Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 5 (2009), 064, 26 pages      arXiv:0906.0549      https://doi.org/10.3842/SIGMA.2009.064
Contribution to the Proceedings of the VIIth Workshop ''Quantum Physics with Non-Hermitian Operators''

Hidden Symmetry from Supersymmetry in One-Dimensional Quantum Mechanics

Alexander A. Andrianov a, b and Andrey V. Sokolov a
a) V.A.Fock Department of Theoretical Physics, Sankt-Petersburg State University, 198504 St. Petersburg, Russia
b) Departament ECM and ICCUB, Departament de Fisica, Universitat de Barcelona, 08028 Barcelona, Spain

Received March 05, 2009, in final form June 02, 2009; Published online June 17, 2009

Abstract
When several inequivalent supercharges form a closed superalgebra in Quantum Mechanics it entails the appearance of hidden symmetries of a Super-Hamiltonian. We examine this problem in one-dimensional QM for the case of periodic potentials and potentials with finite number of bound states. After the survey of the results existing in the subject the algebraic and analytic properties of hidden-symmetry differential operators are rigorously elaborated in the Theorems and illuminated by several examples.

Key words: supersymmetric quantum mechanics; periodic potentials; hidden symmetry.

pdf (370 kb)   ps (225 kb)   tex (31 kb)

References

  1. Fock V., On the theory of the hydrogen atom, Z. Phys. 98 (1935), 145-155.
  2. Dubrovin B.A., Matveev V.B., Novikov S.P., Non-linear equations of Korteweg-de Vries type, finite-zone linear operators, and Abelian varieties, Russ. Math. Surv. 31 (1976), 59-146.
    Zakharov V.E., Manakov S.V., Novikov S.P., Pitaevskii L.P., Theory of solitons, Nauka, Moscow, 1980.
  3. Fushchych W.I., Nikitin A.G., Symmetries of equations of quantum mechanics, Allerton Press, Inc., New York, 1994.
    Fushchych W.I., Nikitin A.G., Higher symmetries and exact solutions of linear and nonlinear Schrödinger equation, J. Math. Phys. 38 (1997), 5944-5959.
    Zhdanov R.Z., Conditional symmetry and spectrum of the one-dimensional Schrödinger equation, J. Math. Phys. 37 (1996), 3198-3217, hep-th/9606028.
  4. Andrianov A.A., Sokolov A.V., Nonlinear supersymmetry in quantum mechanics: algebraic properties and differential representation, Nuclear Phys. B 660 (2003), 25-50, hep-th/0301062.
  5. Andrianov A.A., Cannata F., Ioffe M.V., Nishnianidze D.N., Systems with higher-order shape invariance: spectral and algebraic properties, Phys. Lett. A 266 (2000), 341-349, quant-ph/9902057.
  6. Andrianov A.A., Sokolov A.V., Nonlinear supersymmetry in quantum mechanics, in Proceedinds of Fifth International Conference "Symmetry in Nonlinear Mathematical Physics" (June 23-29, 2003, Kyiv), Editors A.G. Nikitin, V.M. Boyko, R.O. Popovych and I.A. Yehorchenko, Proceedings of Institute of Mathematics, Kyiv 50 (2004), Part 2, 539-546.
  7. Braden H.W., Macfarlane A.J., Supersymmetric quantum mechanical models with continuous spectrum and the Witten index, J. Phys. A: Math. Gen. 18 (1985), 3151-3156.
  8. Dunne G., Feinberg J., Self-isospectral periodic potentials and supersimmetric quantum mechanics, Phys. Rev. D 57 (1998), 1271-1276, hep-th/9706012.
    Dunne G., Shifman M., Duality and self-duality (energy reflection symmetry) of quasi-exactly solvable periodic potentials, Ann. Physics 299 (2002), 143-173, hep-th/0204224.
  9. Andrianov A.A., Cannata F., Ioffe M.V., Nishnianidze D.N., Matrix Hamiltonians: SUSY approach to hidden symmetries, J. Phys. A: Math. Gen. 30 (1997), 5037-5050, quant-ph/9707004.
    Samsonov B.F., Negro J., Darboux transformations of the Jaynes-Cummings Hamiltonian, J. Phys. A: Math. Gen. 37 (2004), 10115-10127, quant-ph/0401092.
  10. Andrianov A.A., Cannata F., Sokolov A.V., Non-linear supersymmetry for non-Hermitian, non-diagonalizable Hamiltonians: I. General properties, Nuclear Phys. B 773 (2007), 107-136, math-ph/0610024.
  11. Andrianov A.A., Ioffe M.V., Spiridonov V.P., Higher derivative supersymmetry and the Witten index, Phys. Lett. A 174 (1993), 273-279, hep-th/9303005.
    Andrianov A.A., Cannata F., Dedonder J.-P., Ioffe M.V., Second order derivative supersymmetry, q deformations and scattering problem, Internat. J. Modern Phys. A 10 (1995), 2683-2702, hep-th/9404061.
    Andrianov A.A., Ioffe M.V., Nishnianidze D.N., Polynomial supersymmetry and dynamical symmetries in quantum mechanics, Theoret. and Math. Phys. 104 (1995), 1129-1140.
  12. Khare A., Sukhatme U., New solvable and quasi exactly solvable periodic potentials, J. Math. Phys. 40 (1999), 5473-5494, quant-ph/9906044.
    Khare A., Sukhatme U., Some exact results for mid-band and zero band-gap states of associated Lamé potentials, J. Math. Phys. 42 (2001), 5652-5664, quant-ph/0105044.
    Khare A., Sukhatme U., Periodic potentials and supersymmetry, quant-ph/0402206.
  13. Fernández D.J.C., Mielnik B., Rosas-Ortiz O., Samsonov B.F., The phenomenon of Darboux displacements, Phys. Lett. A 294 (2002), 168-174, quant-ph/0302204.
    Fernández D.J.C., Mielnik B., Rosas-Ortiz O., Samsonov B.F., Nonlocal supersymmetric deformations of periodic potentials, J. Phys. A: Math. Gen. 35 (2002), 4279-4291, quant-ph/0303051.
    Fernández D.J.C., Ganguly A., Exactly solvable associated Lame potentials and supersymmetric transformations, quant-ph/0608180.
  14. Correa F., Nieto L.M., Plyushchay M.S., Hidden nonlinear supersymmetry of finite-gap Lamé equation, Phys. Lett. B 644 (2007), 94-98, hep-th/0608096.
  15. Fernández D.J.C., Negro J., Nieto L.M., Second-order supersymmetric periodic potentials, Phys. Lett. A 275 (2000), 338-349.
    Samsonov B.F., Glasser M.L., Negro J., Nieto L.M., Second order Darboux displacements, J. Phys. A: Math. Gen. 36 (2003), 10053-10069, quant-ph/0307146.
    Fernández D.J.C., Supersymmetrically transformed periodic potentials, quant-ph/0301082.
    Ioffe M.V., Mateos Guilarte J., Valinevich P.A., A class of partially solvable two-dimensional quantum models with periodic potentials, Nuclear Phys. B 790 (2008), 414-431, arXiv:0706.1344.
  16. Correa F., Jakubský V., Nieto L.M., Plyushchay M.S., Self-isospectrality, special supersymmetry, and their effect on the band structure, Phys. Rev. Lett. 101 (2008), 030403, 4 pages, arXiv:0801.1671.
    Correa F., Jakubský V., Plyushchay M.S., Finite-gap systems, tri-supersymmetry and self-isospectrality, J. Phys. A: Math. Theor. 41 (2008), 485303, 35 pages, arXiv:0806.1614.
  17. Andrianov A.A., Ioffe M.V., Cannata F., Dedonder J.-P., SUSY quantum mechanics with complex superpotentials and real energy spectra, Internat. J. Modern Phys. A 14 (1999), 2675-2688, quant-ph/9806019.
    Cannata F., Junker G., Trost J., Schrödinger operators with complex potential but real spectrum, Phys. Lett. A 246 (1998), 219-226, quant-ph/9805085.
    Curtright T., Mezincescu L., Biorthogonal quantum systems, J. Math. Phys. 48 (2007), 092106, 35 pages, quant-ph/0507015.
  18. Mostafazadeh A., Pseudo-supersymmetric quantum mechanics and isospectral pseudo-Hermitian Hamiltonians, Nuclear Phys. B 640 (2002), 419-434, math-ph/0203041.
    Mostafazadeh A., Exact PT-symmetry is equivalent to hermiticity, J. Phys. A: Math. Gen. 36 (2003), 7081-7092, quant-ph/0304080.
  19. Samsonov B.F., Roy P., Is the CPT norm always positive?, J. Phys. A: Math. Gen. 38 (2005), L249-L255, quant-ph/0503040.
    Samsonov B.F., Roy P., SUSY transformations between digonalizable and non-diagonalizable Hamiltonians, J. Phys. A: Math. Gen. 38 (2005), L397-L403, quant-ph/0503075.
  20. Scholtz F.G., Geyer H.B., Hahne F.J.W., Quasi-Hermitian operators in quantum mechanics, Ann. Physics 213 (1992), 74-101.
  21. Bender C.M., Boettcher S., Real spectra in non-Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80 (1998), 5243-5246, physics/9712001.
    Bender C.M., Boettcher S., Meisinger P., PT-symmetric quantum mechanics, J. Math. Phys. 40 (1999), 2201-2229, quant-ph/9809072.
    Bender C.M., Brody D.C., Jones H.F., Complex extension of quantum mechanics, Phys. Rev. Lett. 89 (2002), 270401, 4 pages, Erratum, Phys. Rev. Lett. 92 (2004), 119902, quant-ph/0208076.
    Bender C.M., Chen J.-H., Milton K.A., PT-symmetric versus Hermitian formulations of quantum mechanics, J. Phys. A: Math. Gen. 39 (2006), 1657-1668, hep-th/0511229.
    Bender C.M., Brody D.C., Chen J.-H., Jones H.F., Milton K.A., Ogilvie M.C., Equivalence of a complex PT-symmetric quartic Hamiltonian and a Hermitian quartic Hamiltonian with an anomaly, Phys. Rev. D 74 (2006), 025016, 10 pages, hep-th/0605066.
    Bender C.M., Making sense of non-Hermitian Hamiltonians, Rept. Progr. Phys. 70 (2007), 947-1018, hep-th/0703096.
  22. Lévai G., Cannata F., Ventura A., Algebraic and scattering aspects of a PT-symmetric solvable potential, J. Phys. A: Math. Gen. 34 (2001), 839-844.
    Lévai G., Cannata F., Ventura A., PT-symmetric potentials and the so(2,2) algebra, J. Phys. A: Math. Gen. 35 (2002), 5041-5057.
    Deb R.N., Khare F., Roy B.D., Complex optical potentials and pseudo-Hermitian Hamiltonians, Phys. Lett. A 307 (2003), 215-221, quant-ph/0211008.
    Mostafazadeh A., Application of pseudo-Hermitian quantum mechanics to a PT-symmetric Hamiltonian with a continuum of scattering states, J. Math. Phys. 46 (2005), 102108, 15 pages, quant-ph/0506094.
  23. Znojil M., PT-symmetric harmonic oscillators, Phys. Lett. A 259 (1999), 220-223, quant-ph/9905020.
    Znojil M., Exact solution for Morse oscillator in PT-symmetric quantum mechanics, Phys. Lett. A 264, 108-111, quant-ph/9909003.
  24. Dorey P., Dunning C., Tateo R., Supersymmetry and the spontaneous breakdown of PT symmetry, J. Phys. A: Math. Gen. 34 (2001), L391-L400, hep-th/0104119.
  25. Nicolai H., Supersymmetry and spin systems, J. Phys. A: Math. Gen. 9 (1976), 1497-1506.
  26. Witten E., Dynamical breaking of supersymmetry, Nuclear Phys. B 188 (1981), 513-554.
  27. Cooper F., Freedman B., Aspects of supersymmetric quantum mechanics, Ann. Physics 146 (1983), 262-288.
  28. Andrianov A.A., Borisov N.V., Ioffe M.V., Quantum systems with equivalent energy spectra, JETP Lett. 39 (1984), 93-97.
    Andrianov A.A., Borisov N.V., Ioffe M.V., The factorization method and quantum systems with equivalent energy spectra, Phys. Lett. A 105 (1984), 19-22.
    Andrianov A.A., Borisov N.V., Ioffe M.V., Factorization method and the Darboux transformation for multidimensional Hamiltonians, Theoret. and Math. Phys. 61 (1985), 1078-1088.
  29. Nieto M.M., Relationship between supersymmetry and the inverse method in quantum mechanics, Phys. Lett. B 145 (1984), 208-210.
  30. Mielnik B., Factorization method and new potentials with the oscillator spectrum, J. Math. Phys. 25 (1984), 3387-3389.
  31. Fernández D.J.C., New hydrogen-like potentials, Lett. Math. Phys. 8 (1984), 337-343.
  32. Andrianov A.A., Borisov N.V., Ioffe M.V., Eides M.I., Supersymmetric origin of equivalent quantum systems, Phys. Lett. A 109 (1985), 143-148.
    Andrianov A.A., Borisov N.V., Ioffe M.V., Eides M.I., Supersymmetric mechanics: a new look at the equivalence of quantum systems, Theoret. and Math. Phys. 61 (1985), 965-972.
  33. Sukumar C.V., Supersymmetry, factorisation of the Schrödinger equation and a Hamiltonian hierarchy, J. Phys. A: Math. Gen. 18 (1985), L57-L61.
    Sukumar C.V., Supersymmetric quantum mechanics of one-dimensional systems, J. Phys. A: Math. Gen. 18 (1985), 2917-2936.
    Sukumar C.V., Supersymmetric quantum mechanics and the inverse scattering method, J. Phys. A: Math. Gen. 18 (1985), 2937-2955.
  34. Gendenshtein L.E., Krive I.V., Supersymmetry in quantum mechanics, Soviet Phys. Uspekhi 28 (1985), 645-666.
  35. Bagrov V.G., Samsonov B.F., Darboux transformation, factorization, and supersymmetry in one-dimensional quantum mechanics, Theoret. and Math. Phys. 104 (1995), 1051-1060.
    Samsonov B.F., New features in supersymmetry breakdown in quantum mechanics, Modern Phys. Lett. A 11 (1996), 1563-1567, quant-ph/9611012.
    Bagrov V.G., Samsonov B.F., Darboux transformation of Schrödinger equation, Phys. Particles Nuclei 28 (1997), 374-397.
  36. Andrianov A.A., Cannata F., Nonlinear supersymmetry for spectral design in quantum mechanics, J. Phys. A: Math. Gen. 37 (2004), 10297-10321, hep-th/0407077.
  37. Aoyama H., Sato M., Tanaka T., General forms of a N-fold supersymmetric family, Phys. Lett. B 503 (2001), 423-429, quant-ph/0012065.
  38. Aoyama H., Sato M., Tanaka T., N-fold supersymmetry in quantum mechanics: general formalism, Nuclear Phys. B 619 (2001), 105-127, quant-ph/0106037.
  39. Sokolov A.V., Non-linear supersymmetry for non-Hermitian, non-diagonalizable Hamiltonians. II. Rigorous results, Nuclear Phys. B 773 (2007), 137-171, math-ph/0610022.
  40. Sokolov A.V., Quantum mechanics with non-linear supersymmetry for one-dimensional Hermitian and non-Hermitian Hamiltonians, PhD Thesis, Sankt-Petersburg State University, 2008.
  41. Samsonov B.F., Irreducible second order SUSY transformations between real and complex potentials, Phys. Lett. A 358 (2006), 105-114, quant-ph/0602101.
  42. Berezin F.A., Shubin M.A., The Schrödinger equation, Kluwer Academic Publishers Group, Dordrecht, 1991.

Previous article   Next article   Contents of Volume 5 (2009)