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1 Introduction

Orthogonal polynomials (OP) have been a subject of research in the last hundred and fifty
years. The orthogonality considered in our contribution is related to a form (regular linear
functional) [8, 24] and not only to a positive measure. By classical orthogonal polynomials
sequences (OPS), we refer to Hermite, Laguerre, Bessel and Jacobi polynomials. In the liter-
ature, the extension of classical (OPS) can be done from different approaches such that the
hypergeometric character [7, 8, 11, 18, 22] and the distributional equation of Pearson type
[6, 8, 20, 29, 32]. A natural generalization of the classical character is the semiclassical one
introduced by J.A. Shohat in [35]. This theory was developed by P. Maroni and extensively
studied by P. Maroni and coworkers in the last decade [1, 24, 26, 28, 32]. Let Φ monic and Ψ be
two polynomials, deg Φ = t ≥ 0, deg Ψ = p ≥ 1. We suppose that the pair (Φ,Ψ) is admissible,
i.e., when p = t − 1, writing Ψ(x) = apx

p + · · · , then ap 6= n + 1, n ∈ N. A form u is called
semiclassical when it is regular and satisfies the distributional equation of Pearson type

D(Φu) + Ψu = 0, (1.1)

where the pair(Φ,Ψ) is admissible and D is the derivative operator. The corresponding monic
orthogonal polynomials sequence (MOPS) {Bn}n≥0 is called semiclassical. Moreover, if u is
semiclassical satisfying (1.1), the class of u, denoted s is defined by

s := min
(
max(deg Φ− 2,deg Ψ− 1)

)
≥ 0,

where the minimum is taken over all pairs (Φ,Ψ) satisfying (1.1). In particular, when s = 0 the
classical case is recovered.

Symmetrical semiclassical forms of class one are well described in [1], see also [6]; there are
three canonical situations:
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1) The generalized Hermite formH(µ) (µ 6= 0, µ 6= −n− 1
2 , n ≥ 0) satisfying the distributional

equation of Pearson type

D(xH(µ)) +
(
2x2 − (2µ+ 1)

)
H(µ) = 0. (1.2)

2) The generalized Gegenbauer G(α, β) (α 6= −n− 1, β 6= −n− 1, β 6= −1
2 , α+ β 6= −n− 1,

n ≥ 0) satisfying the distributional equation of Pearson type

D
(
x
(
x2 − 1

)
G(α, β)

)
+

(
− 2(α+ β + 2)x2 + 2(β + 1)

)
G(α, β) = 0. (1.3)

For further properties of the generalized Hermite and the generalized Gegenbauer polyno-
mials see [8, 15, 26].

3) The form B[ν] of Bessel kind (ν 6= −n − 1, n ≥ 0) [1, 31] satisfying the distributional
equation of Pearson type

D
(
x3B[ν]

)
−

(
2(ν + 1)x2 + 1

2

)
B[ν] = 0. (1.4)

For an integral representation of B[ν] and some additional features of the associated
(MOPS) see [14].

Other families of semiclassical orthogonal polynomials of class greater than one were discov-
ered by solving functional equations of the type P (x)u = Q(x)v, where P , Q are two polynomials
cunningly chosen and u, v two linear forms [19, 26, 27, 34]. For other relevant works in the semi-
classical case see [5, 23].

In [21], instead of the derivative operator, the q-difference one is used to establish the theo-
ry and characterizations of Hq-semiclassical orthogonal q-polynomials. Some examples of Hq-
semiclassical orthogonal q-polynomials are given in [2, 13]. The Hq-classical case is exhaustively
described in [20, 32]. Moreover, in [30] the symmetrical Dω-semiclassical orthogonal polynomials
of class one are completely described by solving the system of their Laguerre–Freud equations
where Dw is the Hahn’s operator.

So, the aim of this paper is to present the classification of the symmetrical Hq-semiclassical
orthogonal q-polynomials of class one by investigating the quadratic operator σ, the q-analog of
the distributional equation of Pearson type satisfied by the corresponding form and some Hq-
classical situations (see Tables 1 and 2) in connection with our problem. Among the obtained
canonical cases, three are well known: two symmetrical Brenke type (MOPS) [8, 9, 10] and
a symmetrical case of the Al-Salam and Verma (MOPS) [2]. Also, q-analogues of H(µ), G(α, β)
and B[ν] appear. In [3, 33], the authors have established, up a dilation, a q-analogues of H(µ)
and B[ν] using other methods. For any canonical case, we determine the recurrence coefficient,
the q-analog of the distributional equation of Pearson type, the moments and a discrete measure
or an integral representation.

2 Preliminary and first results

2.1 Preliminary and notations

Let P be the vector space of polynomials with coefficients in C and let P ′ be its topological
dual. We denote by 〈u, f〉 the effect of u ∈ P ′ on f ∈ P. In particular, we denote by (u)n :=
〈u, xn〉, n ≥ 0 the moments of u. Moreover, a form (linear functional) u is called symmetric if
(u)2n+1 = 0, n ≥ 0.

Let us introduce some useful operations in P ′. For any form u, any polynomial g and any
(a, b, c) ∈ (C \ {0})× C2, we let Hqu, gu, hau, τbu, (x− c)−1u and δc, be the forms defined by
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Table 1. Canonical cases.

Hq-classical linear form

case 1.1 U

β̂n = {1− (1 + q)qn}qn−1, n ≥ 0,
γ̂n+1 = (qn+1 − 1)q3n, n ≥ 0,
Hq(xU)− (q − 1)−1(x+ 1)U = 0,
(U)n = (−1)nq

1
2 n(n−1), n ≥ 0,

U =
∞∑

k=0

(−1)k q−k2
s(k)

(q−1; q−1)k
δ−qk , q > 1,

where s(k) =
∞∑

m=0

q−( 1
2 m(m+1)+km)

(q−1; q−1)k
εm+k, ε2k = (q − 1)k, k ≥ 0 and ε2k+1 = 0, k ≥ 0

case 1.2 little q-Laguerre L(a, q)
(
a 6= 0, a 6= q−n−1, n ≥ 0

)
β̂n = {1 + a− a(1 + q)qn}qn, n ≥ 0,
γ̂n+1 = a(1− qn+1)(1− aqn+1)q2n+1, n ≥ 0,
Hq(xL(a, q))− (aq)−1(q − 1)−1{x− 1 + aq}L(a, q) = 0,
(L(a, q))n = (aq; q)n, n ≥ 0,

L(a, q) = (aq; q)∞
∞∑

k=0

(aq)k

(q; q)k
δqk , 0 < q < 1, 0 < a < q−1,

〈L(a, q), f〉 = K

∫ q−1

0

x
ln a
ln q (qx; q)∞f(x)dx, f ∈ P, 0 < q < 1, 0 < a < q−1,

where K−1 = q−
ln a
ln q−1

∫ 1

0

x
ln a
ln q (x; q)∞dx,

L(a, q) = 1
(a;q−1)∞

∞∑
k=0

q−
1
2 k(k−1)

(q−1; q−1)k
(−a)kδqk , q > 1, a < 0

case 1.3 Wall W(b, q)
(
b 6= 0, b 6= q−n, n ≥ 0

)
β̂n = {b+ q − b(1 + q)qn}qn, n ≥ 0,
γ̂n+1 = b(1− qn+1)(1− bqn)q2n+2, n ≥ 0,
Hq(xW(b, q))− b−1(q − 1)−1(q−1x+ b− 1)W(b, q) = 0,
(W(b, q))n = qn(b; q)n, n ≥ 0,

〈W(b, q), f〉 = (b;q)∞
2

∞∑
k=0

bk

(q; q)k
〈δq1+k , f〉+

K

2

∫ 1

0

x
ln b
ln q−1(x; q)∞f(x)dx,

where K−1 =
∫ 1

0

x
ln b
ln q−1(x; q)∞dx, f ∈ P, 0 < q < 1, 0 < b < 1,

〈W(b, q), f〉 = 1
(bq−1;q−1)∞

∞∑
k=0

q−
1
2 k(k+1)

(q−1; q−1)k
(−b)k〈δq1+k , f〉, f ∈ P, q > 1, b 6= q±k, k ≥ 0

duality

〈Hqu, f〉 := −〈u,Hqf〉, 〈gu, f〉 := 〈u, gf〉, 〈hau, f〉 := 〈u, haf〉, f ∈ P,
〈τbu, f〉 := 〈u, τ−bf〉, 〈(x− c)−1u, f〉 := 〈u, θcf〉, 〈δc, f〉 := f(c), f ∈ P,

where (Hqf)(x) = f(qx)−f(x)
(q−1)x , q ∈ C̃ :=

{
z ∈ C, z 6= 0, zn 6= 1, n ≥ 1

}
[16, 18], (haf)(x) = f(ax),

(τ−bf)(x) = f(x+ b), (θcf)(x) = f(x)−f(c)
x−c [24] and it’s easy to see that [20, 26]

Hq(fu) = (hq−1f)Hqu+ q−1(Hq−1f)u, f ∈ P, u ∈ P ′, (2.1)

(x− c)((x− c)−1u) = u, (x− c)−1((x− c)u) = u− (u)0δc.
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Continuation of Table 1.

case 1.4 Generalized q−1-Laguerre U (α)(b, q)
(
b 6= 0, b 6= qn+1+α, n ≥ 0

)
β̂n = {1− q−n−1 + q−1(1− bq−n−α)}q2n+α+1, n ≥ 0,
γ̂n+1 = (1− q−n−1)(1− bq−n−1−α)q4n+2α+3, n ≥ 0,
Hq(xU (α)(b, q)) + (q − 1)−1q−α−1(x+ b− qα+1)U (α)(b, q) = 0,
(U (α)(b, q))n = (−b)n(b−1qα+1; q)n, n ≥ 0,

〈U (α)(b, q), f〉 = (b−1qα+1; q)∞
∞∑

k=0

(b−1qα+1)k

(q; q)k
〈δ−bqk , f〉,

f ∈ P, 0 < q < 1, b > qα+1, α ∈ R,

〈U (α)(b, q), f〉 = 1
2(b−1qα;q−1)∞

∞∑
k=0

q−
1
2 k(k−1)(−b−1qα)k

(q−1; q−1)k
〈δ−bqk , f〉

+
K

2

∫ ∞

0

xα− ln b
ln q

(−b−1x; q−1)∞
f(x)dx, f ∈ P, q > 1, qα < b < qα+1, α ∈ R,

where K−1 =
∫ ∞

0

xα− ln b
ln q

(−b−1x; q−1)∞
dx is given by (2.4)

case 1.5 Alternative q-Charlier A(a, q)
(
a 6= 0, a 6= −q−n, n ≥ 0

)
β̂n =

1 + aqn−1 + aqn − aq2n

(1 + aq2n−1)(1 + aq2n+1)
qn, n ≥ 0,

γ̂n+1 = aq3n+1 (1− qn+1)(1 + aqn)
(1 + aq2n)(1 + aq2n+1)2(1 + aq2n+2)

, n ≥ 0,

Hq(x2A(a, q))− (aq)−1(q − 1)−1{(1 + aq)x− 1}A(a, q) = 0,

(A(a, q))n =
1

(−aq; q)n
, n ≥ 0,

〈A(a, q), f〉 =
1

2(−aq; q)∞

∞∑
k=0

q
1
2 k(k+1)ak

(q; q)k
〈δqk , f〉+ q

1
2 ( ln a

ln q + 1
2 )2 (−a−1; q)∞

2
√

2π ln q−1

×
∫ ∞

0

x
ln a
ln q−

1
2 (qx; q)∞ exp

(
− ln2 x

2 ln q−1

)
f(x)dx, f ∈ P, 0 < q < 1, a > 0

Now, we introduce the operator σ : P −→ P defined by (σf)(x) := f(x2) for all f ∈ P.
Consequently, we define σu by duality [8, 25]

〈σu, f〉 := 〈u, σf〉, f ∈ P, u ∈ P ′.

We have the well known formula [25]

f(x)σu = σ
(
f
(
x2

)
u
)
. (2.2)

Let {Bn}n≥0 be a sequence of monic polynomials with degBn = n, n ≥ 0, the form u is called
regular if we can associate with it a sequence of polynomials {Bn}n≥0 such that 〈u,BmBn〉 =
rnδn,m, n,m ≥ 0; rn 6= 0, n ≥ 0. The sequence {Bn}n≥0 is then said orthogonal with respect
to u. {Bn}n≥0 is an (OPS) and it can be supposed (MOPS). The sequence {Bn}n≥0 fulfills the
recurrence relation

B0(x) = 1, B1(x) = x− β0,

Bn+2(x) = (x− βn+1)Bn+1(x)− γn+1Bn(x), γn+1 6= 0, n ≥ 0. (2.3)

When u is regular, {Bn}n≥0 is a symmetrical (MOPS) if and only if βn = 0, n ≥ 0.
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Continuation of Table 1.

case 1.6 little q-Jacobi U(a, b, q)
(
ab 6= 0, a 6= q−n−1, b 6= q−n−1, ab 6= q−n, n ≥ 0

)
β̂n =

(1 + a)(1 + abq2n+1)− a(1 + b)(1 + q)qn

(1− abq2n)(1− abq2n+2)
qn, n ≥ 0,

γ̂n+1 = aq2n+1 (1− qn+1)(1− aqn+1)(1− bqn+1)(1− abqn+1)
(1− abq2n+1)(1− abq2n+2)2(1− abq2n+3)

, n ≥ 0,

Hq(x(x− b−1q−1)U(a, b, q)) + (abq2(q − 1))−1{(1− abq2)x+ aq − 1}U(a, b, q) = 0,

(U(a, b, q))n =
(aq; q)n

(abq2; q)n
, n ≥ 0,

〈U(a, b, q), f〉 =
(aq; q)∞

2(abq2; q)∞

∞∑
k=0

(bq; q)k

(q; q)k
(aq)k〈δqk , f〉+

K

2

∫ q−1

0

x
ln a
ln q

(qx; q)∞
(bqx; q)∞

f(x)dx,

f ∈ P, 0 < q < 1, 0 < a < q−1, b ∈]−∞, 1] \ {0}, where K−1 =
∫ q−1

0

x
ln a
ln q

(qx; q)∞
(bqx; q)∞

dx,

〈U(a, b, q), f〉 =
(a−1q−1; q−1)∞

2(a−1b−1q−2; q−1)∞

∞∑
k=0

(b−1q−1; q−1)k

(q−1; q−1)k
(aq)−k〈δb−1q−k−1 , f〉

+
K

2

∫ b−1

0

x
ln a
ln q

(bx; q−1)∞
(x; q−1)∞

f(x)dx,

f ∈ P, q > 1, a > q−1, b ≥ 1 where K−1 =
∫ b−1

0

x
ln a
ln q

(bx; q−1)∞
(x; q−1)∞

dx

case 1.7 q-Charlier-II-U(µ, q)
(
µ 6= 0, µ 6= q−n, n ≥ 0

)
β̂n =

1− (1 + q)qn + µq2n

(1− µq2n−1)(1− µq2n+1)
qn−1, n ≥ 0,

γ̂n+1 = −q3n (1− qn+1)(1− µqn)
(1− µq2n)(1− µq2n+1)2(1− µq2n+2)

, n ≥ 0,

Hq(x(x− µ−1q−1)U(µ, q))− (µq(q − 1))−1{(µq − 1)x− 1}U(µ, q) = 0,

(U(µ, q))n = (−1)n q
1
2 n(n−1)

(µq; q)n
, n ≥ 0,

〈U(µ, q), f〉 =
1

(µ−1q−1; q−1)∞

∞∑
k=0

q−
1
2 k(k+1)

(q−1; q−1)k
(−µ−1)k〈δµ−1q−k−1 , f〉, f ∈ P, q > 1, µ < 0

Lastly, let us recall the following standard expressions [8, 11, 20]

(a; q)0 := 1, (a; q)n :=
n∏

k=1

(
1− aqk−1

)
, n ≥ 1,

(a; q)∞ :=
∞∏

k=0

(
1− aqk

)
, |q| < 1,

the q-binomial theorem [4, 17]

∞∑
k=0

(a; q)k

(q; q)k
zk =

(az; q)∞
(z; q)∞

, |z| < 1, |q| < 1,∫ ∞

0
tx−1 (−at; q)∞

(−t; q)∞
dt

=


π

sin(πx)
(a; q)∞

(aq−x; q)∞
(q1−x; q)∞

(q; q)∞
, x ∈ R+ \ N, |a| < qx, 0 < q < 1,

(−q)m

1− qm

(q−1; q−1)m

(aq−1; q−1)m
ln(q−1), x = m ∈ N?, |a| < qm, 0 < q < 1.

(2.4)
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Continuation of Table 1.

case 1.8 Generalized Stieltjes–Wigert S(ω, q)
(
ω 6= q−n, n ≥ 0

)
β̂n = {(1 + q)q−n − q − ω}q−n− 3

2 , n ≥ 0,
γ̂n+1 = (1− qn+1)(1− ωqn)q−4n−4, n ≥ 0,
Hq(x(x+ ωq−

3
2 )S(ω, q))− (q − 1)−1

{
x+ (ω − 1)q−

3
2
}
S(ω, q) = 0,

(S(ω, q))n = q−
1
2 n(n+2)(ω; q)n, n ≥ 0,

S(ω, q) = (ω−1; q−1)∞
∞∑

k=0

ω−k

(q−1; q−1)k
δ
−ωq−k− 3

2
, q > 1, ω > 1,

〈S(ω, q), f〉 = K

∫ ∞

0

x
ln ω
ln q −1

(−q 3
2ω−1x; q)∞

f(x)dx, f ∈ P, 0 < q < 1, 0 < ω < 1,

where K−1 =
∫ ∞

0

x
ln ω
ln q −1

(−q 3
2ω−1x; q)∞

dx is given by (2.4),

〈S(ω, q), f〉 = Kω

∫ ∞

q−
1
2 |ω|

(−q− 1
2 |ω|x−1; q)∞ exp

(
− ln2 x

2 ln q−1

)
f(x)dx,

f ∈ P, 0 < q < 1, ω ≤ 0,

where K−1
ω =

∫ ∞

q−
1
2 |ω|

(−q− 1
2 |ω|x−1; q)∞ exp

(
− ln2 x

2 ln q−1

)
dx,

in particular K0 =
√

q

2π ln q−1

Table 2. Limiting cases.

Hq-classical linear form

case 2.1 q-analogue of Laguerre L(α, q) (α 6= −[n]q − 1, n ≥ 0)

β̂n = qn
{
(1 + q−1)[n]q + 1 + α

}
, n ≥ 0,

γ̂n+1 = q2n[n+ 1]q
{
[n]q + 1 + α

}
, n ≥ 0,

Hq(xL(α, q)) + (x− 1− α)L(α, q) = 0

case 2.2 q-analogue of Bessel B(α, q) (α 6= 1
2 (q − 1)−1, α 6= − 1

2 [n]q, n ≥ 0)

β̂n = −2qn 2α+ (1 + q−1)[n− 1]q − q−1[2n]q
(2α+ [2n− 2]q)(2α+ [2n]q)

, n ≥ 0,

γ̂n+1 = −4q3n [n+ 1]q(2α+ [n− 1]q)
(2α+ [2n− 1]q)(2α+ [2n]q)2(2α+ [2n+ 1]q)

, n ≥ 0,

Hq(x2B(α, q))− 2(αx+ 1)B(α, q) = 0

case 2.3 q-analogue of Jacobi J(α, β, q) (α+ β 6= 3−2q
q−1 ,

α+ β 6= −[n]q − 2, n ≥ 0, β 6= −[n]q − 1, n ≥ 0 et α+ β + 2− (β + 1)qn + [n]q 6= 0, n ≥ 0)

β̂n = qn−1 (1 + q)(α+ β + 2 + [n− 1]q)(β + 1 + [n]q)− (β + 1)(α+ β + 2 + [2n]q)
(α+ β + 2 + [2n− 2]q)(α+ β + 2 + [2n]q)

, n ≥ 0,

γ̂n+1 = q2n [n+ 1]q(α+ β + 2 + [n− 1]q)([n]q + β + 1)(α+ β + 2− (β + 1)qn + [n]q)
(α+ β + 2 + [2n− 1]q)(α+ β + 2 + [2n]q)2(α+ β + 2 + [2n+ 1]q)

, n ≥ 0,

Hq(x(x− 1)J(α, β, q))− ((α+ β + 2)x− (β + 1))J(α, β, q) = 0

2.2 Some results about the Hq-semiclassical character

A form u is called Hq-semiclassical when it is regular and there exist two polynomials Φ and Ψ,
Φ monic, deg Φ = t ≥ 0, deg Ψ = p ≥ 1 such that

Hq(Φu) + Ψu = 0, (2.5)

the corresponding orthogonal polynomial sequence {Bn}n≥0 is called Hq-semiclassical [21].
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The Hq-semiclassical character is kept by a dilation [21]. In fact, let {a−n(haBn)}n≥0, a 6= 0;
when u satisfies (2.5), then ha−1u fulfills the q-analog of the distributional equation of Pearson
type

Hq

(
a−tΦ(ax)ha−1u

)
+ a1−tΨ(ax)ha−1u = 0,

and the recurrence coefficients of (2.3) are

βn

a
,

γn+1

a2
, n ≥ 0.

Also, the Hq-semiclassical form u is said to be of class s = max(p − 1, t − 2) ≥ 0 if and only
if [21] ∏

c∈ZΦ

{∣∣q(hqΨ)(c) + (HqΦ)(c)
∣∣ +

∣∣〈u, q(θcqΨ) + (θcq ◦ θcΦ)〉
∣∣} > 0, (2.6)

where ZΦ is the set of zeros of Φ. In particular, when s = 0 the form u is usually called
Hq-classical (Al-Salam–Carlitz, big q-Laguerre, q-Meixner, Wall, . . . ) [20].

Lemma 1 ([21]). Let u be a symmetrical Hq-semiclassical form of class s satisfying (2.5). The
following statements holds

i) If s is odd then the polynomial Φ is odd and Ψ is even.

ii) If s is even then the polynomial Φ is even and Ψ is odd.

In the sequel we are going to use some Hq-classical forms [20], resumed in Table 1 (canonical
cases: 1.1–1.8) and Table 2 (limiting cases: 2.1–2.3). In fact, when q → 1 in results of Table 2,
we recover the classical Laguerre L(α), Bessel B(α) and h− 1

2
◦ τ−1J (α, β) respectively where

J (α, β) is the Jacobi classical form [24].
Moreover in what follows we are going to use the logarithmic function denoted by Log :

C \ {0} −→ C defined by

Log z = ln |z|+ iArg z, z ∈ C \ {0}, −π < Arg z ≤ π,

Log is the principal branch of log and includes ln : R+\{0} −→ R as a special case. Consequently,
the principal branch of the square root is

√
z =

√
|z| ei Arg z

2 , z ∈ C \ {0}, −π < Arg z ≤ π.

2.3 On quadratic decomposition of a symmetrical regular form

Let u be a symmetrical regular form and {Bn}n≥0 be its MOPS satisfying (2.3) with βn = 0,
n ≥ 0. It is very well known (see [8, 25]) that

B2n(x) = Pn

(
x2

)
, B2n+1(x) = xRn

(
x2

)
, n ≥ 0,

where {Pn}n≥0 and {Rn}n≥0 are the two MOPS related to the regular form σu and xσu respec-
tively. In fact, [8, 25]

u is regular ⇔ σu and xσu are regular,
u is positive definite ⇔ σu and xσu are positive definite.
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Furthermore, taking

P0(x) = 1, P1(x) = x− βP
0 ,

Pn+2(x) =
(
x− βP

n+1

)
Pn+1(x)− γP

n+1Pn(x), γP
n+1 6= 0, n ≥ 0,

and

R0(x) = 1, R1(x) = x− βR
0 ,

Rn+2(x) =
(
x− βR

n+1

)
Rn+1(x)− γR

n+1Rn(x), γR
n+1 6= 0, n ≥ 0,

we get [8, 25]

βP
0 = γ1,

βP
n+1 = γ2n+2 + γ2n+3 , n ≥ 0,

γP
n+1 = γ2n+1γ2n+2, n ≥ 0, (2.7)

and

βR
n = γ2n+1 + γ2n+2, n ≥ 0,

γR
n+1 = γ2n+2γ2n+3, n ≥ 0. (2.8)

Consequently,

γ1 = βP
0 , γ2 =

γP
1

βP
0

,

γ2n+1 = βP
0

n∏
k=1

γR
k

n∏
k=1

γP
k

, γ2n+2 =
1
βP

0

n+1∏
k=1

γP
k

n∏
k=1

γR
k

, n ≥ 1. (2.9)

Proposition 1. Let u be a symmetrical regular form.

(i) The moments of u are

(u)2n = (σu)n, (u)2n+1 = 0, n ≥ 0. (2.10)

(ii) If σu has the discrete representation

σu =
∞∑

k=0

ρkδτk
,

∞∑
k=0

ρk = 1, (2.11)

then a possible discrete measure of u is

u =
∞∑

k=0

ρk

δ√τk
+ δ−

√
τk

2
. (2.12)

(iii) If u is positive definite and σu has the integral representation

〈σu, f〉 =
∫ ∞

0
V (x)f(x)dx, f ∈ P,

∫ ∞

0
V (x)dx = 1, (2.13)

then, a possible integral representation of u is

〈u, f〉 =
∫ ∞

−∞
|x|V (x2)f(x)dx, f ∈ P. (2.14)



The Symmetrical Hq-Semiclassical Orthogonal Polynomials of Class One 9

Proof. (i) is a consequence from the definition of the quadratic operator σ.
For (ii) taking into account (2.10), (2.11) we get

(u)2n = (σu)n =
∞∑

k=0

ρk(
√
τk)2n =

∞∑
k=0

ρk
(
√
τk)2n + (−

√
τk)2n

2
.

But

(u)2n+1 = 0 =
∞∑

k=0

ρk
(
√
τk)2n+1 + (−

√
τk)2n+1

2
.

Hence the desired result (2.12) holds.
For (iii) consider f ∈ P and let us split up the polynomial f accordingly to its even and odd

parts

f(x) = f e
(
x2

)
+ xfo

(
x2

)
. (2.15)

Therefore since u is a symmetrical form

〈u, f(x)〉 = 〈u, f e
(
x2

)
〉 = 〈σu, f e(x)〉. (2.16)

From (2.15) we get

f e(x) =
f(
√
x) + f(−

√
x)

2
, x ∈ R+. (2.17)

By (2.13) and according to (2.16), (2.17) we recover the representation in (2.14). �

3 Symmetrical H√
q-semiclassical orthogonal polynomials

of class one

Lemma 2. We have

σ(Hqu) = (q + 1)Hq2(σ(xu)), u ∈ P ′. (3.1)

Proof. From the definition of Hq we get

(Hq(σf))(x) = (q + 1)x(σ(Hq2f))(x), f ∈ P.

Therefore, ∀ f ∈ P,

〈σ(Hqu), f〉 = 〈Hqu, σf〉 = −〈u, (q + 1)xσ(Hq2f)〉
= −〈(q + 1)σ(xu),Hq2f〉 = 〈(q + 1)Hq2(σ(xu)), f〉.

Thus the desired result. �

Lemma 3. Let u be a symmetrical H√
q-semiclassical form of class one. There exist two poly-

nomials ϕ and ψ, ϕ monic, with degϕ ≤ 1 and degψ = 1, such that

H√
q

(
xϕ

(
x2

)
u
)

+ ψ
(
x2

)
u = 0. (3.2)

Proof. The result is a consequence from the definition of the class and Lemma 1. �
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Corollary 1. Let u be a symmetrical H√
q-semiclassical form of class one satisfying (3.2); then

σu et xσu are Hq-classical satisfying respectively the following q-analog of the distributional
equation of Pearson type

Hq(xϕ(x)σu) +
1

√
q + 1

ψ(x)σu = 0, (3.3)

Hq(xϕ(x)(xσu)) + q−1

(
1

√
q + 1

ψ(x)− ϕ(x)
)

(xσu) = 0. (3.4)

Proof. First, σu and xσu are regular because u is symmetrical and regular. Applying the
quadratic operator σ to (3.2) and taking into account (3.1) we get

(
√
q + 1)Hq

(
σ
(
x2ϕ

(
x2

)
u
))

+ σ
(
ψ

(
x2

)
u
)
= 0.

By (2.2) we get (3.3). Now, multiplying both sides of (3.3) by q−1x, using the identity in (2.1),
this yields to (3.4). �

Regarding Table 1 (cases 1.1–1.8), Table 2 (cases 2.1–2.3) and the q-analog of the distribu-
tional equation of Pearson type (3.3), (3.4), we consider the following situations for the polyno-
mial ϕ in order to get a H√

q-semiclassical form from a Hq-classical

A. ϕ(x) = 1 (cases 1.1, 1.2, 1.3, 1.4, 2.1); B. ϕ(x) = x (cases 1.5, 2.2);

C. ϕ(x) = x− 1 (case 2.3); D. ϕ(x) = x− b−1q−1 (case 1.6);

E. ϕ(x) = x− µ−1q−1 (case 1.7); F. ϕ(x) = x+ ωq−
3
2 (case 1.8).

A. In the case ϕ(x) = 1 the q-analog of the distributional equation of Pearson type (3.3),
(3.4) are

Hq(xσu) +
1

√
q + 1

ψ(x)σu = 0, (3.5)

Hq(x(xσu)) + q−1

(
1

√
q + 1

ψ(x)− 1
)

(xσu) = 0. (3.6)

A1. If ψ(x) = (
√
q+1)(x−1−α) the q-analogue of the Laguerre form L(α, q), α 6= −[n]q−1,

n ≥ 0 (case 2.1 in Table 2) satisfying

Hq(xL(α, q)) + (x− 1− α)L(α, q) = 0.

Comparing with (3.5), (3.6) we get

σu = L(α, q), α 6= −[n]q − 1, n ≥ 0, (3.7)

and

xσu = (1 + α)L
(
q−1(α+ 2)− 1, q

)
, α 6= −[n]q − 1, n ≥ 0. (3.8)

Taking into account the recurrence coefficients (see case 2.1 in Table 2), by virtue of (3.7), (3.8)
and (2.7), (2.8) we get for n ≥ 0

βP
n = qn

{(
1 + q−1

)
[n]q + 1 + α

}
,

γP
n+1 = q2n[n+ 1]q{[n]q + 1 + α},
βR

n = qn+1
{(

1 + q−1
)
[n]q + q−1(2 + α)

}
,

γR
n+1 = q2n+2[n+ 1]q

{
[n]q + q−1(2 + α)

}
.
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With the relation [k − 1]q = q−1[k]q − q−1, k ≥ 1 the system (2.9) becomes for n ≥ 0

γ2n+1 = qn([n]q + 1 + α), γ2n+2 = qn[n+ 1]q. (3.9)

Writing α = µ − 1
2 , µ 6= −[n]q − 1

2 , n ≥ 0 and denoting the symmetrical form u by H(µ, q) we
get the following result:

Proposition 2. The symmetrical form H(µ, q) satisfies the following properties:

1) The recurrence coefficient γn+1 satisfies (3.9).

2) H(µ, q) is regular if and only if µ 6= −[n]q − 1
2 , n ≥ 0.

3) H(µ, q) is positive definite if and only if q > 0, µ > −1
2 .

4) H(µ, q) is a H√
q-semiclassical form of class one for µ 6= 1√

q(
√

q+1) −
1
2 , µ 6= −[n]q − 1

2 ,
n ≥ 0 satisfying the q-analog of the distributional equation of Pearson type

H√
q(xH(µ, q)) + (

√
q + 1)

(
x2 − µ− 1

2

)
H(µ, q) = 0. (3.10)

Proof. The results in 1), 2) and 3) are straightforward from (3.9). For 4), it is clear that
H(µ, q) satisfies (3.10); in this case and by virtue of (2.6), we are going to prove that the class
of H(µ, q) is exactly one for µ 6= 1√

q(
√

q+1) −
1
2 , µ 6= −[n]q − 1

2 , n ≥ 0. Denoting Φ(x) = x,

Ψ(x) = (
√
q + 1)

(
x2 − µ− 1

2

)
, we have accordingly to (2.6), on one hand

√
q
(
h√qΨ

)
(0) +

(
H√

qΦ
)
(0) = 1−√

q(
√
q + 1)

(
µ+

1
2

)
6= 0,

and on the other hand by (θ0Ψ)(x) = (
√
q + 1)x and (θ2

0Φ)(x) = 0,

〈H(µ, q),
√
qθ0Ψ + θ2

0Φ〉 = 0,

taking into account that u is a symmetrical form. �

Remark 1. The symmetrical form H(µ, q), µ 6= 1√
q(
√

q+1) −
1
2 , µ 6= −[n]q − 1

2 , n ≥ 0 is the
q-analogue of the generalized Hermite one [12] (when q → 1 we recover the generalized Hermite
formH(µ) (see (1.2)) which is a symmetrical semiclassical form of class one for µ 6= 0, µ 6= −n− 1

2 ,
n ≥ 0 [1, 8, 15, 26]).

A2. If ψ(x) = −(
√
q−1)−1(x+1) the form U that satisfies the q-analog of the distributional

equation of Pearson type (see case 1.1 in Table 1)

Hq(xU)− (q − 1)−1(x+ 1)U = 0.

Comparing with (3.5), (3.6) we get

σu = U , (3.11)

and

xσu = −hqU . (3.12)

Taking into account (3.11), (3.12), (2.7), (2.8) and the case 1.1 in Table 1 we obtain for n ≥ 0

βP
n =

{
1− (1 + q)qn

}
qn−1, γP

n+1 =
(
qn+1 − 1

)
q3n,

βR
n =

{
1− (1 + q)qn

}
qn, γR

n+1 =
(
qn+1 − 1

)
q3n+2.

Consequently, the system (2.9) becomes for n ≥ 0

γ2n+1 = −q2n, γ2n+2 =
(
1− qn+1

)
qn. (3.13)
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Proposition 3. The symmetrical form u satisfies the following properties:

1) The recurrence coefficient γn+1 satisfies (3.13).

2) u is regular for any q ∈ C̃.

3) u is a H√
q-semiclassical form of class one satisfying

H√
q(xu)− (

√
q − 1)−1

(
x2 + 1

)
u = 0. (3.14)

4) The moments of u are

(u)2n = (−1)nq
1
2
n(n−1), (u)2n+1 = 0, n ≥ 0.

5) we have the following discrete representation

u =
∞∑

k=0

(−1)kq−k2
s(k)

(q−1; q−1)k

δ
iq

k
2

+ δ
−iq

k
2

2
, q > 1.

Proof. The results in 1), 2) are obvious from (3.13). For 3), it is clear that u satisfies (3.14).
Denoting Φ(x) = x, Ψ(x) = −(

√
q − 1)−1

(
x2 + 1

)
, we have (2.6)

√
q
(
h√qΨ

)
(0) +

(
H√

qΦ
)
(0) =

1
1−√

q
6= 0, 〈u,√qθ0Ψ + θ2

0Φ〉 = 0.

Therefore, u is of class one. The results in 4) and 5) are consequence from (2.10)–(2.12) and
those for U (case 1.1 in Table 1). �

A3. If ψ(x) = −(aq)−1(
√
q − 1)−1(x − 1 + aq) the little q-Laguerre form L(a, q), a 6= 0,

a 6= q−n−1, n ≥ 0 (case 1.2 in Table 1) satisfying

Hq(xL(a, q))− (aq)−1(q − 1)−1(x− 1 + aq)L(a, q) = 0.

With (3.5), (3.6) we obtain

σu = L(a, q), a 6= 0, a 6= q−n−1, n ≥ 0, (3.15)

and

xσu = (1− aq)L(aq, q), a 6= 0, a 6= q−n−1, n ≥ 0. (3.16)

By virtue of the recurrence coefficients of little q-Laguerre polynomials in Table 1, case 1.2, the
relations in (3.15), (3.16) and (2.7), (2.8) we get for n ≥ 0

βP
n =

{
1 + a− a(1 + q)qn

}
qn,

γP
n+1 = a

(
1− qn+1

)(
1− aqn+1

)
q2n+1,

βR
n =

{
1 + aq − a(1 + q)qn+1

}
qn,

γR
n+1 = a

(
1− qn+1

)(
1− aqn+2

)
q2n+2.

Therefore (2.9) becomes for n ≥ 0

γ2n+1 = qn
(
1− aqn+1

)
, γ2n+2 = aqn+1

(
1− qn+1

)
. (3.17)

Comparing with [2], u is a symmetrical case of the Al-Salam–Verma form, u := SV(a, q).
From (3.17), it is easy to see that SV(a, q) is regular if and only if a 6= 0, a 6= q−n−1, n ≥ 0.
Also, SV(a, q) is positive definite if and only if 0 < q < 1, 0 < a < q−1 or q > 1, a < 0.
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Proposition 4. The form SV(a, q) is a H√
q-semiclassical form of class one for a 6= 0, a 6= q−

1
2 ,

a 6= q−n−1, n ≥ 0 satisfying

H√
q(xSV(a, q))− (aq)−1(

√
q − 1)−1

(
x2 − 1 + aq

)
SV(a, q) = 0. (3.18)

The moments are

(SV(a, q))2n = (aq; q)n, (SV(a, q))2n+1 = 0, n ≥ 0, (3.19)

and the orthogonality relation can be represented

〈SV(a, q), f〉 =
(aq; q)∞

2

∞∑
k=0

(aq)k

(q; q)k

〈δ
q

k
2

+ δ
−q

k
2

2
, f

〉

+
K

2

∫ q−
1
2

−q−
1
2

|x|2
ln a
ln q

+1(qx2; q)∞f(x)dx, f ∈ P, 0 < q < 1, 0 < a < q−1, (3.20)

with

K−1 = q
− ln a

ln q
−1

∫ 1

0
x

ln a
ln q (x; q)∞dx,

and

SV(a, q) =
1

(a; q−1)∞

∞∑
k=0

q−
1
2
k(k−1)(−a)k

(q−1; q−1)k

δ
q

k
2

+ δ
−q

k
2

2
, q > 1, a < 0. (3.21)

Proof. It is direct that the form SV(a, q) satisfies the q-analog of the distributional equation of
Pearson type (3.18). Denoting Φ(x) = x, Ψ(x) = −(aq)−1(

√
q−1)−1

(
x2−1+aq

)
, we have (2.6)

√
q
(
h√qΨ

)
(0) +

(
H√

qΦ
)
(0) =

a−1q−
1
2 − 1

√
q − 1

6= 0, 〈SV(a, q),
√
qθ0Ψ + θ2

0Φ〉 = 0,

from which we get that SV(a, q) is of class one because a 6= 0, a 6= q−
1
2 , a 6= q−n−1, n ≥ 0. The

results mentioned in (3.19)–(3.21) are easily obtained from those well known the properties of
the little q-Laguerre from (case 1.2 in Table 1) and (2.10)–(2.14). �

Remark 2. The regular form SV(q−
1
2 , q) is the discrete

√
q-Hermite form which is H√

q-
classical [20].

A4. If ψ(x) = −b−1(
√
q − 1)−1

(
q−1x+ b − 1

)
the Wall form W(b, q), b 6= 0, b 6= q−n, n ≥ 0

(case 1.3 in Table 1) that satisfies

Hq(xW(b, q))− b−1(q − 1)−1(q−1x+ b− 1)W(b, q) = 0.

In accordance of (3.5), (3.6) we get

σu = W(b, q), b 6= 0, b 6= q−n, n ≥ 0,

and

xσu = q(1− b)W(bq, q), b 6= 0, b 6= q−n, n ≥ 0.

We recognize the Brenke type symmetrical regular form Y(b, q) [8, 9, 10]. In [13] it is proved
that Y(b, q) is H√

q-semiclassical of class one for b 6= 0, b 6= √
q, b 6= q−n, n ≥ 0 satisfying

H√
q(xY(b, q))− b−1

(
q

1
2 − 1

)−1{
q−1x2 + b− 1

}
Y(b, q) = 0. (3.22)

Also in that work, moments, discrete and integral representations are established.
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Remark 3. Likewise, from (3.22) it is easy to see that h 1√
q
Y(
√
q, q) is the H√

q-classical discrete
√
q-Hermite form [20].

A5. If ψ(x) = (
√
q − 1)−1q−α−1

(
x+ b− qα+1

)
the generalized q−1-Laguerre U (α)(b, q) form,

b 6= 0, b 6= qn+1+α, n ≥ 0 and its q-analog of the distributional equation of Pearson type (case 1.4
in Table 1)

Hq(xU (α)(b, q)) + (q − 1)−1q−α−1(x+ b− qα+1)U (α)(b, q) = 0.

By (3.5), (3.6) we deduce the following relationships

σu = U (α)(b, q), b 6= 0, b 6= qn+1+α, n ≥ 0, (3.23)

xσu =
(
qα+1 − b

)
U (α+1)(b, q), b 6= 0, b 6= qn+1+α, n ≥ 0. (3.24)

From Table 1, case 1.4, the relations in (3.23), (3.24) and (2.7), (2.8) we get for n ≥ 0

βP
n =

{
1− q−n−1 + q−1

(
1− bq−n−α

)}
q2n+α+1,

γP
n+1 =

(
1− q−n−1

)(
1− bq−n−1−α

)
q4n+2α+3,

βR
n =

{
1− q−n−1 + q−1

(
1− bq−n−α−1

)}
q2n+α+2,

γR
n+1 =

(
1− q−n−1

)(
1− bq−n−2−α

)
q4n+2α+5.

Thus, for n ≥ 0

γ2n+1 =
(
1− bq−n−1−α

)
q2n+α+1, γ2n+2 =

(
1− q−n−1

)
q2n+α+2.

Consequently, the symmetrical form u := u(α, b, q) is regular if and only if b 6= 0, b 6= qn+1+α,
n ≥ 0. It is positive definite for α ∈ R, q > 1, b < qα+1.

Proposition 5. The symmetrical form u is a H√
q-semiclassical form of class one for b 6= 0,

b 6= qn+1+α, n ≥ 0, α ∈ R satisfying

H√
q(xu) + q−α−1

(
q

1
2 − 1

)−1{
x2 + b− qα+1

}
u = 0.

Moreover, we have the following identities

(u)2n = (−b)n
(
b−1qα+1; q

)
n
, (u)2n+1 = 0, n ≥ 0, (3.25)

〈u, f〉 = K

∫ ∞

−∞

|x|2α−2 ln b
ln q

+1

(−b−1x2; q−1)∞
f(x)dx, (3.26)

for f ∈ P, α ∈ R, q > 1, 0 < b < qα+1, with

K−1 =
∫ ∞

0

x
α− ln b

ln q

(−b−1x; q−1)∞
dx

is given by (2.4),

u =
1

(b−1qα; q−1)∞

∞∑
k=0

q−
1
2
k(k−1)

(q−1; q−1)k
(−b−1qα)k

δ√
−bq

k
2

+ δ
−
√
−bq

k
2

2
, (3.27)

for α ∈ R, q > 1, b < 0, and

u =
(
b−1qα+1; q

)
∞

∞∑
k=0

(b−1qα+1)k

(q; q)k

δ
i
√

bq
k
2

+ δ
−i
√

bq
k
2

2
, (3.28)

for α ∈ R, 0 < q < 1, b > qα+1.
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Proof. First, let us obtain the class of the form; denoting

Φ(x) = x, Ψ(x) = (
√
q − 1)−1q−α−1

(
x2 + b− qα+1

)
,

we have

√
q
(
h√qΨ

)
(0) +

(
H√

qΦ
)
(0) =

bq−α− 1
2 − 1

√
q − 1

6= 0, 〈u,√qθ0Ψ + θ2
0Φ〉 = 0,

for b 6= 0, b 6= qn+1+α, n ≥ 0, α ∈ R. Thus, u is of class one. The identities given in (3.25)–(3.28)
are easily obtained from the properties of the generalized q−1-Laguerre U (α)(b, q) form (Table 1,
case 1.4) and (2.10)–(2.14). �

B. In the case ϕ(x) = x the q-analog of the distributional equation of Pearson type (3.3),
(3.4) are

Hq

(
x2σu

)
+

1
√
q + 1

ψ(x)σu = 0, (3.29)

Hq

(
x2(xσu)

)
+ q−1

{
1

√
q + 1

ψ(x)− x

}
(xσu) = 0. (3.30)

B1. If ψ(x) = −2(
√
q + 1)(αx + 1) the q-analogue of the Bessel form (case 2.2 in Table 2),

the form B(α, q), α 6= 1
2(q − 1)−1, α 6= −1

2 [n]q, n ≥ 0 satisfying

Hq

(
x2B(α, q)

)
− 2(αx+ 1)B(α, q) = 0.

Thus, comparing with (3.29), (3.30), we get

σu = B(α, q), α 6= 1
2
(q − 1)−1, α 6= −1

2
[n]q, n ≥ 0,

and

xσu = −α−1hq−1B(q−1(α+
1
2
), q), α 6= 1

2
(q − 1)−1, α 6= −1

2
[n]q, n ≥ 0.

By the recurrence coefficients in case 2.2 of Table 2, the relations in (3.29), (3.30) and (2.7),
(2.8) we get for n ≥ 0

βP
n = −2qn 2α+ (1 + q−1)[n− 1]q − q−1[2n]q

(2α+ [2n− 2]q)(2α+ [2n]q)
,

γP
n+1 = −4q3n [n+ 1]q(2α+ [n− 1]q)

(2α+ [2n− 1]q)(2α+ [2n]q)2(2α+ [2n+ 1]q)
,

βR
n = −2qn−1 (2α+ 1)q−1 + (1 + q−1)[n− 1]q − q−1[2n]q

((2α+ 1)q−1 + [2n− 2]q)((2α+ 1)q−1 + [2n]q)
,

γR
n+1 = −4q3n−2 [n+ 1]q((2α+ 1)q−1 + [n− 1]q)

((2α+ 1)q−1+ [2n− 1]q)((2α+ 1)q−1+ [2n]q)2((2α+ 1)q−1+ [2n+ 1]q)
.

By the relation [k − 1]q = q−1[k]q − q−1, k ≥ 1, (2.9) leads to for n ≥ 0

γ1 = − 1
α
, γ2n+2 = 2q2n [n+ 1]q

(2α+ [2n]q)(2α+ [2n+ 1]q)
,

γ2n+3 = −2qn+1 (2α+ [n]q)
(2α+ [2n+ 1]q)(2α+ [2n+ 2]q)

. (3.31)
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We put α = ν+1
2 , ν 6= 2−q

q−1 , ν 6= −[n]q − 1, n ≥ 0 and denote the symmetrical form u by B[ν, q].
From (3.31) the form B[ν, q] is regular if and only if ν 6= 2−q

q−1 , ν 6= −[n]q − 1, n ≥ 0. Also, it is
quite straightforward to deduce that the symmetrical form B[ν, q] is H√

q-semiclassical of class
one for ν 6= 2−q

q−1 , ν 6= −[n]q − 1, n ≥ 0 satisfying the q-analog of the distributional equation of
Pearson type

H√
q

(
x3B[ν, q]

)
− 2(

√
q + 1)

(
ν + 1

2
x2 + 1

)
B[ν, q] = 0.

Remark 4. The symmetrical form h(2
√

2)−1B[ν, q], ν 6= 2−q
q−1 , ν 6= −[n]q − 1, n ≥ 0 is the

q-analogue of the symmetrical form B[ν] [14] (when q → 1 we recover the symmetrical semiclas-
sical B[ν], ν 6= −n− 1, n ≥ 0 of class one, see (1.4)). Also, for any parameter α 6= −n− 1, n ≥ 0
the symmetrical form h

(2
√

1+
√

q)−1B[− q−α−1−1
q−1 − 1, q] appears in [33].

B2. If ψ(x) = −(aq)−1(
√
q − 1)−1((1 + aq)x − 1) the Alternative q-Charlier A(a, q) form

with a 6= 0, a 6= −q−n, n ≥ 0 that satisfies (case 1.5 in Table 1)

Hq

(
x2A(a, q)

)
− (aq)−1(q − 1)−1

(
(1 + aq)x− 1

)
A(a, q) = 0.

Thus

σu = A(a, q), a 6= 0, a 6= −q−n, n ≥ 0,

and

xσu =
1

1 + aq
A(aq, q), a 6= 0, a 6= −q−n, n ≥ 0.

The systems (2.7), (2.8) are for n ≥ 0

βP
n = qn 1 + aqn−1 + aqn − aq2n

(1 + aq2n−1)(1 + aq2n+1)
,

γP
n+1 = aq3n+1 (1− qn+1)(1 + aqn)

(1 + aq2n)(1 + aq2n+1)2(1 + aq2n+2)
,

βR
n = qn 1 + aqn + aqn+1 − aq2n+1

(1 + aq2n)(1 + aq2n+2)
,

γR
n+1 = aq3n+2 (1− qn+1)(1 + aqn+1)

(1 + aq2n+1)(1 + aq2n+2)2(1 + aq2n+3)
,

from which we get for n ≥ 0

γ2n+1 = qn 1 + aqn

(1 + aq2n)(1 + aq2n+1)
, γ2n+2 = aq2n+1 1− qn+1

(1 + aq2n+1)(1 + aq2n+2)
.

Consequently, the symmetrical form u = u(a, q) is regular if and only if a 6= 0, a 6= −q−n, n ≥ 0.
It is positive definite for 0 < q < 1, a > 0. Also, u is H√

q-semiclassical of class one for a 6= 0,
a 6= −q−n, n ≥ 0 satisfying the q-analog of the distributional equation of Pearson type

H√
q

(
x3u

)
− (aq)−1(

√
q − 1)−1

(
(1 + aq)x2 − 1

)
u = 0.

After some straightforward computations, we get the following representations for the moments
and the orthogonality

(u)2n =
1

(−aq; q)n
, (u)2n+1 = 0, n ≥ 0,

〈u, f〉 = q
1
2
( ln a
ln q

+ 1
2
)2 (−a−1; q)∞√

2π ln q−1

∫ ∞

−∞
|x|2

ln a
ln q (qx2; q)∞ exp

(
−2

ln2 |x|
ln q−1

)
f(x)dx,



The Symmetrical Hq-Semiclassical Orthogonal Polynomials of Class One 17

for f ∈ P, 0 < q < 1, a > 0, and

u =
1

(−aq; q)∞

∞∑
k=0

akq
1
2
k(k+1)

(q; q)k

δ
−q

k
2

+ δ
q

k
2

2
, 0 < q < 1, a > 0.

C. In the case ϕ(x) = x−1 the q-analogue of Jacobi form (case 2.3 in Table 2), therefore the
q-analog of the distributional equation of Pearson type (3.3), (3.4) become

Hq(x(x− 1)σu)−
(
(α+ β + 2)x− (β + 1)

)
σu = 0,

and

Hq

(
x(x− 1)(xσu)

)
− q−1

(
(α+ β + 3)x− (β + 2)

)
(xσu) = 0.

Consequently,

σu = J(α, β, q), (3.32)

xσu =
β + 1

α+ β + 2
J
(
q−1(α+ 1)− 1, q−1(β + 2)− 1, q

)
(3.33)

with the constraints

α+ β 6= 3− 2q
q − 1

, α+ β 6= −[n]q − 2, β 6= −[n]q − 1,

α+ β + 2− (β + 1)qn + [n]q 6= 0, n ≥ 0. (3.34)

By Table 2 and (3.32), (3.33), the systems (2.7), (2.8) give for n ≥ 0

βP
n = qn−1 (1 + q)(α+ β + 2 + [n− 1]q)(β + 1 + [n]q)− (β + 1)(α+ β + 2 + [2n]q)

(α+ β + 2 + [2n− 2]q)(α+ β + 2 + [2n]q)
,

γP
n+1 = q2n [n+ 1]q(α+ β + 2 + [n− 1]q)([n]q + β + 1)(α+ β + 2− (β + 1)qn + [n]q)

(α+ β + 2 + [2n− 1]q)(α+ β + 2 + [2n]q)2(α+ β + 2 + [2n+ 1]q)
,

βR
n = qn−1 (1 + q)(α+ β + 2 + [n]q)(β + 1 + [n+ 1]q)− (β + 2)(α+ β + 2 + [2n+ 1]q)

(α+ β + 2 + [2n− 1]q)(α+ β + 2 + [2n+ 1]q)
,

γR
n+1 = q2n+1 [n+1]q(α+β+2+[n]q)([n+ 1]q+β+1)(α+β+2−(β + 2)qn+[n+ 1]q)

(α+ β + 2 + [2n]q)(α+ β + 2 + [2n+ 1]q)2(α+ β + 2 + [2n+ 2]q)
.

Using the above results and the relations

[k − 1]q = q−1[k]q − q−1, [k]q = qk−1 + [k − 1]q, k ≥ 1

we deduce from (2.9) for n ≥ 0

γ2n+1 = qn (α+ β + 2 + [n− 1]q)(β + 1 + [n]q)
(α+ β + 2 + [2n− 1]q)(α+ β + 2 + [2n]q)

,

γ2n+2 = qn[n+ 1]q
α+ β + 2− (β + 1)qn + [n]q

(α+ β + 2 + [2n]q)(α+ β + 2 + [2n+ 1]q)
. (3.35)

We denote the symmetrical form u by G(α, β, q). From (3.35) the symmetrical form G(α, β, q)
is regular if and only if the conditions in (3.34) hold. It is H√

q-semiclassical of class one for
α + β 6= 3−2q

q−1 , α + β 6= −[n]q − 2, β 6= −[n]q − 1, α + β + 2 − (β + 1)qn + [n]q 6= 0, n ≥ 0,
β 6= 1√

q(
√

q+1) − 1 satisfying

Hq

(
x(x2 − 1)G(α, β, q)

)
− (

√
q + 1)

(
(α+ β + 2)x2 − (β + 1)

)
G(α, β, q) = 0.
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Remark 5. The symmetrical form G(α, β, q) is the q-analogue of the symmetrical generalized
Gegenbauer G(α, β) form (see (1.3)) which is semiclassical of class one for α 6= −n−1, β 6= −n−1,
β 6= −1

2 , α+ β 6= −n− 1, n ≥ 0 [1, 6].

D. In the case ϕ(x) = x− b−1q−1 the little q-Jacobi U(a, b, q) form (case 1.6 in Table 1). The
q-analog of the distributional equation of Pearson type in (3.3), (3.4) become

Hq

(
x
(
x− b−1q−1

)
σu

)
+

(
abq2(q − 1)

)−1((1− abq2
)
x+ aq − 1

)
σu = 0,

Hq

(
x
(
x− b−1q−1

)
(xσu)

)
+

(
abq3(q − 1)

)−1((1− abq3
)
x+ aq2 − 1

)
(xσu) = 0.

Hence

σu = U(a, b, q), (3.36)

xσu =
1− aq

1− abq2
U(aq, b, q) (3.37)

with the constraints

ab 6= 0, a 6= q−n−1, b 6= q−n−1, ab 6= q−n, n ≥ 0. (3.38)

By Table 1 and (3.36), (3.37), the systems (2.7), (2.8) lead to for n ≥ 0

βP
n = qn (1 + a)(1 + abq2n+1)− a(1 + b)(1 + q)qn

(1− abq2n)(1− abq2n+2)
,

γP
n+1 = aq2n+1 (1− qn+1)(1− aqn+1)(1− bqn+1)(1− abqn+1)

(1− abq2n+1)(1− abq2n+2)2(1− abq2n+3)
,

βR
n = qn (1 + aq)(1 + abq2n+2)− a(1 + b)(1 + q)qn+1

(1− abq2n+1)(1− abq2n+3)
,

γR
n+1 = aq2n+2 (1− qn+1)(1− aqn+2)(1− bqn+1)(1− abqn+2)

(1− abq2n+2)(1− abq2n+3)2(1− abq2n+4)
.

Using the above results and (2.9) we get for n ≥ 0

γ2n+1 = qn (1− aqn+1)(1− abqn+1)
(1− abq2n+1)(1− abq2n+2)

, γ2n+2 = aqn+1 (1− qn+1)(1− bqn+1)
(1− abq2n+2)(1− abq2n+3)

.

Therefore, the symmetrical form u = u(a, b, q) is regular if and only if the conditions in (3.38)
are satisfied. Further, the form u is positive definite for 0 < q < 1, 0 < a < q−1, b < 1, b 6= 0 or
q > 1, a > q−1, b ≥ 1. Moreover, by virtue of (2.6), the form u is H√

q-semiclassical of class one

for ab 6= 0, a 6= q−n−1, b 6= q−n−1, ab 6= q−n, n ≥ 0, a 6= q−
1
2

H√
q

(
x
(
x2 − b−1q−1

)
u
)

+
(
abq2(

√
q − 1)

)−1((1− abq2
)
x2 + aq − 1

)
u = 0.

Proposition 1 and the well known representations of the little q-Jacobi form (Table 1) allow us
to establish the following results

(u)2n =
(aq; q)n

(abq2; q)n
, (u)2n+1 = 0, n ≥ 0.

For f ∈ P, 0 < q < 1, 0 < a < q−1, b < 1, b 6= 0,

u =
(aq; q)∞

(abq2; q)∞

∞∑
k=0

(aq)k(bq; q)k)
(q; q)k

δ
−q

k
2

+ δ
q

k
2

2
,
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and

〈u, f〉 = K

∫ q−
1
2

−q−
1
2

|x|2
ln a
ln q

+1 (qx2; q)∞
(bqx2; q)∞

f(x)dx,

with

K−1 =
∫ q−1

0
x

ln a
ln q

(qx; q)∞
(bqx; q)∞

dx.

For f ∈ P, q > 1, a > q−1, b ≥ 1

u =
(a−1q−1; q−1)∞

(a−1b−1q−2; q−1)∞

∞∑
k=0

(aq)−k(b−1q−1; q−1)k)
(q−1; q−1)k

δ
−
√

b−1q−
k+1
2

+ δ√
b−1q−

k+1
2

2
,

and

〈u, f〉 = K

∫ b−
1
2

−b−
1
2

|x|2
ln a
ln q

+1 (bx2; q−1)∞
(x2; q−1)∞

f(x)dx,

with

K−1 =
∫ b−1

0
x

ln a
ln q

(bx; q−1)∞
(x; q−1)∞

dx.

E. In the case ϕ(x) = x− µ−1q−1 the q-Charlier-II-form U(µ, q) (case 1.7 in Table 1). From
the above assumption (3.3), (3.4) are

Hq

(
x
(
x− µ−1q−1

)
σu

)
− (µq(q − 1))−1

(
(µq − 1)x− 1

)
σu = 0,

Hq

(
x
(
x− µ−1q−1

)
(xσu)

)
− (µq(q − 1))−1

((
µq2 − 1

)
q−1x− 1

)
(xσu) = 0.

Thus

σu = U(µ, q), µ 6= 0, µ 6= q−n, n ≥ 0,

xσu =
1

µq − 1
hqU(µq, q), µ 6= 0, µ 6= q−n, n ≥ 0.

Consequently, the systems (2.7), (2.8) for n ≥ 0 are

βP
n = qn−1 1− (1 + q)qn + µq2n

(1− µq2n−1)(1− µq2n+1)
,

γP
n+1 = −q3n (1− qn+1)(1− µqn)

(1− µq2n)(1− µq2n+1)2(1− µq2n+2)
,

βR
n = qn 1− (1 + q)qn + µq2n+1

(1− µq2n)(1− µq2n+2)
,

γR
n+1 = −q3n+2 (1− qn+1)(1− µqn+1)

(1− µq2n+1)(1− µq2n+2)2(1− µq2n+3)
.

On account of (2.9) we have for n ≥ 0

γ2n+1 = −q2n 1− µqn

(1− µq2n)(1− µq2n+1)
, γ2n+2 = qn 1− qn+1

(1− µq2n+1)(1− µq2n+2)
.
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From the last result, the symmetrical form u = u(µ, q) is regular if and only if µ 6= 0, µ 6= q−n,
n ≥ 0. Moreover, by virtue of (2.6), it is clear that u is H√

q-semiclassical of class one for µ 6= 0,
µ 6= q−n, n ≥ 0 satisfying

H√
q

(
x
(
x2 − µ−1q−1

)
u
)
− (µq(

√
q − 1))−1

{
(µq − 1)x2 − 1

}
u = 0.

Furthermore, by the same procedure as in D we get

(u)2n =
(−1)nq

1
2
n(n−1)

(µq; q)n
, (u)2n+1 = 0, n ≥ 0,

u =
1

(µ−1q−1; q−1)∞

∞∑
k=0

(−µ−1)kq−
1
2
k(k+1)

(q−1; q−1)k

δ
−i
√
−µ−1q−

k+1
2

+ δ
i
√
−µ−1q−

k+1
2

2
,

for q > 1, µ < 0.
F. In the case ϕ(x) = x + ωq−

3
2 the generalized Stieltjes–Wigert form S(ω, q) (case 1.8 in

Table 1). From (3.3), (3.4) it follows

Hq

(
x
(
x+ ωq−

3
2
)
σu

)
− (q − 1)−1

(
x+ (ω − 1)q−

3
2
)
σu = 0,

Hq

(
x
(
x+ ωq−

3
2
)
(xσu)

)
− (q − 1)−1

(
x+ (ωq − 1)q−

5
2
)
(xσu) = 0.

Thus

σu = S(ω, q), ω 6= q−n, n ≥ 0,

xσu = (1− ω)q−
3
2hq−1S(ωq, q), ω 6= q−n, n ≥ 0.

We obtain for n ≥ 0

βP
n =

{
(1 + q)q−n − q − ω

}
q−n− 3

2 ,

γP
n+1 =

(
1− qn+1

)(
1− ωqn

)
q−4n−4,

βR
n =

{
(1 + q)q−n − q(1 + ω)

}
q−n− 5

2 ,

γR
n+1 =

(
1− qn+1

)(
1− ωqn+1

)
q−4n−6.

Thus, (2.9) gives for n ≥ 0

γ2n+1 = q−2n− 3
2
(
1− ωqn

)
, γ2n+2 = q−2n− 5

2
(
1− qn+1

)
. (3.39)

We recognize the Brenke type symmetrical orthogonal polynomials [8, 9, 10]

Bn = Tn(·;ω, q), n ≥ 0.

We denote u = T (w, q). Taking into consideration (3.39), the symmetrical form T (ω, q) is regular
if and only if ω 6= q−n, n ≥ 0, and it is positive definite for 0 < q < 1, ω < 1. Furthermore,
it is easy to deduce that T (ω, q) is H√

q-semiclassical of class one for ω 6= √
q, ω 6= q−n, n ≥ 0

satisfying the q-analog of the distributional equation of Pearson type

H√
q

(
x
(
x2 + ωq−

3
2
)
T (ω, q)

)
− (

√
q − 1)−1

(
x2 + (ω − 1)q−

3
2
)
T (ω, q) = 0.
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Finally, with Proposition 1 and the properties of the generalized Stieltjes–Wigert Hq-classical
form (Table 1, case 1.8) we deduce the following results

(T (ω, q))2n = q−
1
2
n(n+2)(ω; q)n, (T (ω, q))2n+1 = 0, n ≥ 0,

T (ω, q) =
(
ω−1; q−1

)
∞

∞∑
k=0

ω−k

(q−1; q−1)k

δ
−i
√

ωq−
k
2−

3
4

+ δ
i
√

ωq−
k
2−

3
4

2
, q > 1, ω > 1,

〈T (ω, q), f〉 = K

∫ ∞

−∞

|x|2
ln ω
ln q

−1

(−q
3
2ω−1x2; q)∞

f(x)dx,

f ∈ P, 0 < q < 1, 0 < ω < 1,

with

K−1 =
∫ ∞

0

x
ln ω
ln q

−1

(−q
3
2ω−1x; q)∞

dx

is given by (2.4),

〈T (0, q), f〉 =
√

q

2π ln q−1

∫ ∞

−∞
|x| exp

(
−2 ln2 |x|

ln q−1

)
f(x)dx, 0 < q < 1.
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