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1 Introduction

Orthogonal polynomials (OP) have been a subject of research in the last hundred and fifty
years. The orthogonality considered in our contribution is related to a form (regular linear
functional) [8, 24] and not only to a positive measure. By classical orthogonal polynomials
sequences (OPS), we refer to Hermite, Laguerre, Bessel and Jacobi polynomials. In the liter-
ature, the extension of classical (OPS) can be done from different approaches such that the
hypergeometric character [7, 8, 11, 18, 22] and the distributional equation of Pearson type
[6, 8, 20, 29, 32]. A natural generalization of the classical character is the semiclassical one
introduced by J.A. Shohat in [35]. This theory was developed by P. Maroni and extensively
studied by P. Maroni and coworkers in the last decade [1, 24, 26, 28, 32]. Let ® monic and ¥ be
two polynomials, deg® = ¢ > 0, deg ¥ = p > 1. We suppose that the pair (®,¥) is admissible,
i.e., when p = ¢t — 1, writing V(z) = apaz? + ---, then a, # n+ 1, n € N. A form u is called
semiclassical when it is regular and satisfies the distributional equation of Pearson type

D(®u) + Yu =0, (1.1)

where the pair(®, V) is admissible and D is the derivative operator. The corresponding monic
orthogonal polynomials sequence (MOPS) {B,},>0 is called semiclassical. Moreover, if u is
semiclassical satisfying (1.1), the class of u, denoted s is defined by

s := min (max(deg ® — 2,deg ¥ — 1)) > 0,

where the minimum is taken over all pairs (®, ¥) satisfying (1.1). In particular, when s = 0 the
classical case is recovered.

Symmetrical semiclassical forms of class one are well described in [1], see also [6]; there are
three canonical situations:
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1) The generalized Hermite form H(u) (p # 0, o # —n—2%, n > 0) satisfying the distributional
equation of Pearson type

D(eH() + (22° — (21 + 1)) H(u) = 0. (1.2)

2) The generalized Gegenbauer G(o,3) (« # —n—1,08# —n—1, 3 # —%, a+ B #-n—1,
n > 0) satisfying the distributional equation of Pearson type

D(z(2* = 1)G(e, B)) + (— 2(a + B+ 2)2* +2(8+1))G(a, B) = 0. (1.3)

For further properties of the generalized Hermite and the generalized Gegenbauer polyno-
mials see [8, 15, 26].

3) The form B[] of Bessel kind (v # —n — 1, n > 0) [1, 31] satisfying the distributional
equation of Pearson type

D(z*B[v]) — (2(v + 1)2* + 1)Blv] = 0. (1.4)

For an integral representation of B[r] and some additional features of the associated
(MOPS) see [14].

Other families of semiclassical orthogonal polynomials of class greater than one were discov-
ered by solving functional equations of the type P(z)u = Q(x)v, where P, () are two polynomials
cunningly chosen and u, v two linear forms [19, 26, 27, 34]. For other relevant works in the semi-
classical case see [5, 23].

In [21], instead of the derivative operator, the g-difference one is used to establish the theo-
ry and characterizations of Hg-semiclassical orthogonal g-polynomials. Some examples of H-
semiclassical orthogonal ¢g-polynomials are given in [2, 13]. The Hy-classical case is exhaustively
described in [20, 32]. Moreover, in [30] the symmetrical D,-semiclassical orthogonal polynomials
of class one are completely described by solving the system of their Laguerre-Freud equations
where D,, is the Hahn’s operator.

So, the aim of this paper is to present the classification of the symmetrical H,-semiclassical
orthogonal g-polynomials of class one by investigating the quadratic operator o, the g-analog of
the distributional equation of Pearson type satisfied by the corresponding form and some H,-
classical situations (see Tables 1 and 2) in connection with our problem. Among the obtained
canonical cases, three are well known: two symmetrical Brenke type (MOPS) [8, 9, 10] and
a symmetrical case of the Al-Salam and Verma (MOPS) [2]. Also, g-analogues of H(u), G(a, )
and B[v| appear. In [3, 33], the authors have established, up a dilation, a g-analogues of H(u)
and B[v] using other methods. For any canonical case, we determine the recurrence coefficient,
the g-analog of the distributional equation of Pearson type, the moments and a discrete measure
or an integral representation.

2 Preliminary and first results

2.1 Preliminary and notations

Let P be the vector space of polynomials with coefficients in C and let P’ be its topological
dual. We denote by (u, f) the effect of w € P’ on f € P. In particular, we denote by (u), :=
(u,z™), n > 0 the moments of u. Moreover, a form (linear functional) u is called symmetric if
(w)2n1 =0, n > 0.

Let us introduce some useful operations in P’. For any form u, any polynomial g and any
(a,b,c) € (C\ {0}) x C?, we let Hyu, gu, hqu, Tyu, (x — ¢)~lu and &., be the forms defined by
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Table 1. Canonical cases.

H-classical linear form

case 1.1 u
Bn={1—-(1+q)q"}¢" !, n>0,
an-‘rl = (q7l+1 - )q3n7 n Z 07

1
Hy(all) = (¢ — 1)~z + DU =0,
U)n = (=1)"gz"""D n >0,

> sk
U= Z(_l)kq,.i(g()éfqh q> 17
k 7

Dk
q (2m m-+1)+km)
where s( Z Emaks ok =(q—1)* k>0and egp 1 =0, k>0
case 1.2 httle q—Laguerre ﬁ(a, q) (a#0,a#¢ " n>0)

B ={1+a—a(l+q)q"}q" n >0,

Ant1 = a(l = ¢" ) (1 = ag"™)g*" !, n >0,
Hy(zL(a,q)) — (aq)"" (¢ —1)"{z — 1+ ag}L(a,q) = 0,
([’(av‘I))n = (CLQ; Q)m n >0,

o0 k
L(a,q) = (ag; @)oo Y | (aq) g, 0<g<1,0<a<qt,
= (G )k
g
((a ), f) :K/ o5 (q23 @)oo f(2)da, f €P0<g<1,0<a<q,
0
where K~ = ¢~ a1 xll%g(x;q)oodx,
L R ey
L(a,q) = —= —a)k,q>1,a<0
(@9) = s kZ:o (q71§q71)k( )"0
case 1.3 Wall W(b, q) (b #20,b£q¢ ", n> 0)

B ={b+q—b1+q)q"}q", n >0,

%H — b(l _ qvn+1)(1 _ bqn)q2n+2’ n Z 0’
Hy(xW(b,q)) — b~ (q — 1)”((1*117 +b—1)W(b,q) =0,
W(b,q))n = (b Dn 0

W(b,q), Z
O

where K~1 = /xi 1( Qoodr, fEP,0<qg<1,0<b<1,
0

K 1 M*l
Gpon )+ [ B @i g f )
0

o lk(k+1)

Wb, q). 1) = (bq“iz*l)oo Z (q

—1.,-1
= (g7 q Dk

(=) (S gren, f), FEP, g>1,b#¢** k>0

duality

(Hyu, f) == —(u, Hyf),  (gu, f) == (u, gf), (hau, f) = (u,haf),  f€P,
<Tbu7 f) = <U,7'7bf>, <($ - C)_1u7 f) = <u790f>7 <5C7 f) = f(C), f € P,

where (H,f)(z) = {480@ g c €= {2 €C, 2#0,2" #1,n > 1} [16, 18], (haf)(z) = f(az),

(g=1D)z
(=) () = f(z +b), (0cf)(z) = % [24] and it’s easy to see that [20, 26]
Hy(fu) = (hgr f)Hpu+q "(Hy flu,  fE€P, ueP, (2.1)

(z —c)((z — ¢) " tu) = u, (z — ) H(z = c)u) = u — (w)ode.
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Continuation of Table 1.
case 1.4 Generalized g~ '-Laguerre U™ (b, q) (b # 0, b # ¢" "1+ n > 0)

Zg\n — {1 _ q—n—l + q_l(l _ bq—n—a)}q2n+a+1, n Z 0,

;Y\nJrl — (1 _ qfnfl)(]_ _ bqfnflfa)q4n+2a+3 n > O
Hy(aU' (b,q)) + (¢ = 1)~ 'q > Mz +b—¢* U (b,q) = 0,
U (b, q))n = (=b)" (07" "‘“,q) n >0,

(@) — (p—1a+1. (bt .
<u (b>Q)7f> (b q + 7q)ookZ:O (q;q)k <6qu 7.f>a

fewPp, 0<q<1 b> gt a €R,
7lk(k1 bl )

UD,9).f) = smrgmr= Z : gk

K 20~ e
/ ———f(x)dz, fEP,q¢>1,¢* <b< ¢t a eR,

<5—bq’C ; f>

—b712;¢7 o
Inb
Ing

where K71 = /0 mdl’ 1S glven by (2 4)

case 1.5 Alternative ¢-Charlier A(a, q) (a #0,a# —q ", n> 0)

~ 1+ ag" '+ aq” — ag®”

n — > 0

O W@ )0 Fagn) "

3n+1 (I=¢"H(A +ag") n
(14 ag®")(1 + ag®1)%(1 + ag®"+2)’

Hy(2* A(a,q)) = (ag)"' (¢ = 1)"{(1 + ag)x — 1}A(a,q) = 0,

An+1 = aq > 0,

1
‘Aa"q 771277”207
A= oo, - »

1 2, g2kt Ina (a7 @)
Aa, s = ) + 2(1 q+ )? 7’
(@ 9), f) 2(—aq;Q)ookz::0 (¢ D o f; K 2y/27Ing=1

a1 In®x

Ing 2 _— 1
X/o x (q7; q) oo €X p( 21nq1)f(x)dx,f€P,O<q< ,a>0

Now, we introduce the operator o : P — P defined by (of)(z) := f(2?) for all f € P.
Consequently, we define ou by duality [8, 25]

(ou, f) = (u,0f), fep, ueP.
We have the well known formula [25]
f(@)ou=o(f(z*)u). (2.2)
Let { By, }n>0 be a sequence of monic polynomials with deg B,, = n, n > 0, the form u is called
reqular if we can associate with it a sequence of polynomials { By, }n>0 such that (u, B,,B,) =
TnOnm, n,m > 0; 7, # 0, n > 0. The sequence {B,,},>0 is then said orthogonal with respect

to u. {Bn}n>0is an (OPS) and it can be supposed (MOPS). The sequence { B, }n>o fulfills the
recurrence relation

B()({L') = 1, Bl({L') :l'—ﬁ(),
Bpya(z) = (x — Bny1) Bat1(7) — Yny1Ba(2), Yn+1 # 0, n > 0. (2.3)

When u is regular, { By, },>0 is a symmetrical (MOPS) if and only if 5, =0, n > 0.
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Continuation of Table 1.
case 1.6 little g-Jacobi U(a, b, q) (ab £0,a#q¢ " bAq¢g " ab#Aqg ", n> O)

5, = Lt a+abg™™) —a(l+0)A+9)" \ - g
" (1 — abg?")(1 — abg?n+2) =
2n1 (L= " D)(1 —ag™ )1 —bg" (A —abg"™h)
(1 _ abq2n+1)(1 _ abq2n+2)2(1 _ abq2n+3) ’ -
Hy(x(x —b""q *(1)?/1(6)% b.q)) + (abg*(q — 1)) (1 — abg®)x + aq — 1}U(a, b, q) = 0,
ag; Q)n
—_— n >
(U(a,b,q))n = @ q " 0,

Ua,bq), f) = L Doe Dk iy gy K / o3 9T 00 oy,

2(abg* @)oo 7= (€3 D)k 2 (bg: ¢)oc

(q7: @)oo p
(bgw; q) oo

—1.,—1.,,—1 —t —-1,-1.,—1
<u(aabaQ)7f> = 2((?11)?1 ’_Zq)_olo) Z (b(q_ql,q’_ql)k)k(aq)_k<5b1q’“1af>
k=0 ’

LK bx 0 oo
/ A f(w)i

Yn+1 = aq

)

gt
fEP,O<q<1,O<a<q_1,be}—oo,l]\{O},whereK‘lz/ 1w
0

(b g oo

-
f€777Q>1,a>q71,b21whereK’1:/ xifﬁ( ——dx
0 (307 Yoo
case 1.7 g-Charlier-11-U (i, q) (,u 0, p#q ", n> 0)
2 1-(1+9)q" +pg*™
ﬂn (1 _ ,qu2n_l)(1 zllllq?n-t:g)q(l , _) )
~ 3n —q" — g
— _ >
T = T e (1 — g 21— gy 2
Hoy(w(z = p~ g~ U(p, (Q)) ) (nq(q — 1))~ {(ng — D)z — 13U (p, q) = 0,
In(n—1
q2
u.u’aq n — -1 nivnzov
Ul @)= (=) (1q; @)n
1 X, g kD) “1\k
<u(ﬂaQ)vf>: . (_M )/<6;L*1q*k*17f>7fepaq>1a,u/<0

Lastly, let us recall the following standard expressions [8, 11, 20]

n

(@:q)o:=1, (aqn:=]](1-ad""), n=>1,

[e's)
H l_aq ‘qy<17

the ¢-binomial theorem [4, 17]

> (az;q)oo
Z Tz q) ; 2] <1, g <1,
k=0 9

/Ootm 1at; Q) AT oo gy
0 oo

T (490 (" "0
sin(7x) (a4™%; @)oo (45 q)o0
(=)™ (@ 5a Dm |
L—qm(ag 57 )m

, @ eRL\N, Jaf <¢" 0<qg<1,
(2.4)

n(g 1), x=meN* |a] <q™ 0<qg<l.
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Continuation of Table 1.

case 1.8 Generalized Stieltjes-Wigert S(w, q) (w #q " n> 0)

Bn={0+qqg ™ —q—-wlg "3, n>0,

o1 = (1= ¢" (1 - wg")g™ ", n >0,

Hy(z(z + wqg 3)S(w,q)) — (¢ — 1)z + (w—1)g~ 2 }S(w,q) =0,
(S(w,))n = ¢~ 2" (Wi q), n > 0,

o —k
Sw,q) = (w9 Heo wié ee3,q>1,w>1,
( q) ( q ) kZ:O(q_l;q_l)k —wgq k—35 q
oo 11‘;‘—‘;’—1
(Sw,q). /) =K : fl@)de, fEP,0<q<1,0<w<1,
0 (—Pwlzig)e
[e%s) ﬁ—l
where K1 = / f—dw is given by (2.4),
0 (—q2w 'zig) \
> 1 _ In® 2
(S(w,q), f) = Ko 3 ‘(*q 2wl ) oo exp (2lnq_1>f(x)dm,
q w
feEP,0<g<]l,w<O,
here K1 /OO (—q % |w|z ™' q) e In* z d
wher = — wlx™; xp | — i
w T 1@ exp | —gy oy ) e,
in particular Ky = ﬁqqﬂ

Table 2. Limiting cases.

H-classical linear form

case 2.1 g-analogue of Laguerre L(a, ¢) (o # —[n], — 1, n > 0)
ﬁn - q"{(l +q Y[n], +1 +a}, n >0,

Fn+1 =" n+1o{[nlg+1+a}, n>0,

Hq(xL(av q)) + (l -1- CE)L(O[, q) =0

case 2.2 g-analogue of Bessel B(a,q) (a # (¢ —1)7!, a # —1[n]g, n > 0)
~ N, 11 _ 1

(2a + [2n —[ 2]_;3)1(]20(424— [_|2_77[]q>_ 1)
T = (o 1], 0 + PO a1
H,(5%B(0,0)) 2oz + DBlosg) =0

3—2q
q—17

at+B#-[nlg—2n>0B#—-n;-1,n=>0eta+B+2—(8+1)¢"+[n]; #0,n >0)

case 2.3 g-analogue of Jacobi J(a, 3,q) (a+ 38 #

5, = Ut Dlatf+24n—1g)(F+1+nl) —(F+Dlatf+2+2nl)
n (a4 B+2+ [2n —2])(a+ B+ 2+ [2n],) e
fuy = genlPt o+ B2+ In—1o)([nlg + 5+ D@+ S+2= B+ 1)g" + 7o) , -

(a+B+2+2n—1)(a+B+2+ [2n])2(a+ B+ 2+ 2n +1],)
Hy(x(z —1)I(a, 8,9)) — (@ + B+ 2)z — (B+1))J (e, 3,4) = 0

2.2 Some results about the H, semiclassical character

A form w is called Hj-semiclassical when it is regular and there exist two polynomials ® and ¥,
® monic, deg® =t > 0, deg ¥ = p > 1 such that

Hy(®u) + Yu =0, (2.5)

the corresponding orthogonal polynomial sequence {B,, },>¢ is called Hj-semiclassical [21].
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The H,-semiclassical character is kept by a dilation [21]. In fact, let {a™"(heBp)}n>0, @ # 0;
when u satisfies (2.5), then h,-1u fulfills the g-analog of the distributional equation of Pearson

type
Hy(a '®(ax)hy-1u) + a' "W (az)hy—1u =0,
and the recurrence coefficients of (2.3) are

ﬁn Yn41
) 9
a a

n > 0.

Also, the Hg-semiclassical form w is said to be of class s = max(p — 1,t —2) > 0 if and only
if [21]

LT {lathq®)(e) + (Hy®)(e)| + (1, a(0eq®) + (Beq 0 0.8))| } > 0, (2.6)
CcEZy

where Zg is the set of zeros of ®. In particular, when s = 0 the form w is usually called
H,-classical (Al-Salam—Carlitz, big ¢g-Laguerre, g-Meixner, Wall, ...) [20].

Lemma 1 ([21]). Let u be a symmetrical Hy-semiclassical form of class s satisfying (2.5). The
following statements holds

i) If s is odd then the polynomial ® is odd and ¥ is even.

1) If s is even then the polynomial ® is even and ¥ is odd.

In the sequel we are going to use some Hg-classical forms [20], resumed in Table 1 (canonical
cases: 1.1-1.8) and Table 2 (limiting cases: 2.1-2.3). In fact, when ¢ — 1 in results of Table 2,
we recover the classical Laguerre £(«a), Bessel B(a) and h_1 o 717 (v, 3) respectively where
J (e, B) is the Jacobi classical form [24].

Moreover in what follows we are going to use the logarithmic function denoted by Log :
C\ {0} — C defined by

1
2

Logz =1In|z| +iArg z, z € C\ {0}, -1 < Argz <,

Log is the principal branch of log and includes In : R\ {0} — R as a special case. Consequently,
the principal branch of the square root is

Vi= Ve, zec\ {0}, -—m<Amgz<m

2.3 On quadratic decomposition of a symmetrical regular form

Let u be a symmetrical regular form and {B,,},>0 be its MOPS satisfying (2.3) with 3, = 0,
n > 0. It is very well known (see [8, 25]) that

Boy(x) = P, (wz), By y1(x) = xRy, (:EQ), n >0,

where { P, }»>0 and { Ry, },>0 are the two MOPS related to the regular form ou and xou respec-
tively. In fact, [8, 25]

u is regular < ou and xou are regular,

u is positive definite & ou and zou are positive definite.
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Furthermore, taking

Py(x) =1, Pi(x)=z— ﬁ(];,

Poia(z) = ($ - 55+1)Pn+1(33) - 75+1Pn($)7 %];-1 # 0, n >0,
and

Ro(z) =1, Ry(z) =z — B,

Ryto(x) = (35 - ﬂfﬂ)Rn—H(w) - 7§+1Rn(x)7 7§+1 # 0, n >0,

we get [8, 25]

6OP =71,
57];1 = Y2n+2 T V2n+3 n >0,
Vi1 = Yant1Van+2, n >0, (2.7)
and
BE = Yan+1 + Y2nt2, n 20,
VR = Yon42Von s, n > 0. (2.8)
Consequently,
P
P N
71 = ﬁ() 9 Y2 = S5,
Bo
n R n+1
kﬂl Vi ) kﬂl Yk
Yont1 = By T Von+2 = P R n>1. (2.9)
[T 0 TT %
k=1 k=1

Proposition 1. Let u be a symmetrical reqular form.

(i) The moments of u are
(U)Qn = (Uu)n7 (U)2n+1 =0, n > 0. (21(])

(7i) If ou has the discrete representation

oo o0
ou=3_ ppin, > =1, (2.11)
k=0 k=0

then a possible discrete measure of u is

o0

O0/m+0_ /5
Uzzpkg- (2.12)
k=0

(#i1) If u is positive definite and ou has the integral representation

(ou, f) = /0 V(@) fe)de,  feP, /0 T V(@)de =1, (2.13)

then, a possible integral representation of u is

(u, f) = /_Oo 2|V (%) f (x)dz, fep. (2.14)
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Proof. (i) is a consequence from the definition of the quadratic operator o.
For (i7) taking into account (2.10), (2.11) we get

(e’ o0 T 2n _ T 2n
(Wan = (0w = 3 puly/m)? = 3 Y VI
k=0 k=0
But
S 2n+1 T 2n+1
(U)2n+1=0=ZPk(ﬁ) . 2(_ﬁ) . :
k=0

Hence the desired result (2.12) holds.
For (iii) consider f € P and let us split up the polynomial f accordingly to its even and odd
parts

f(z) = fo(2%) + zf°(2?). (2.15)
Therefore since u is a symmetrical form

(u, (2)) = (u, [*(22)) = (ou, /(). (2.16)
From (2.15) we get

o) = e, +2f(—\/5)’ s ER,. (2.17)

By (2.13) and according to (2.16), (2.17) we recover the representation in (2.14). [

3 Symmetrical H g-semiclassical orthogonal polynomials
of class one

Lemma 2. We have

o(Hyu) = (¢ + 1)Hp(o(zu)), ueP. (3.1)
Proof. From the definition of H, we get

(Hy(0f)(@) = (a+ Dalo(Hpf) (@), feP.
Therefore, V f € P,

(o(Hqu), f) = (Hqu, o f) = —(u, (¢ + 1)zo(Hpf))
= —((¢+Vo(zu), Hp f) = (¢ + 1) Hp (o (zu)), f).

Thus the desired result. [ |

Lemma 3. Let u be a symmetrical H j4-semiclassical form of class one. There exist two poly-
nomials ¢ and ¥, p monic, with degp < 1 and degt = 1, such that

H\/a(xgo(ﬁ)u) + 9 (z*)u=0. (3.2)

Proof. The result is a consequence from the definition of the class and Lemma 1. |
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Corollary 1. Let u be a symmetrical H s5-semiclassical form of class one satisfying (3.2); then
ou et xou are Hy-classical satisfying respectively the following q-analog of the distributional
equation of Pearson type

Hy(zp(z)ou) +

\/61‘1' 1@D(x)au =0, (3.3)

H, () (o)) + ¢~ (

1
) - @)} (zo) 0. (3.4

Proof. First, ou and xou are regular because u is symmetrical and regular. Applying the
quadratic operator ¢ to (3.2) and taking into account (3.1) we get

(V@ + 1) Hy(o(z*0(2*)u)) + o (¢ (2®)u)= 0.
By (2.2) we get (3.3). Now, multiplying both sides of (3.3) by ¢~ 'z, using the identity in (2.1),
this yields to (3.4). [

Regarding Table 1 (cases 1.1-1.8), Table 2 (cases 2.1-2.3) and the g-analog of the distribu-
tional equation of Pearson type (3.3), (3.4), we consider the following situations for the polyno-
mial ¢ in order to get a H g-semiclassical form from a H,-classical

A. p(z) =1 (cases 1.1,1.2,1.3,1.4,2.1); B. ¢(x) = x (cases 1.5,2.2);
C. p(z) =z —1 (case 2.3); D. p(z) =2 — b 1q7! (case 1.6);
E. o(z) =z — p ¢! (case 1.7); F. p(x)=x —i—wq_% (case 1.8).

A. In the case ¢(x) = 1 the g-analog of the distributional equation of Pearson type (3.3),
(3.4) are

1
Hy(zou) + N 1w(x)0u =0, (3.5)
Hy(x(zou)) + ¢ ( ! Y(x) — 1) (zou) = 0 (3.6)
q q Ja+1 . .

Ay, If Y(x) = (\/g+1)(x —1—a) the g-analogue of the Laguerre form L(a, q), a # —[n],—1,
n > 0 (case 2.1 in Table 2) satisfying

Hy(zL(a,q)) + (z — 1 — a)L(a, q) = 0.
Comparing with (3.5), (3.6) we get

ou=DL(a,q), a#-nl;,—1, n>0, (3.7)
and

zou=(1+a)L(g "(a+2)—1,q), a#-Mnj;—1,  n>0. (3.8)

Taking into account the recurrence coefficients (see case 2.1 in Table 2), by virtue of (3.7), (3.8)
and (2.7), (2.8) we get for n >0

BY =q¢"{(1+q ") nlg+1+a},

'YTILDH =¢*"[n + Hg{ln]q +1+aj,

Br=a"" {1 +¢ Dl +a2+a)},

Y1 = P+ Uof{lnlg + ¢ 2+ )}
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With the relation [k — 1], = ¢ [k], — ¢!, k > 1 the system (2.9) becomes for n > 0

Yont1 = q¢"(nlg +1+a), Y2 =q"[n+ 1], (3.9)

Writing o = pu— 3, t # —[n]y — &, n > 0 and denoting the symmetrical form u by H(u, q) we
get the following result:

Proposition 2. The symmetrical form H(u,q) satisfies the following properties:

1) The recurrence coefficient yn+1 satisfies (3.9).

2)

3) H(u,q) is positive definite if and only if ¢ >0, p > 7;
)

4) H(u,q) is a H. g-semiclassical form of class one for p # 7 \[H) 2, p# —[nlg — %,
n > 0 satisfying the q-analog of the distributional equation of Pearson type

H(, q) is regular if and only if p # —[nlq — %, n > 0.

H ) + (/1) (2 = 0= 5 ) W) =0 (3.10)

Proof. The results in 1), 2) and 3) are straightforward from (3.9). For 4), it is clear that
H(u, q) satisfies (3.10); in this case and by Virtue of (2.6), we are going to prove that the class
of H(u,q) is exactly one for p # f\fﬂ — 1, 1 # —[n]g — 3, n > 0. Denoting ®(z) = ,

U(z) = (yg+1)(22 — p— 3), we have accordingly to (2.6), on one hand

1
Valh ) 0+ (H5#) 0 =1 vava+ 1) (u+ 3) £
and on the other hand by (6p¥)(z) = (,/g + 1)z and (62@)(z) = 0,
(H(1,4), /3000 + 05®) = 0
taking into account that u is a symmetrical form. |

Remark 1. The symmetrical form H(u,q), pu # m — 2, 1 # —[n]g— 3, n >0is the

g-analogue of the generalized Hermite one [12] (when ¢ — 1 we recover the generalized Hermite

. . . . . 1
form H(p) (see (1.2)) which is a symmetrical semiclassical form of class one for p # 0, pp # —n—3,
n >0 1, 8, 15, 26]).

Ay If p(z) = —(/g—1) "' (z+ 1) the form U that satisfies the g-analog of the distributional
equation of Pearson type (see case 1.1 in Table 1)

Hy(aU) — (¢ — 1) (z+ 1)U = 0.
Comparing with (3.5), (3.6) we get
ou=U, (3.11)
and
xou = —hyU. (3.12)
Taking into account (3.11), (3.12), (2.7), (2.8) and the case 1.1 in Table 1 we obtain for n > 0
={1-(+aq" " = (" -1)¢,
={1-1+ad"}d", = (" 1)
Consequently, the system (2.9) becomes for n > 0

Yont1 = —¢",  Yont2 = (1 —¢" )" (3.13)
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Proposition 3. The symmetrical form u satisfies the following properties:

1) The recurrence coefficient yn11 satisfies (3.13).
2) w is regular for any q € C.

3) w is a H g-semiclassical form of class one satisfying

H g(au) — (Vg—1)7"(a* +1)u=0. (3.14)
4) The moments of u are

(W2 = (=1)"¢2"" 7V, (W1 =0, n>0.

5) we have the following discrete representation

u = i (_1)kqik23<k) 6iq q2
(Y q Y 2 ’

(N

+0 &
—i

q>1.
k=0

Proof. The results in 1), 2) are obvious from (3.13). For 3), it is clear that u satisfies (3.14).
Denoting ®(z) =z, ¥(z) = —(,/g — 1)~ (2* + 1), we have (2.6)

1
Va(h q9)(0) + (H 4£%)(0) = = £0, (u, /q00P + 02®) = 0.
Therefore, u is of class one. The results in 4) and 5) are consequence from (2.10)-(2.12) and
those for U (case 1.1 in Table 1). [

As. If ¢(z) = —(ag) (/g — 1) (z — 1 + ag) the little g-Laguerre form L(a,q), a # 0,
a#q "', n>0 (case 1.2 in Table 1) satisfying

Hy(zL(a,q)) — (aq) (¢ — 1) (z — 1+ aq)L(a, q) = 0.
With (3.5), (3.6) we obtain

ou = L(a,q), a+#0, a#q "t n >0, (3.15)
and

xou = (1 —aq)L(aq,q), a # 0, a#q " n > 0. (3.16)
By virtue of the recurrence coefficients of little g-Laguerre polynomials in Table 1, case 1.2, the
relations in (3.15), (3.16) and (2.7), (2.8) we get for n > 0

By ={1+a—a(l+q)q"}q",

T =a(l—¢"") (1 —ag" )¢,

Ba = {1+aq—a(l+q)q" ' }q",

%IL%H —a(l - qn+1) (1- aqn+2)q2n+2.
Therefore (2.9) becomes for n > 0
n+1)7 ong2 = ag"t (1- qn+1)‘ (3.17)

Comparing with [2], v is a symmetrical case of the Al-Salam—Verma form, v := SV(a,q).
From (3.17), it is easy to see that SV(a,q) is regular if and only if a # 0, a # ¢ "%, n > 0.
Also, 8V(a, q) is positive definite if and only if 0 < ¢ < 1,0<a<qg lorg>1,a<0.

Yon+1 = qn(l —aq
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Proposition 4. The form SV(a,q) is a H . j-semiclassical form of class one for a # 0, a # q_%,
a#q "', n >0 satisfying

H 4(x8V(a,q)) — (aq) ' (va— 1) (z* — 1+ aq)SV(a,q) = 0. (3.18)
The moments are
(SV(a,9))2n = (ag; @)y (SV(a,9))2041 =0,  n >0, (3.19)

and the orthogonality relation can be represented

5k—|—5 k
(SV(a.9). f) = a””Z ea) < 5 7,f>

K lna
/ 2?1 T (ga?; @)oo f () dir, feP, 0<qg<l, 0<a<q? (320
with
Ina Ina

K1 —qh‘ql/ (3 q)ode,
0

and

1 (o]
SV(a,q) = —— Z 1 qg>1, a<0. (3.21)
Proof. It is direct that the form SV(a, q) satisfies the g-analog of the distributional equation of
Pearson type (3.18). Denoting ®(z) = z, ¥(z) = —(aq) ' (,/g—1)"!(2? — 1 +ag), we have (2.6)

1

a_lq_i -1
Vi1
from which we get that SV(a,q) is of class one because a # 0, a # qfé, a#q "', n>0. The

results mentioned in (3.19)—(3.21) are easily obtained from those well known the properties of
the little g-Laguerre from (case 1.2 in Table 1) and (2.10)—(2.14). [

Va(hz9)(0) + (H 59)(0) = 40, (SV(a,q), /300 + 03 @) = 0,

Remark 2. The regular form SV(q *% q) is the discrete ,/g-Hermite form which is H -
classical [20].

Ay Ifp(x) = —bil(\/a — 1)*1(q*1x +b— 1) the Wall form W(b,q), b #0,b# ¢ ™, n>0
(case 1.3 in Table 1) that satisfies

Hy(2W(b,q)) = b~ (g — 1)~ (g 'z +b—1)W(b,q) = 0.
In accordance of (3.5), (3.6) we get
ou = W(b,q), b#0, b#q ", n >0,
and
zou = q(1 — b)W(bq, q), b+#0, b#q ", n > 0.

We recognize the Brenke type symmetrical regular form Y(b,q) [8, 9, 10]. In [13] it is proved
that Y (b, q) is H jg-semiclassical of class one for b #0,b# /q,b# q~", n > 0 satisfying

H 4(xY(b,q)) — bt (q% — 1)71{q_1x2 +b—1}Y(b,q) =0. (3.22)

Also in that work, moments, discrete and integral representations are established.
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Remark 3. Likewise, from (3.22) it is easy to see that h 1Y (,/q, q) is the H g-classical discrete
va
/¢-Hermite form [20].

As. IfY(x) = (Vg — 1)~ tgot (x +b— an) the generalized ¢~ '-Laguerre (@ (b, q) form,
b+#0,b+# ¢ 1T n >0 and its g-analog of the distributional equation of Pearson type (case 1.4
in Table 1)

Hy(@U' ™ (b,9)) + (g = 1) 7'q *Ha+b—g* U (b,q) =0.
By (3.5), (3.6) we deduce the following relationships

ou = Z/l(a)(b, q), b # 0, b+ gntite n >0, (3.23)

rou = (an — b)M(aH)(b, q), b#0, b gntite n > 0. (3.24)
From Table 1, case 1.4, the relations in (3.23), (3.24) and (2.7), (2.8) we get for n > 0

BY ={1—q¢ " g (1—bg ") b,

T =1 =g ) (1 —bg "I gt et

B ={1—q " g (L-bg ") fgPret?,

i = (L ) (L by g
Thus, for n > 0

Yont1 = (L =bg "1 7) g g = (1= g ") gt

Consequently, the symmetrical form u := u(a, b, q) is regular if and only if b # 0, b # ¢" 1+,
n > 0. It is positive definite for « € R, ¢ > 1, b < ¢®*1.

Proposition 5. The symmetrical form u is a H g-semiclassical form of class one for b # 0,
b#q¢" e n >0, a € R satisfying

H g(zu) + g ! (q% - 1)_1{332 +b— an}u = 0.

Moreover, we have the following identities

(u)on, = (=0)" (bilqaﬂ; q)n, (u)2nt1 =0, n >0, (3.25)
00 mma%ﬂ
) =K [ @), (3.26)

for feP,a€R, ¢>1,0<b< ¢, with

1 > xaiﬁ
K :/ ey
0 (_b T4 )oo

is given by (2.4),

0o _1 — 1) 1)
we L R PSS (3.27)
(b1 oo &= (a7 1507 i 2 7
foraeR, g>1,b<0, and
0 b—lqoz-l-l)k 5\/5 % +5—\/B %
u=(b""¢""q ( - — 328
( )OOkZO (¢ Dk 2 2

foraeR,0<qg<1,b> g,
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Proof. First, let us obtain the class of the form; denoting

®(r) =2, V()= (/g-1)7'¢ " (@®+b— "),

we have

Va(h q9)(0) + (H 49)(0) = #0,  (u,/gboU + 65®) =0,

for b # 0, b # "7 n >0, a € R. Thus, u is of class one. The identities given in (3.25)—(3.28)
are easily obtained from the properties of the generalized ¢~ '-Laguerre U (O‘)(b, q) form (Table 1,
case 1.4) and (2.10)—(2.14). |

B. In the case p(z) = z the g-analog of the distributional equation of Pearson type (3.3),
(3.4) are

Hy(2%ou) +

Y(x)ou =0, (3.29)

Y(x) — :z:} (xou) = 0. (3.30)

[y

1)(ax + 1) the g-analogue of the Bessel form (case 2.2 in Table 2),
D™ a# —%[n]q, n > 0 satisfying

Hy(7*B(a, q)) — 2(az + 1)B(a, q) = 0.

Thus, comparing with (3.29), (3.30), we get
1 . 1
Gu:B(av(I)v a#i(q_l) 9 a;'é_i[n]q: nZO)
and

1 1 1
Tou = —oflhq_1B(q71(a + 5),q), o # i(q — 1)71, a # —§[n]q, n > 0.

By the recurrence coefficients in case 2.2 of Table 2, the relations in (3.29), (3.30) and (2.7),
(2.8) we get for n >0

n20+ (1 +qYn 1]y — g ' [2n],

(2a + 2n — 2]y)(2a + [2n]y)
3n [n+1]g(2a + [n — 1]y)

(20 + [2n — 1]¢) (2 + [2n]¢)2 (20 + [2n + 1]¢)
no1 20+ 1)g7 + (1+q [ —1]g — ¢ '[2n),

(2 + L)g=t + [2n — 2]¢)((2a + 1)g~* + [2n]4)
3n-2 [n+1]g((2a + 1)g ™ + [0 — 1)

(a+1)g7 1+ 2n — 1)) ((2a + 1)g 1+ [2n]4)?((2a + 1)g~ 1+ [2n + 1],)

Bl =-2q

75+1 = —4q

B = —2q

7§+1 = —4q

By the relation [k — 1], = ¢ '[k], — ¢~ 1, k > 1, (2.9) leads to for n >0

1 n+1]
= -, — 2 2n q ’
n a T2 = (2a 4+ [2n]g) (2o + [2n + 1]4)

n+1 (2a + [n]y)
2o+ 2n + 1) 2a + 2n + 2],)°

Yent3 = —2¢ (3.31)
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We put o = ”TH, v # 2_;‘11, v # —[n|y — 1, n > 0 and denote the symmetrical form u by B[v, q].

From (3.31) the form Blv, q] is regular if and only if v # %, v# —[nly—1,n>0. Also, it is
quite straightforward to deduce that the symmetrical form B[y, q] is H, gz-semiclassical of class
one for v # 2_;‘{, v # —[n]s — 1, n > 0 satisfying the g-analog of the distributional equation of
Pearson type

v+1
H (2’ Blv,ql) —2(Va+1) (23:2 + 1> Bv,q] = 0.
Remark 4. The symmetrical form h(zﬁ)_lb’[% ql, v # 2_;&1’ v # —[nlg—1, n > 0 is the

g-analogue of the symmetrical form B[v| [14] (when ¢ — 1 we recover the symmetrical semiclas-
sical B[v], v # —n—1, n > 0 of class one, see (1.4)). Also, for any parameter « # —n—1,n >0

—a—1__

the symmetrical form h(zm),lB[—q(]Tl —1,q] appears in [33].

Bo. If (z) = —(ag) (/g — 1)7*((1 + ag)z — 1) the Alternative g-Charlier A(a,q) form
with a # 0, a # —¢~", n > 0 that satisfies (case 1.5 in Table 1)

Hy(2*A(a,9)) = (ag)~ (¢ = 1)~ ((1 + ag)z — 1) A(a, q) = 0.
Thus
ou = Ala,q), a #0, a#—q ", n >0,

and
1
1+ aq
The systems (2.7), (2.8) are for n > 0

LOU = *A(a% Q)a a 75 07 a 7£ _q—n’ n > 0.

P " 1+ aqnfl + aqn _ aq2n

Bn =4 1+ ag@1)(1 + ag2nt1)’
e (1—¢""H(1 +ag") 7
(1 —{-an”)(l +aq2n+1)2(1 + aq2n+2)
ﬂfl{ e 14+ aqn 4 aqn—i-l o aq2n+1’
(14 ag®)(1 + ag®+2)
VR = agtnt? (1—¢""™) (1 +ag"™)

(14 ag>™)(1 + ag?™2)2(1 + ag®**3)’
from which we get for n >0

1+ agq" on+1 1—q¢"*!

2n 2nt1Y’ T2nt2 = a9 2n+1 2n+2)°
1+ a¢®)(1+ aq ) (1+aq )(1+ aq )
Consequently, the symmetrical form v = u(a, q) is regular if and only if a # 0, a # —¢~", n > 0.

It is positive definite for 0 < ¢ < 1, @ > 0. Also, u is H ﬁ—semiclassical of class one for a # 0,
a # —q ", n > 0 satisfying the g-analog of the distributional equation of Pearson type

H\/g(x?’u) —(aq) (g — 1) ((1 + ag)z® — 1)u = 0.

After some straightforward computations, we get the following representations for the moments
and the orthogonality

Yont1 = q" (

) (U)Zn-i—l - 07 n Z 07

l/lna 1 — —1. o0 Ina 1 2
(u, f) = BT T Do [7 ) 2ht 2 ) exp (—2n x')fmdx,

\/ 27 In q_l —o0 In q_l
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for feP,0<g<1,a>0,and
Lk(k+1) 0

1 akqz —q
(—ag; 9)oo kzzo (4 )

k
2

[SEo

q

. 0<qg<1, a>0.

)
v= 2

C. In the case p(z) = x — 1 the g-analogue of Jacobi form (case 2.3 in Table 2), therefore the
g-analog of the distributional equation of Pearson type (3.3), (3.4) become

Hy(z(z — 1)ou) — ((a+ B+ 2)z — (B+1))ou =0,

and
Hy(z(z —1)(zouw)) —q ' ((a+ B+ 3)z — (B+2))(zou) = 0.
Consequently,
ou=J(a, B,q), (3.32)
_ B+l -1 1 1 _
amu_a+ﬁ+2uq (a+1)—1,¢'(B+2)—1,q) (3.33)

with the constraints

atBATL atftfl-2 pA L
a+/+2—(B+1)¢" + [n]y #0, n > 0. (3.34)

By Table 2 and (3.32), (3.33), the systems (2.7), (2.8) give for n > 0

gP:qmﬁﬂ+ﬂﬂa+ﬁ+2+U%4Mﬂﬁ+1+Mh%—W+dxa+ﬁ+2+pm@
! (@+B+2+2n—2g)(a+B+2+[2n)) )
mn+1gla+B+2+n—1])([nlg+ 0+ 1) (a+8+2—(6+1)¢" + [n]y)
(a+B8+2+2n—1g)(a+B+2+[2n]g)*(a+ B+ 2+ [2n + 1))
5R:¢FM1+®W+5+2+V%Xﬂ+1+M+H0—%6+Dm+ﬂ+2+pn+u0
" (a+B8+2+12n—1])(a+B+2+[2n+1],)
_ ons1ntlfg(a+B42+[n]g)([n + g +54+1)(a+54+2—(8 + 2)¢" +[n + 1]q)

R
Tnt1 = 4 (a+B+2+2n)(a+B+2+12n+1])2(a+ B +2+[2n+2],)

P
7n+1 =dq

)

Using the above results and the relations
[k — 1]q = q_l[k]q - q—l’ [k]q = qk_l + [k — 1](]7 k>1
we deduce from (2.9) for n >0

n (a+B+2+[n—1])(B+1+[nly)

(a—i—ﬁ—l—?—l—[2n—1]q)(a+ﬁ+2+[2n}q)
a+pB+2—(B+1)¢" + [nlg

a+pB+2+2n))(a+B+24+2n+1])

Yon+1 = ¢

)

Wﬁﬂzfm+”% (3.35)

We denote the symmetrical form u by G(«, 3,¢q). From (3.35) the symmetrical form G(«, (3, q)
is regular if and only if the conditions in (3.34) hold. It is H g-semiclassical of class one for

a+ B8+ a+B# -y -2 B# -hly—1La+B+2—(B+1)q" +[n), #0,n >0,
B # m — 1 satisfying

Hy(z(2® — 1)G(e, B,q)) — (vVa+1)((a+ B +2)2* — (8+1))G(a, B,9) = 0.
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Remark 5. The symmetrical form G(a, 3, ¢q) is the g-analogue of the symmetrical generalized
Gegenbauer G(a, 3) form (see (1.3)) which is semiclassical of class one for a # —n—1,  # —n—1,

B# -t a+B#-n—-1,n>0][L, 6]

D. In the case ¢(z) = x —b~'q~! the little g-Jacobi U(a, b, ¢) form (case 1.6 in Table 1). The
g-analog of the distributional equation of Pearson type in (3.3), (3.4) become

Hy(z(z —b"'q Vou) + (abg?(q — 1))_1((1 —abg*)z + ag — 1)ou = 0,
Hy(z(z — b_lq_l) (zou)) + (abqs(q - 1))_1 ((1- abq3)$ + ag® — 1)(zou) = 0.

Hence
ou=1U(a,b,q), (3.36)
1—aq

with the constraints
ab # 0, a#q " b+q "1, ab # q ", n > 0. (3.38)
By Table 1 and (3.36), (3.37), the systems (2.7), (2.8) lead to for n >0
(14 a)(1 + abg® 1) —a(1+ b)(1 + q)g"
(1= abg?")(1 — abg®**?) ’

P onpr (L= @) (1 — ag"™) (1 — bg" (1 — abg™ )
Tn+1 = 44 (1 — abg2 1) (1 — abg®2)2(1 — abg?™3)

(1+aq)(1 + abg®™*?) — a(1 +b)(1 + ¢)g"*"

Bl =q"

R _ n
Pn =1 (1 — abg® 1) (1 — abg?n+3) 7

R genre (L= @ — ag2)(1 — bg™ (1 — abg" )
Tn+1 = 44 (1 — abg®™+2)(1 — abg®"+3)2(1 — abg?™+4)

Using the above results and (2.9) we get for n > 0

o = g (L ag" (L~ abg™ ) oy = g (L=~ bg™)
nt1 (1 — abg2"+1)(1 — abg2"+2)’ 2n+2 (1 — abg2"+2)(1 — abg2"+3)’

Therefore, the symmetrical form u = u(a, b, q) is regular if and only if the conditions in (3.38)
are satisfied. Further, the form wu is positive definite for 0 < ¢ <1,0<a <q ', b<1,b+#0 or
q>1,a>q ' b>1. Moreover, by virtue of (2.6), the form u is H jg-semiclassical of class one

forab#0,a#q¢ " bAq " ab£q ", n>0a#q
H\/a(x(xQ - biqul)u) + (abq2(\/§ — 1))_1((1 - aqu)x2 +ag—1)u=0.

Proposition 1 and the well known representations of the little g-Jacobi form (Table 1) allow us
to establish the following results

(aq; q)n
n — ) n :0, Z 0.
(u)2 (@b ). (u)2n+1 n
For feP,0<qg<1l,0<a<q ', b<1, b#0,
00 0 x+0
) q2 q2

(ag;q Z bq q)
u - )
(abg?; ¢) oo — 2
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and
i (4% 0)oc
lna ;U ,q
K ) YRE q d
oy =1 [ RO f@ya
with
—1
K—l :/q xiﬁf‘; (qx;Q)oo dx
0 (qu;(ﬁoo
For feP,g>1,a>q¢ ', b>1
1 _ ) )
_ (a'q 1,q Y i Rl O v T O
(a1b-1q 2 1 Ook:o —1 7 Dr B )
and
b_7 na bm q 1)
(u, f) = K/ $21nq+1 = 2 f(x)d,
= (%0 )0 (@)
with

bt 1
K~! _/ winqi(bx 1 )Oodx.
0

(2367 oo

E. In the case ¢(z) = x — u~1q~! the g-Charlier-1I-form Uy, q) (case 1.7 in Table 1). From
the above assumption (3.3), (3.4) are

Hy(x(z — p~'q ) ou) = (na(q — 1)) ((ng — D)z = 1)ou =0,
Hy(z(z — p~ g7 ") (wouw)) — (uglq — 1) ((pg® — 1)q~ 'z — 1) (zou) = 0.
Thus

ou=U(p,q), p# 0, pFEG"

vou=——=hl(ng,q),  p#0, p#q¢", 020

9 nzO?

Consequently, the systems (2.7), (2.8) for n > 0 are

gr = 1 L=+ e+ e
(1= pg®*=1)(1 = pg>*1)
Vo1 =—¢"" 2(1 - q"Hg(l 1_2qu) 2n12)’
(1= pg®) (1 — pg®+1)2(1 — pg?+2)
R_ nl— (149" +pg* !
O = T ) (1= )
e (1—¢"")(1 — pg"t) ‘
(1= pg? (1 — pg®+2)2(1 — pg®+2)

On account of (2.9) we have for n > 0

R
Tn+1

_ _q2 1—pg” = q" l—q
et (1= p) (1 — pg2rty P2 = i Ty (1 = pg?e2)
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n

From the last result, the symmetrical form u = u(u, q) is regular if and only if p© # 0, pu # ¢~ ",
n > 0. Moreover, by virtue of (2.6), it is clear that u is H g-semiclassical of class one for u 7# 0,
uw#q ", n >0 satisfying

H g(z(z* = p~ g " )u) — (pa(v/q— 1)) {(ng — 1)z* — 1}u = 0.
Furthermore, by the same procedure as in D we get

(_1)nq%n(n—1)

()2n = (uq; On

) (u)2n+1 = 07 n > Oa

g bRk H) J k1 + 0 ki1

oo
—iv/—p g 2 iv-ptg 2
u =

(a0 o kzzo gk 2 ’

forq>1, p<O.
F. In the case p(x) = = + wqu the generalized Stieltjes—Wigert form S(w,q) (case 1.8 in
Table 1). From (3.3), (3.4) it follows

Jou) — (g — 1)z + (w - 1)q_%)au =0,
Y(zou)) — (¢ — 1)z + (wg — l)q_%)(xau) =0.

H, (x (x 4+ wq™
Hy(z(z +wq™

ol Nl

Thus

ou=38w,q), w#qg", n=0,
xou = (1— w)q_%hqu(wq, q), w#qg ", n > 0.

We obtain for n > 0

B ={(l+qq " —qg—wlg "2,
T =1 =g (1 —wg)g ",
BE={1+q)q " —q(l+ w)}q‘”‘%,
’77}3—&—1 — (1 _ qn+1) (1 _ qu+l)q—4n—6.

Thus, (2.9) gives for n > 0

2n

_op_3 o5
Vo1 = ¢ "2 (1 —wg™),  qonse=¢q 2 (1—¢"). (3.39)
We recognize the Brenke type symmetrical orthogonal polynomials [8, 9, 10]

We denote u = 7 (w, q). Taking into consideration (3.39), the symmetrical form 7 (w, q) is regular
if and only if w # ¢7™, n > 0, and it is positive definite for 0 < ¢ < 1, w < 1. Furthermore,
it is easy to deduce that 7 (w,q) is H /-semiclassical of class one for w # /¢, w # ¢ ", n >0
satisfying the g-analog of the distributional equation of Pearson type

3

H q(x(a® +wq 2)T(w,q) = (Va— 1) (@ + (@ = 1)q )T (w,q) = 0.
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Finally, with Proposition 1 and the properties of the generalized Stieltjes-Wigert H-classical
form (Table 1, case 1.8) we deduce the following results

(T(w7 Q))Qn = q—%n(n+2) (W, Q)TH (T(wa Q))QnJrl = Oa n Z 07

00 —k ) k_3 +0 k_3
1 w —iJoqT 31 iog 271
T(w,q) = (w g 1)002 (q_l a v 9 e ) q>1, w>1,

lnq -1
(T(w,a),f) = K / s f(@)da,

—qrw 122 )
fep, 0<q<1, O<w<l,

Inw

S :rlnq
K= / dx
0 (—q2wlz;q)ec

is given by (2.4),

21n2 |x]
(T( ’/27rlnq—1 / ]w\exp( >f(:c)dw, 0<g<l1.
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