz equations

N∏
l 6=j

(xj − xl − i)(xj + xl − i)
(xj − xl + i)(xj + xl + i)

=
V (xj)∗

V (xj)
(η(xj + i)− η(xj))
(η(xj)− η(xj − i))

(3.20)

=
(a− ixj)(b− ixj)(c− ixj)(d− ixj)(2xj + i)
(a+ ixj)(b+ ixj)(c+ ixj)(d+ ixj)(2xj − i)

, j = 1, . . . , N.

The corresponding eigenvalue E is given by

E = 2
4∑

j=1

(
M
j

)
∆j − (4∆3 + (4M− 6))

N∑
l=1

x2
l , (3.21)

with the binomial coefficients(
M
j

)
=

M!
j! (M− j)!

, j = 0, . . . ,M,

and the coefficients {∆j |j = 1, . . . , 4}, which are the elementary symmetric polynomials in the
parameters {a, b, c, d} defined by

V (x) = (a+ ix)(b+ ix)(c+ ix)(d+ ix) def=
4∑

j=0

∆j(ix)j , ∆4 = 1. (3.22)
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3.2.2 The case of odd M

Let us introduce a positive integer N such that M = 2N + 1 and a function Ψ(x) of the
form (3.13). The polynomial Ψ(x) becomes the eigenfunction of H̃ (3.19) with an odd M:
M = 2N + 1 provided that the roots of the polynomial satisfy the Bethe ansatz equations

(xj − i)
(xj + i)

N∏
l 6=j

(xj − xl − i)(xj + xl − i)
(xj − xl + i)(xj + xl + i)

=
V (xj)∗

V (xj)
(η(xj + i)− η(xj))
(η(xj)− η(xj − i))

(3.23)

=
(a− ixj)(b− ixj)(c− ixj)(d− ixj)(2xj + i)
(a+ ixj)(b+ ixj)(c+ ixj)(d+ ixj)(2xj − i)

, j = 1, . . . , N.

The corresponding eigenvalue E is given by the same expressions as (3.21)–(3.22) but with
a different value of M: M = 2N + 1.

4 Difference equation analogues of harmonic oscillator
with centrifugal potential deformed by sextic potential

The Bethe ansatz solutions for the difference equation analogues of the harmonic oscillator with
the centrifugal potential deformed by a sextic potential [10] are discussed here. There are two
types corresponding to the linear and quadratic polynomial deformations as discussed in [10].
The corresponding exactly solvable difference equation has the Wilson polynomials [2, 3, 8, 9]
as the eigenfunctions. The Hamiltonians have the same form as (3.1), (2.2) and (2.3), with only
the potential function V (x) and the compensation term αM(x) are different:

Type I : V (x) def= (b+ ix)V0(x), αM(x) def= Mx2,

Type II : V (x) def= (a+ ix)(b+ ix)V0(x), (4.1)

αM(x) def= M (M− 1 + (a+ b+ c+ d+ e+ f))x2, (4.2)

with a common V0(x)

V0(x)
def=

(c+ ix)(d+ ix)(e+ ix)(f + ix)
2ix(2ix+ 1)

, a, b, c, d, e, f ∈ R+ − {1/2}. (4.3)

None of the parameters a, b, c, d, e or f should take the value 1/2, since it would cancel the
denominator. Because of the centrifugal barrier, the dynamics is constrained to a half line;
0 < x < ∞. The type I case can also be considered as a quadratic polynomial deformation of
the exactly solvable dynamics with V01(x):

Type I : V (x) def= (b+ ix)(c+ ix)V01(x), V01(x)
def=

(d+ ix)(e+ ix)(f + ix)
2ix(2ix+ 1)

, (4.4)

which has the continuous dual Hahn polynomials [2, 3, 8, 9] as eigenfunctions. This re-interpre-
tation does not change the dynamics, since the Hamiltonian and A and A† operators depend
on V (x).

4.1 Type I theory

Here we consider the difference equation of type I. The pseudo ground state wavefunction φ0(x)
is determined as the zero mode of the A operator (2.3), Aφ0 = 0:

Type I : φ0(x)
def=

√
6∏

j=2
Γ(aj + ix)Γ(aj − ix)√
Γ(2ix)Γ(−2ix)

,
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in which the numbering of the parameters

a1
def= a, a2

def= b, a3
def= c, a4

def= d, a5
def= e, a6

def= f, (4.5)

is used. It is obvious that φ0 has no node in the half line 0 < x <∞.
The similarity transformed Hamiltonian acting on the polynomial space has the same form

as before (2.4)

H̃ def= φ−1
0 ◦ H ◦ φ0 = V (x)

(
e−i∂x − 1

)
+ V (x)∗

(
ei∂x − 1

)
+Mη(x). (4.6)

Again the Hamiltonian is parity invariant, that is

H|x→−x = H.

Although the potential V (x) has the harmful looking denominator 1/{2ix(2ix+1)}, it is straight-
forward to verify that H̃ maps a polynomial in η(x) = x2 into another, as 2ix+1 ∝ η(x−i)−η(x):

H̃x2n =



n+1∑
j=0

an,jx
2n+2−2j , n ≤M− 1, an, j ∈ R,

M∑
j=0

a′n,jx
2M−2j , n = M, a′n,j ∈ R.

This is because V0, which has the above denominator, keeps the polynomial subspace of any
even degree invariant, reflecting the exact solvability. In other words, the exactly solvable
discrete quantum mechanics corresponding to the undeformed potentials V0(x) or V01(x) has
the eigenfunction

φ0(x)P (η(x)), η(x) = x2,

in which P (η) is either the continuous dual Hahn polynomial (V01(x), (4.4)), or the Wilson
polynomial (V0(x), (4.3)). This establishes that H̃ keeps the polynomial space VM invariant,

H̃VM ⊆ VM,

VM
def= Span

[
1, x2, . . . , x2k, . . . , x2M]

, dimVM = M+ 1. (4.7)

The above equations imply that the eigenfunctions of H̃ in the subspace VM are of the form

Ψ(x) =
M∏
l=1

(η(x)− η(xl)) =
M∏
l=1

(x− xl)(x+ xl).

Analogous calculation shows that the polynomial Ψ(x) becomes the eigenfunction of H̃ if the
roots of the polynomial satisfy the Bethe ansatz equations

M∏
l 6=j

(xj − xl − i)(xj + xl − i)
(xj − xl + i)(xj + xl + i)

=
V (xj)∗

V (xj)
η(xj + i)− η(xj)
η(xj)− η(xj − i)

(4.8)

=
(b− ixj)(c− ixj)(d− ixj)(e− ixj)(f − ixj)
(b+ ixj)(c+ ixj)(d+ ixj)(e+ ixj)(f + ixj)

, j = 1, . . . ,M. (4.9)

Note that the kinematical factors ±2ix+ 1 of V (x) and V (x)∗ are cancelled by η(x∓ i)− η(x).
The corresponding eigenvalue E is given by

E =
2
3
M(M− 1)(M− 2) +

(
b+ c+ d+ e+ f +

1
2

)
M(M− 1)
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+ {b(c+ d+ e+ f) + c(d+ e+ f) + d(e+ f) + ef}M−
M∑
l=1

x2
l , (4.10)

where {xl} satisfy the Bethe ansatz equations (4.9).
As expected, exactly solvable limits are obtained by two different ways; either one or two

parameters go to infinity. In the former case, the scaled Hamiltonian (3.1) H/f gives that of
the Wilson polynomials with four real parameters, b, c, d and e. The eigenvalue formula (4.10)
reduces to that of the Wilson polynomials [2, 3, 6]

lim
f→∞

E/f = M(M+ b+ c+ d+ e− 1). (4.11)

In the latter case (e, f →∞), the scaled Hamiltonian (3.1) H/(ef) gives that of the continuous
dual Hahn polynomials with three parameters, b, c and d. The eigenvalue formula (4.10) reduces
to that of the continuous dual Hahn polynomials [2, 3, 6]

lim
e, f→∞

E/(ef) = M. (4.12)

The Bethe ansatz equations (4.9) in these limits determine the zeros of the Wilson and the
continuous dual Hahn polynomials, respectively:

f →∞ :
M∏
l 6=j

(xj − xl − i)(xj + xl − i)
(xj − xl + i)(xj + xl + i)

=
(b− ixj)(c− ixj)(d− ixj)(e− ixj)
(b+ ixj)(c+ ixj)(d+ ixj)(e+ ixj)

, (4.13)

e, f →∞ :
M∏
l 6=j

(xj − xl − i)(xj + xl − i)
(xj − xl + i)(xj + xl + i)

=
(b− ixj)(c− ixj)(d− ixj)
(b+ ixj)(c+ ixj)(d+ ixj)

. (4.14)

4.2 Type II theory

Here we consider the difference equation of type II. The pseudo ground state wavefunction φ0(x)
is determined again as the zero mode of the A operator (2.3), Aφ0 = 0:

Type II : φ0(x)
def=

√∏6
j=1 Γ(aj + ix)Γ(aj − ix)√

Γ(2ix)Γ(−2ix)
,

where the same numbering of the parameters as those in (4.5) has been used. The similarity
transformed Hamiltonian acting on the polynomial space has the similar form as (4.6) but with
a different potential function V (x) (4.1) and compensation term αM(x) (4.2)

H̃ def= φ−1
0 ◦ H ◦ φ0 = V (x)

(
e−i∂x − 1

)
+ V (x)∗

(
ei∂x − 1

)
+M (M− 1 + (a+ b+ c+ d+ e+ f))x2. (4.15)

It can be verified that the resulting Hamiltonian H̃ (4.15) keeps the polynomial space VM
defined in (4.7) invariant. Like the type I case, this allows us to search the corresponding
eigenfunction Ψ(x) of form Ψ(x) =

∏M
l=1(x− xl)(x+ xl). Analogous calculation shows that the

polynomial Ψ(x) becomes the eigenfunction of H̃ (4.15) provided that the roots of the polynomial
satisfy the Bethe ansatz equations

M∏
l 6=j

(xj − xl − i)(xj + xl − i)
(xj − xl + i)(xj + xl + i)

=
V (xj)∗

V (xj)
(η(xj + i)− η(xj))
(η(xj)− η(xj − i))

(4.16)
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=
(a− ixj)(b− ixj)(c− ixj)(d− ixj)(e− ixj)(f − ixj)
(a+ ixj)(b+ ixj)(c+ ixj)(d+ ixj)(e+ ixj)(f + ixj)

, j = 1, . . . ,M. (4.17)

The corresponding eigenvalue E is given by

E = ∆3

(
M
1

)
+ (2∆4 + ∆5)

(
M
2

)
+ 4(∆5 + 1)

(
M
3

)
+ 8

(
M
4

)
− (∆5 + 2(M− 1))

M∑
l=1

x2
l .

Here the coefficients {∆j |j = 1, . . . , 6} are the elementary symmetric polynomials in the para-
meters {a, b, c, d, e, f} defined by

(a+ ix)(b+ ix)(c+ ix)(d+ ix)(e+ ix)(f + ix) def=
6∑

j=0

∆j(ix)j , ∆6 = 1.

Various limits to the exactly solvable cases are almost the same as in the type I theory and will
not be listed here.

It is interesting to note that the type II Hamiltonian of Section 3, (3.1), (3.3), (3.4), is
obtained from the type II Hamiltonian of Section 4, (3.1), (4.1), (4.2) as a formal limit e → 0,
f → 1/2:

4HSection 4|e→0,f→1/2 = HSection 3|M→2M.

The Bethe ansatz equations together with the eigenvalue formulas are related in similar ways.

5 Difference equation analogue of 1/ sin2 x potential
deformed by cos 2x potential

The last example is the difference analogue of the model discussed in Subsection 2.1.2 of [10],
1/ sin2 x potential deformed by a cos 2x potential. In this case the corresponding exactly solvable
difference equation has the Askey–Wilson polynomials [2, 3, 8, 9] as eigenfunctions. The basic
idea for showing quasi exact solvability is almost the same as shown above.

As introduced and explored in [10], this system is a quasi exactly solvable deformation of the
exactly solvable dynamics which has the Askey–Wilson polynomials [2, 3, 8, 9] as eigenfunctions.
Here we slightly change the notation from that of [10] for consistency with the rest of this paper.
The range of the parameter x is now finite, to be chosen as

0 < x < π,

and we introduce a complex variable z and the sinusoidal coordinate η(x):

z = eix, η(x) def= cosx = (z + z−1)/2.

The unit of the shift is changed from 1 to a real constant γ def= log q, 0 < q < 1. Then the shift
operator eγp can be written as

eγp = e−iγ d
dx = qD, D

def= z
d

dz
,

whose action on a function of x can be expressed as z → qz:

eγpf(x) = f(x− iγ) = qDf̌(z) = qz d
dz f̌(z) = f̌(qz), with f(x) = f̌(z).

Note that γ < 0.
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The Hamiltonian takes the form

H def=
√
V (x) eγp

√
V (x)∗ +

√
V (x)∗ e−γp

√
V (x)− V (x)− V (x)∗ + αM(x),

=
√
V (x) qD

√
V (x)∗ +

√
V (x)∗ q−D

√
V (x)− (V (x) + V (x)∗) + αM(x), (5.1)

= A†A+ αM(x), αM(x) def= −2abcdeq−1
(
1− qM

)
η(x),

A†
def= −i

(√
V (x) q

D
2 −

√
V (x)∗ q−

D
2

)
, A

def= i
(
q

D
2

√
V (x)∗ − q−

D
2

√
V (x)

)
, (5.2)

V (x) def= (1− az)V0(x), V0(x)
def=

(1− bz)(1− cz)(1− dz)(1− ez)
(1− z2)(1− qz2)

,

−1 < a, b, c, d, e < 1. (5.3)

The Hamiltonian is obtained by deforming the potential function V0(z) by a linear polynomial
in z. The parameter range (5.3) could be enlarged to one real parameter (say, a) and two
complex conjugate pairs (for example, b = c∗, d = e∗), but the absolute values must be less
than 1, |a| < 1, . . . , |e| < 1.

The pseudo ground state wavefunction φ0(x) is determined as the zero mode of the A opera-
tor (5.2), Aφ0 = 0:

φ0(x)
def=

√
(z2, z−2; q)∞

(az, az−1, bz, bz−1, cz, cz−1, dz, dz−1, ez, ez−1; q)∞
,

where (a1, . . . , am; q)∞
def=

∏m
j=1

∏∞
n=0(1 − ajq

n). Obviously φ0 has no node or singularity in
0 < x < π. We look for exact eigenvalues and eigenfunctions of the Hamiltonian (5.1) in the
form:

Hφ = Eφ, φ(x) = φ0(x)Ψ(η(x)), η(x) = cosx = (z + z−1)/2,

in which Ψ(η(x)) is a polynomial in η(x) or in (z + 1/z)/2 = cosx. The similarity transformed
Hamiltonian acting on the polynomial space has the form

H̃ def= φ−1
0 ◦ H ◦ φ0 = V (z)

(
qD − 1

)
+ V (z)∗

(
q−D − 1

)
− abcdeq−1

(
1− qM

) (
z +

1
z

)
.

Without the deformation factor 1− az and the compensation term, the above Hamiltonian H̃ is
exactly solvable, that is, it keeps the polynomial subspace in η(x) = (z + 1/z)/2 of any degree
invariant. The deformed Hamiltonian H̃ is parity invariant H|x→−x = H and it is straightforward
to show the existence of an invariant polynomial subspace:

H̃VM ⊆ VM,

VM
def= Span

[
1, η(x), . . . , η(x)k, . . . , η(x)M

]
, dimVM = M+ 1.

The above equations imply that the eigenfunctions of H̃ in the subspace VM are of the form

Ψ(x) =
M∏
l=1

(η(x)− η(xl)) =
M∏
l=1

(cosx− cosxl) ≡ PM(cosx).

Analogous calculation shows that Ψ(x) becomes the eigenfunction of H̃ if the parameters {xl}
satisfy the Bethe ansatz equations

M∏
l 6=j

cos(xj − iγ)− cosxl

cos(xj + iγ)− cosxl
=
V (xj)∗

V (xj)
η(xj + iγ)− η(xj)
η(xj)− η(xj − iγ)

(5.4)



14 R. Sasaki, W.-L. Yang and Y.-Z. Zhang

=
(zj − a)(zj − b)(zj − c)(zj − d)(zj − e)

(1− azj)(1− bzj)(1− czj)(1− dzj)(1− ezj)zj
, j = 1, . . . ,M. (5.5)

Note that zj = eixj and η(xj − iγ) = cos(xj − iγ) = (qz+ q−1z−1)/2, etc. Again the kinematical
factors (1−z±2)(1−qz±2) of V (x) and V (x)∗ are cancelled by η(x∓iγ)−η(x). The corresponding
eigenvalue E is given by

E = (abcd+ abce+ abde+ acde+ bcde)q−1
(
qM − 1

)
+ q−M − 1

− 2abcde qM−1
(
1− q−1

) M∑
l=1

cosxl, (5.6)

where {xl} satisfy the Bethe ansatz equations (5.5).
In this example, there are many ways to obtain exactly solvable dynamics; by making either

one (e), two (d, e), three (c, d, e), four (b, c, d, e) or five (a, b, c, d, e) parameters vanish. The
corresponding Hamiltonians are those describing the dynamics of the Askey–Wilson, continuous
dual q-Hahn, Al-Salam–Chihara, big q-Hermite and q-Hermite polynomials, respectively [8, 9,
2, 3, 6]. The eigenvalue formula (5.6) reduces to that of the Askey–Wilson polynomials for e = 0
[2, 3, 6];

E =
(
q−M − 1

)(
1− abcdqM+1

)
, (5.7)

and to a universal formula

E = q−M − 1, (5.8)

for the rest [2, 3, 6]. The Bethe ansatz equations (5.5) for the restricted case of e = 0

M∏
l 6=j

cos(xj − iγ)− cosxl

cos(xj + iγ)− cosxl
=

(zj − a)(zj − b)(zj − c)(zj − d)
(1− azj)(1− bzj)(1− czj)(1− dzj)

, j = 1, . . . ,M, (5.9)

then determine the zeros of the Askey–Wilson polynomials. Further restrictions d, e = 0, c, d, e =
0, b, c, d, e = 0 and a, b, c, d, e = 0 determine the zeros of the continuous dual q-Hahn, Al-Salam–
Chihara, big q-Hermite and q-Hermite polynomials, respectively [9, 6].

6 Summary and comments

We have constructed Bethe ansatz solutions for the quasi exactly solvable difference equations of
one degree of freedom introduced in [10] and [11]. These quasi exactly solvable difference equa-
tions are deformations of the well-known exactly solvable difference equations of the Meixner–
Pollaczek, continuous Hahn, continuous dual Hahn, Wilson and Askey–Wilson polynomials. The
eigenfunctions within the exactly solvable subspace are explicitly given by some polynomials
(module a pseudo ground state wavefunction φ0) whose roots are solutions of the associated
Bethe ansatz equations. The corresponding eigenvalues are expressed in terms of the solutions
of the Bethe ansatz equations. These are difference equation counterparts of the results of
Sasaki–Takasaki [15], which gave a Bethe ansatz formulation of the QES systems corresponding
to the harmonic oscillator (with/without a centrifugal barrier) deformed by a sextic potential
and the 1/ sin2 x potential deformed by a cos 2x potential.

As in the exactly solvable quantum mechanics, the sinusoidal coordinates η(x) [4, 5] play an
essential role. The exactly solvable sector is spanned by it

Span
[
1, η(x), . . . , η(x)k, . . . , η(x)M

]
,
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then the Bethe ansatz equations take an almost universal form, (2.10), (3.10), (3.14), (3.20),
(3.23), (4.8), (4.16) and (5.4). The limits or restrictions to the exactly solvable dynamics are
demonstrated in detail including various eigenvalue formulas (2.14), (2.15), (3.17), (3.18), (4.11),
(4.12), (5.7) and (5.8). The Bethe ansatz equations reduce to those determining the zeros of the
corresponding orthogonal polynomials, for example (2.16), (4.13), (4.14) and (5.9).

All the known quasi exactly solvable dynamics have the exactly solvable subspace consisting
of polynomials in a certain variable (see, e.g. [22]). Our emphasis here is that the variable
is the sinusoidal coordinate which plays the central role in the corresponding exactly solvable
limits [4, 5, 6].

It should be mentioned that there exist some examples of deriving (quasi) exactly solvable
difference equations in terms of Lie algebraic deformations of exactly solvable dynamics intro-
duced by Turbiner and his collaborators [23]. These difference equations have shifts in the real
direction ψ(x±1) and the corresponding eigenfunctions have discrete orthogonality measures, in
contrast to those discussed in this paper which have pure imaginary shifts, ψ(x± i) or ψ(x± iγ),
γ ∈ R, and the corresponding eigenfunctions have continuous orthogonality measures.

The deformations of exactly solvable dynamics for obtaining the quasi exactly solvable quan-
tum systems introduced in [15, 10, 11] and discussed in this paper in detail, are of the simplest
type, in which the compensation term is linear in the sinusoidal coordinate. Possibility of further
deformations including quadratic compensation terms will be discussed in [24], in particular, for
those quantum systems having discrete orthogonality measures [7].
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