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1 Introduction

In 2006 Anthony D. Blaom published a very interesting paper [1] in which he proposed a wide-
ranging generalization of Cartan’s idea of a geometry as a Klein geometry deformed by curvature.
The essential ingredient of Blaom’s conception is a Lie algebroid with a linear connection (co-
variant derivative) that is compatible with the algebroid bracket in a certain sense. Blaom calls
such an algebroid a Cartan algebroid, and – rather unfortunately in the circumstances – he calls
a connection with the requisite property a Cartan connection. A Cartan geometry in the origi-
nal sense (perhaps one should add ‘as reformulated by Sharpe [4]’) of a principal bundle with
a Cartan connection form – what Blaom would call a classical Cartan connection – gives rise to
a Cartan algebroid, as one would expect. But there are many more examples of the latter than
of the former; for instance, a Cartan algebroid arising from a Cartan geometry must necessarily
be transitive, but Blaom gives examples of Cartan algebroids which are not transitive. However,
in this paper I shall concentrate on the transitive case.

In the introduction to his paper Blaom speculates, in an aside, that there may be a relation-
ship between his work and so-called tractor calculi. The concept of a tractor calculus is based on
the methods developed in the 1920s and 1930s by T.Y. Thomas and J.H.C. Whitehead for the
study of conformal and projective (differential) geometries. These methods involve the construc-
tion in each case of a vector bundle associated with the geometry and a covariant derivative on
its sections. Each of these geometries is a Cartan geometry of a special class known as parabolic.
The tractor calculus programme is concerned with defining similar structures for all parabolic
Cartan geometries. It turns out that the relevant vector bundles also support Lie algebroid
brackets. An encyclopaedic account is to be found in a paper of A. Čap and A.R. Gover [3].

One aim of this note is to spell out the exact relationship between Blaom’s theory of the
Cartan algebroid of a (classical) Cartan geometry and Čap and Gover’s tractor calculus. Of
course there can be a direct relationship, so far as Blaom’s theory is concerned, only when
attention is restricted to Cartan geometries. However, it turns out not to be necessary to
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restrict one’s attention further to parabolic geometries: quite a lot of tractor calculus works for
arbitrary Cartan geometries. Both theories involve linear connections on vector bundles, but
though one can use the same vector bundle in each case, the two connections are different. The
best way of describing the relationship between the two connections, in my view, is to regard
them as secondary constructs, which may be defined in terms of a single object canonically
associated with a Cartan geometry. This is an algebroid connection: a collection of operators
with covariant-derivative-like properties, but which involve, as it were, differentiation of a section
of the algebroid along a section of the algebroid. Both of the papers [1, 3] discuss this algebroid
connection, but tend to regard it as dependent on the relevant linear connection; I have reversed
the dependency.

A second natural question to ask about Blaom’s theory is how to specify which Cartan
algebroids derive from Cartan geometries. Those that do must be transitive, but there are
further conditions to be satisfied, in part because algebroids derived from Cartan geometries
have more structure than just that of an algebroid with Cartan connection (in the sense of
Blaom). This extra structure comes to the fore in tractor calculus, so it is no real surprise
that one can use the idea of a tractor connection to prove that when suitable extra structure is
specified the Cartan algebroid does derive from a Cartan geometry.

In Section 2 of this note I describe a vector bundle associated with a Cartan geometry, called
the adjoint tractor bundle, on which the events under discussion take place. In Section 3 I define
the Lie algebroid structure on the adjoint tractor bundle, and in Section 4 I specify the two
linear connections, the tractor connection of Čap and Gover and Blaom’s Cartan connection. In
Section 5 I give an alternative derivation of the Lie algebroid structure using the Atiyah algebroid.
In Section 6 I prove a theorem which gives sufficient conditions for a Cartan algebroid to come
from a Cartan geometry. In the final section I apply some of the ideas introduced earlier to
a discussion of Cartan space forms, which give rise to Cartan algebroids which are symmetric
in Blaom’s terminology.

Most of the concepts and arguments in this note are drawn from one or other of the two main
references [1, 3]. This seems pretty-well inevitable given that the purpose of the exercise is to
explain how the two fit together. Indeed, what is new herein – and there are several new and I be-
lieve illuminating results to be found below – arises from the juxtaposition of the two apparently
rather different approaches of these papers, with the occasional support of an appeal to [4].

There are several different types of bracket operations to be considered, which I want to
distinguish between notationally. I shall reserve [·, ·] for the bracket of vector fields. I shall
denote the bracket of any of the finite-dimensional Lie algebras that occur by {·, ·}, and use the
same notation for certain natural extensions of such brackets. And I shall use [[·, ·]] to denote
a Lie algebroid bracket.

Finally in this introduction I briefly review the basic facts aboout Cartan geometries and Lie
algebroids that I need.

1.1 Cartan geometries

Recall that a Klein geometry is a homogeneous space G/H of a Lie group G, where H is a closed
subgroup of G. I denote by g the Lie algebra of G and by h the subalgebra of g which is the
Lie algebra of H. A Cartan geometry on a manifold M , corresponding to a Klein geometry for
which G/H has the same dimension, is a principal right H-bundle π : P → M together with
a g-valued 1-form ω on P satisfying the following conditions:

1) the map ωp : TpP → g is an isomorphism for each p ∈ P ;

2) R∗
hω = ad(h−1)ω for each h ∈ H, where h 7→ Rh is the right action; and

3) ω(ξ̃) = ξ for each ξ ∈ h, where ξ̃ is the fundamental vector field on P corresponding to ξ.
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The form ω is the Cartan connection form. From the second condition it follows that for ξ ∈ h,
Lξ̃ω + {ξ, ω} = 0; if H is connected then the differential version is equivalent to the original
condition, and I shall assume that H is in fact connected.

The curvature Ω of a Cartan connection is the g-valued 2-form on P given by

Ω(X, Y ) = dω(X, Y ) + {ω(X), ω(Y )}.

The value of the curvature when one of its arguments is vertical is zero:

Ω(ξ̃, Y ) = ξ̃(ω(Y ))− ω([ξ̃, Y ]) + {ξ, ω(Y )} = (Lξ̃ω)(Y ) + {ξ, ω(Y )} = 0.

It is clear that in the above definition G has no role other than to provide the Lie algebra g.
Following Sharpe [4] we may replace a Klein geometry as the model of a Cartan geometry by the
pair (g,h) consisting of a Lie algebra g and a subalgebra h (what Sharpe calls an infinitesimal
Klein geometry), together with a Lie group H whose Lie algebra is h, and a representation of H
on g which restricts to the adjoint representation of H on h. The representation of H on g will
be called the adjoint representation and denoted by ad. A Cartan geometry with these data is
said to be modelled on (g,h) with group H.

1.2 Lie algebroids

A Lie algebroid is a vector bundle A → M equipped with a linear bundle map Π : A → TM over
the identity on M , the anchor, and an R-bilinear skew bracket [[·, ·]] on Γ(A), the C∞(M)-module
of sections of A → M , such that

1) [[σ, fτ ]] = f [[σ, τ ]] + Π(σ)(f)τ for σ, τ ∈ Γ(A) and f ∈ C∞(M);

2) [[·, ·]] satisfies the Jacobi identity;

3) as a map Γ(A) → Γ(TM), Π is a homomorpism: Π([[σ, τ ]]) = [Π(σ),Π(τ)].

(The third of these is in fact a consequence of the other two, but is sufficiently important to be
worth mentioning explicitly.)

A Lie algebroid is transitive if its anchor is surjective. The subset of A consisting of elements
mapped to zero by Π is then a vector subbundle called the kernel of the algebroid, ker(A).
The restriction of the algebroid bracket to Γ(ker(A)) is a Lie-algebraic bracket, that is, it is
C∞(M)-bilinear (as well as being skew and satisfying the Jacobi identity). Indeed, a vector
bundle with a Lie-algebraic bracket on its sections is a Lie algebroid whose anchor is the zero
map. The restriction of the Lie-algebraic bracket to any fibre of ker(A) → M defines a Lie
algebra structure on it. It can be shown that for a transitive algebroid A over a connected
base M the Lie algebras on fibres of ker(A) over different points of M are isomorphic, so that
ker(A) is a Lie algebra bundle.

For a Lie algebroid A, an A-connection D on a vector bundle E → M is an assignment to
each σ ∈ Γ(A) of an operator Dσ : Γ(E) → Γ(E) with the following connection-like properties:

1) D is R-linear in both arguments, and C∞(M)-linear in the first;

2) Dσ(fε) = fDσε + Π(σ)(f)ε for f ∈ C∞(M), ε ∈ Γ(E).

Since Dσε is C∞(M)-linear in σ, for a ∈ A, Dσε(a) depends so far as σ is concerned only on σ(a),
just as is the case for an ordinary connection.

If D is an A-connection on A then D∗ defined by

D∗
στ = Dτσ + [[σ, τ ]]
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is also an A-connection on A; it is said to be dual to D. The dual of the dual is the thing one
first thought of. An A-connection on A has torsion T given by

T (σ, τ) = Dστ −D∗
στ = Dστ −Dτσ − [[σ, τ ]].

Any A-connection has curvature C given by

C(σ, τ)ε = DσDτ ε−DτDσε−D[[σ,τ ]]ε.

An A-connection whose curvature vanishes is a homomorphism from sections of A with the Lie
algebroid bracket to operators on Γ(E) with the commutator bracket:

D[[σ,τ ]] = Dσ ◦Dτ −Dτ ◦Dσ.

When this holds D is called a representation of A on E. By the homomorphism property
of Π, for any σ ∈ Γ(A) the map s 7→ [[σ, s]] maps Γ(ker(A)) to itself; this evidently defines
a representation of A on ker(A), which is called the canonical representation. (But τ 7→ [[σ, τ ]]
is not an A-connection, so there is no inner representation of A on itself. Self-representations
that restrict to the canonical representation, or in other words extend it, are therefore of some
special interest.)

2 The adjoint tractor bundle

Suppose given a Cartan geometry modelled on (g,h) with group H. I denote by g → M the
bundle associated with P by the adjoint action of H on g, and call it (following [3]) the adjoint
tractor bundle of the Cartan geometry. The adjoint tractor bundle is to be distinguished from
the adjoint bundle of the principal bundle P , which is the bundle associated with P by the
adjoint action of H on h. The adjoint bundle, which will be denoted by h, is a subbundle of g.

Each of these bundles is a Lie algebra bundle, with bracket derived from the bracket of the
corresponding Lie algebra g or h. The bracket on the fibres of g will therefore be denoted by
{·, ·}, and likewise for the fibres of h (which is a sub-Lie-algebra bundle of g, after all).

Consider next the sections of g → M . Any element of Γ(g) can be regarded as a g-valued
function on P which is H-equivariant; that is to say, a g-valued function σ on P such that
σ(ph) = ad(h−1)σ(p). I shall use the same symbol (generally ρ, σ or τ) for both the section
and the corresponding function; sections of h, or sections of g which take their values in the
subbundle h, will be denoted by s, t and so on. The Lie algebra bracket of fibres extends to a Lie-
algebraic bracket of sections, (σ, τ) 7→ {σ, τ}, σ, τ ∈ Γ(g). Alternatively, thinking of sections as
g-valued H-equivariant functions, note that the Lie algebra bracket of two such functions is also
H-equivariant.

It is a consequence of the equivariance condition for σ ∈ Γ(g) that ξ̃(σ) + {ξ, σ} = 0 for all
ξ ∈ h; when H is connected this is equivalent to the original condition.

We have at our disposal a Cartan connection form ω on P . For any vector field X on P , ω(X)
is a g-valued function on P ; and if X is H-invariant, then ω(X) is H-equivariant and so defines
a section of g. Conversely, by the isomorphism condition, with any g-valued function σ on P
we can associate a vector field X on P such that ω(X) = σ; and if σ is a section of g then X is
H-invariant. Thus a Cartan connection determines a 1-1 correspondence between sections of g
and H-invariant vector fields on P . I shall denote the H-invariant vector field corresponding to
a section σ by Xσ: thus ω(Xσ) = σ.

If s ∈ Γ(h), so that considered as a function s takes its values in h, then Xs is vertical; and
conversely. Thus under the correspondence determined by ω the sections of h correspond to
H-invariant vertical vector fields on P . In fact this part of the construction is independent of



Cartan Connections and Lie Algebroids 5

the Cartan connection: the sections of the adjoint bundle of any principal H-bundle P are in
a natural 1-1 correspondence with the invariant vertical vector fields on P . The correspondence
may be defined as follows. Let V be a vertical H-invariant vector field on P . Since V is vertical,
for each p ∈ P there is an element s(p) ∈ h such that Vp = s̃(p)|p. Then in order that V be
H-invariant s must be H-equivariant. Of course the Cartan connection construction reproduces
this correspondence when s is a section of h because it satisfies the condition ω(ξ̃) = ξ for ξ ∈ h.

Recall that the curvature Ω of a Cartan connection is given by

Ω(X, Y ) = dω(X, Y ) + {ω(X), ω(Y )}.

If X and Y are H-invariant then the g-valued function Ω(X, Y ) is easily seen to be H-equivariant,
and so defines a section of g. We may therefore consider the curvature as a 2-form on M whose
value is a section of g; in this guise it is denoted by κ. We have

dω(Xσ, Xτ ) = κ(π∗Xσ, π∗Xτ )− {σ, τ}.

3 The Lie algebroid structure

Since the bracket of H-invariant vector fields is H-invariant, we can use the vector field bracket
on P to define a bracket operation [[·, ·]] on Γ(g) by

[Xσ, Xτ ] = X[[σ,τ ]], or [[σ, τ ]] = ω([Xσ, Xτ ]).

Moreover, for any H-invariant vector field X on P , π∗X is a well-defined vector field on M . It is
then clear that g, equipped with the bracket (σ, τ) 7→ [[σ, τ ]] and the anchor map Π : σ 7→ π∗Xσ,
is a Lie algebroid.

The kernel of Π is h. It can be shown directly that if s, t ∈ Γ(h) then [Xs, Xt] = X−{s,t},
so that the restriction of the Lie algebroid bracket to Γ(h) is the negative of the Lie-algebraic
bracket: [[s, t]] = −{s, t}.

For any σ, τ ∈ Γ(g), Xσ(τ) is a g-valued function which is easily seen to satisfy the H-
equivariance condition. The map D from Γ(g) to operators on Γ(g) given by Dστ = Xσ(τ) is
a g-connection on g. It is clear that D defines a derivation of the Lie-algebraic bracket:

Dρ{σ, τ} = {Dρσ, τ}+ {σ,Dρτ}.

The curvature of D vanishes:

DρDστ −DσDρτ −D[[ρ,σ]]τ = Xρ(Xσ(τ))−Xσ(Xρ(τ))− [Xρ, Xσ](τ) = 0.

That is to say, D is a representation of the Lie algebroid g on itself. I shall call it the fundamental
self-representation associated with the Cartan connection; it is called a fundamental D-operator
by Čap and Gover [3].

On the other hand, D has torsion given by

Dρσ −Dσρ− [[ρ, σ]] = Xρ(ω(Xσ))−Xσ(ω(Xρ))− ω([Xρ, Xσ]) = dω(Xρ, Xσ)
= κ(Π(ρ),Π(σ))− {ρ, σ}.

Recall that ξ̃(σ) + {ξ, σ} = 0. It follows that if s takes its values in h, so that Xs is vertical,
Dsσ = −{s, σ}. Then from the torsion formula, since Π(s) = 0, we have Dσs = [[σ, s]]; in
particular, Dσ(Γ(h)) ⊂ (Γ(h)). Thus the representation D, restricted to Γ(h), reduces to the
canonical representation of g on h coming from the Lie algebroid structure. One says that D is
a representation extending the canonical one.

The key properties of the adjoint tractor bundle g are these.
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1. It is a Lie algebra bundle, whose fibres are modelled on g.

2. It is at the same time a Lie algebroid.

3. As a Lie algebroid it is transitive, with kernel h which is a sub-Lie-algebra bundle of g
(relative to the Lie algebra bracket of fibres) modelled on the subalgebra h of g.

4. The restriction of the Lie algebroid bracket to Γ(h) (which is automatically a Lie-algebraic
bracket) is the negative of the restriction of the Lie-algebraic bracket of g.

5. It is equipped with a representation D of itself on itself, each of whose operators Dσ

maps Γ(h) to itself, and D extends the canonical representation of g on h to g.

6. Each operator Dσ of the representation acts as a derivation of the Lie-algebraic bracket,
and for s ∈ Γ(h), Ds coincides with the negative of inner derivation by s.

4 Covariant derivatives

In the previous section it was shown that if s ∈ Γ(h) then both Dsσ + {s, σ} = 0 and
Dσs− [[σ, s]] = 0. To put things another way, for ρ ∈ Γ(g), both Dρσ + {ρ, σ} and Dσρ− [[σ, ρ]]
depend only on Π(ρ). We may therefore define, for any vector field U on M , operators ∇T

U

and ∇C
U on Γ(g) by

∇T
Uσ = Dρσ + {ρ, σ}

∇C
Uσ = Dσρ− [[σ, ρ]]

}
for any ρ such that Π(ρ) = U.

It is easy to see, from the properties of D, that ∇T and ∇C are covariant derivatives; that is, by
this process we define two connections (TM -connections) on g. The first of these is the tractor
connection. The second is Blaom’s Cartan connection; to be exact, in his terminology it is the
Cartan connection on the Lie algebroid g corresponding to the classical Cartan connection ω.

The tractor connection can be specified directly in terms of ω (that is, without reference
to D) as follows. For any u ∈ TxM and û ∈ TpP , with π(p) = x, such that π∗û = u

∇T
uσ = û(σ) + {ω(û), σ}.

It is clear that for any σ ∈ Γ(g) the g-valued 1-form dσ+{ω, σ} is H-equivariant and vanishes on
vertical vectors, so this formulation makes sense. This is essentially how the tractor connection
is defined in [3].

Notice that

∇T
u{σ, τ} = {∇T

uσ, τ}+ {σ,∇T
uτ} :

that is, ∇T is a derivation of the Lie-algebraic bracket. The curvature RT of ∇T is given by

RT(U, V )σ = {κ(U, V ), σ}.

The torsion formula leads to

∇T

Π(σ)τ −∇T

Π(τ)σ − [[σ, τ ]] = {σ, τ}+ κ(Π(σ),Π(τ)).

This could be read as a formula for the Lie algebroid bracket in terms of the tractor connection
and its curvature; it is so interpreted in [3].

Blaom’s Cartan connection can also be defined directly in terms of ω, as follows. We have

Dσρ− [[σ, ρ]] = Xσ(ρ)− ω([Xσ, Xρ]) = (LXσω)(Xρ).
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This suggests that we set

∇C
uσ = (LXσω)(û)

where again u ∈ Tπ(p)M and û ∈ TpP with π∗û = u. It is not difficult to see that for any
H-invariant vector field X on P , LXω is H-equivariant and vanishes on vertical vectors, so
again this makes sense.

This formulation reveals the following interesting fact about ∇C. An H-invariant vector
field X on P such that LXω = 0 is an infinitesimal automorphism of the Cartan connection
form ω (see [2]). It follows that the infinitesimal automorphisms of ω correspond precisely to the
sections of g → M which are parallel with respect to ∇C. (In fact ∇C makes a brief incidental
appearance in [2], which is in part a study of infinitesimal automorphisms of Cartan connection
forms.)

Notice also that ∇C
Uσ = D∗

ρσ where D∗ is the g-connection dual to D. Indeed, one could
almost sum up the difference between ∇T and ∇C by saying that the first embodies D and the
second D∗.

The fact that D is a representation translates into the following formula for ∇C:

∇C
U ([[σ, τ ]]) = [[∇C

Uσ, τ ]] + [[σ,∇C
Uτ ]] +∇C

Π(Dτ ρ)σ −∇C

Π(Dσρ)τ

where U = Π(ρ). In [1] Blaom says that a connection ∇ on a Lie algebroid A is compatible with
the Lie algebroid bracket if

∇U ([[σ, τ ]]) = [[∇Uσ, τ ]] + [[σ,∇Uτ ]] +∇∇∗
τ Uσ −∇∇∗

σUτ.

Here ∇∗ is the operator defined by ∇∗
σU = Π(∇Uσ) + [Π(σ), U ]; it is an A-connection on TM

which is in a sense dual to ∇. Evidently ∇C
σ
∗Π(ρ) = Π(Dσρ). So the fact that D is a represen-

tation implies that ∇C is compatible with [[·, ·]]: ∇C is indeed a Cartan connection in the sense
of Blaom.

It is straightforward to calculate the torsion T ∗ and curvature R∗ of the dual D∗ of an A-
connection on A in terms of T and R, those of the original A-connection D; the formulas are
given in [1]. One finds that T ∗ = −T , and in the case of interest, where D is a representation,

R∗(ρ, σ)τ = Dτ (T (ρ, σ))− T (Dτρ, σ)− T (ρ,Dτσ) = (DτT )(ρ, σ).

Given the relation between T and the curvature κ, and the fact that D defines a derivation of
the Lie-algebraic bracket, one can in effect replace T by κ on the right-hand side. These results
can be used to derive further properties of ∇C if desired.

The difference tensor relating the two connections is the curvature:

∇T

Π(ρ)σ −∇C

Π(ρ)σ = κ(Π(ρ),Π(σ)).

5 The Atiyah algebroid and the Cartan connection

Any principal bundle has canonically associated with it a Lie algebroid, its Atiyah algebroid,
which in the case of a principal H-bundle P → M is defined as follows. The action of H on P
lifts in a natural way to an action on the tangent bundle TP . As a manifold the Atiyah algebroid
of P is TP/H, the quotient of TP under this action. It is a vector bundle over P/H = M ,
each of whose fibres is obtained by identifying the tangent spaces TpP at points p on the same
fibre of P → M . The sections of TP/H → M may be identified with the H-invariant vector
fields on P ; the Lie algebroid bracket is the ordinary bracket of such vector fields; the anchor
maps an H-invariant vector field on P to its projection onto M . The sections of the kernel of
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the Atiyah algebroid can therefore be identified with the H-invariant vector fields on P which
are vertical (with respect to π : P → M). As was pointed out before, any vertical H-invariant
vector field V on P takes the form Vp = s̃(p)|p for some H-equivariant h-valued function s on P .
So the kernel of the Atiyah algebroid can be identified with the adjoint bundle of P , that is, h,
the vector bundle associated with P by the adjoint action of H on h.

It is clear from the discussion in Section 3 that as a Lie algebroid g is isomorphic to the
Atiyah algebroid, where the isomorphism is defined by the Cartan connection form ω. In fact
ω defines an isomorphism, over the identity on P , of TP with P × g, which is equivariant with
respect to the actions of H on the two spaces, and therefore passes to the quotients under these
actions. As it happens, Blaom in [1] uses the Atiyah algebroid rather than the adjoint tractor
bundle in his discussion of the association of a Lie algebroid with a Cartan geometry.

It might indeed be considered preferable to describe the constructions in Sections 2 and 3
in a different way which takes advantage of these observations. Suppose given the data for
a model geometry as specified in the Section 1.1, namely an infinitesimal Klein geometry (g,h),
a Lie group H realising h, and the adjoint representation of H on g. Take a principal H-bundle
P → M where dim M = dim g−dimh. In the absence of a Cartan connection form one can then
construct two vector bundles over M : the adjoint tractor bundle g (the bundle associated with P
by the adjoint action of H on g), and the Atiyah bundle TP/H. These bundles have the same
fibre dimension dim g = dim M + dimh. The first is a Lie algebra bundle, the second a Lie
algebroid. It is worth emphasising that, given the model data, each of these vector bundles
has the stated additional structure regardless of the existence of a Cartan connection form.
A Cartan connection form, however, defines a vector bundle isomorphism between the two,
which acts as the identity on h (which can be regarded as a subbundle of each bundle). This
isomorphism can be used to carry the Lie algebroid structure from the Atiyah algebroid over
to the adjoint tractor bundle – and equally the Lie algebra bundle structure in the opposite
direction. In fact the existence of a Cartan connection is equivalent to the existence of a vector
bundle isomorphism, over the identity, between these two bundles, which acts as the identity on
the common subbundle h.

Theorem 1. With model data as above, let P → M be a principal H-bundle where dim M =
dim g− dimh. Consider two vector bundles over M , with the same fibre dimension: the adjoint
tractor bundle g and the Atiyah bundle TP/H. The Cartan geometries on P modelled on (g,h)
with group H are in 1-1 correspondence with the vector bundle isomorphisms TP/H → g, over
the identity, which reduce to the identity on h.

Proof. It remains to show that an isomorphism of the bundles defines a Cartan connection
on P . Let ω̂ : TP/H → g be a vector bundle isomorphism over the identity. We can identify the
sections of TP/H → M with the H-invariant vector fields on P , and the sections of g → M with
the H-equivariant g-valued functions on P . Then ω̂ associates with every H-invariant vector
field X on P an H-equivariant g-valued function ω(X) on P , such that ω(X) depends C∞(M)-
linearly on its argument. It follows that ω(X)(p) depends only on the value of X at p, and does
so linearly; thus for each p we have a linear map ωp : TpP → g, which is an isomorphism. In
other words, ω is a g-valued 1-form on P . The condition that R∗

hω = ad(h−1)ω for each h ∈ H
follows from the fact that ω(X) is H-equivariant whenever X is H-invariant. The assumed
property of ω̂ that it reduces to the identity on h is equivalent to the condition that ω(ξ̃) = ξ
for ξ ∈ h. �

These observations suggest an alternative way of defining a Cartan connection form, in effect
as an isomorphism of vector bundles. To suggest that one might define a Cartan geometry in
this way may seem to be a somewhat idiosyncratic procedure. It is done to emphasise the fact
that the approaches of Blaom on the one hand, and Čap and Gover on the other, concentrate
on different aspects of the full story.
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6 Cartan algebroids and Cartan geometries

I listed earlier the properties of the adjoint tractor bundle associated with a Cartan geometry.
I now show that for a certain class of pairs of Lie algebras (g,h) these properties are definitive
of Cartan geometries.

Theorem 2. Let g be a Lie algebra and h a subalgebra of g such that

1) all derivations of g are inner;

2) the centre of g is {0};
3) the normalizer of h in g is h.

Let H be the subgroup of the Lie group of inner automorphisms of g which leaves h invariant;
it is a Lie group with Lie algebra h. Let g → M be a transitive Lie algebroid equipped with
a self-representation D which extends the canonical representation, such that

1) g is at the same time a Lie algebra bundle modelled on g;

2) h, the kernel of g, is a sub-Lie-algebra bundle of g modelled on the subalgebra h of g;

3) the restriction of the Lie algebroid bracket to Γ(h) is the negative of the restriction of the
Lie-algebraic bracket;

4) each operator Dσ of the representation acts as a derivation of the Lie-algebraic bracket,
and for s ∈ Γ(h), Ds coincides with the negative of inner derivation by s.

Then there is a principal H-bundle π : P → M and a Cartan connection form ω on P such that g
is the adjoint tractor bundle of P , the Lie algebroid bracket of g coincides with that determined
by ω, and D is the fundamental self-representation associated with ω.

The proof of this theorem is closely modelled on the proofs of Proposition 2.3 and Theorem 2.7
of [3].

Proof. Let P be the set of all pairs (x, p) where x ∈ M and p is a Lie algebra isomorphism
g → gx such that p(h) = hx. Then P can be given a manifold structure such that (x, p) 7→ x
is a smooth submersion π, and π : P → M admits local smooth sections, so it is a fibre bundle
over M . For each h ∈ H, (x, p) 7→ (x, p ◦ adh), where ad denotes the action of H on g, defines
a right action of H on P which makes P into a principal H-bundle. The map P × g → g by
(x, p, ξ) 7→ p(ξ) ∈ gx induces an identification of the adjoint tractor bundle of P with g.

The sections of g → M may be identified with the H-equivariant g-valued functions on P ,
as before. It follows from the properties of D that Dρσ + {ρ, σ} depends only on Π(ρ). We may
therefore define a covariant derivative operator ∇T on Γ(g) by

∇T
Uσ = Dρσ + {ρ, σ} for any ρ such that Π(ρ) = U .

Then ∇T
U is a derivation of the Lie-algebraic bracket on Γ(g). Now for any v ∈ TpP and any

σ ∈ Γ(g), ∇T
π∗vσ − v(σ) is an element of g which depends R-linearly on v and on σ(p). So we

may define an R-linear map Φp : TpP → lin(g, g) (the space of R-linear maps from g to g) by
Φp(v)(ξ) = ∇T

π∗vσ−v(σ) for any σ ∈ Γ(g) such that σ(p) = ξ. Moreover, for each v ∈ TpP , Φp(v)
is a derivation of g, and by assumption (1) about (g,h) we may write Φp(v)(ξ) = {ωp(v), ξ}.
Then ωp : TpP → g is an R-linear map, as a consequence of assumption (2) about (g,h).

Take v = ξ̃p for any ξ ∈ h. Then π∗v = 0, and v(σ) = ξ̃(σ)(p) = −{ξ, σ(p)}. Thus
{ωp(ξ̃), σ(p)} = {ξ, σ(p)}, so that ωp(ξ̃) = ξ, again by assumption (2).

For any H-invariant vector field X on P and any σ ∈ Γ(g), X(σ) ∈ Γ(g) also. Thus
∇T

π∗Xσ −X(σ) = {ω(X), σ} where ω(X) ∈ Γ(g). So ω is a smooth g-valued 1-form on P such
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that ω(X) is H-equivariant whenever X is H-invariant, whence R∗
hω = ad(h−1)ω for all h ∈ H

(again, appealing implicitly to assumption (2)).
Suppose that ωp(v) = 0 for some v ∈ TpP . Let ρ ∈ Γ(g) be such that Π(ρ)(x) = π∗v,

x = π(p). Then

∇T
π∗vσ − v(σ) = Dρσ(p) + {ρ(p), σ(p)} − v(σ) = 0

for all σ ∈ Γ(g). In particular, this holds for σ = s ∈ Γ(h). Now by assumption Dρs(p) ∈ h, and
evidently v(s) ∈ h; thus {ρ(p), s(p)} ∈ h, and so {ρ(p),h} ⊂ h. It follows from assumption (3)
that ρ(p) ∈ h. But then π∗v = Π(ρ)(x) = 0, so v is vertical; and we know that ωp is an
isomorphism of the vertical subspace of TpP with h. So v = 0. It follows that for each p ∈ P ,
ωp : TpP → g is an injective map between vector spaces of the same dimension and is therefore
an isomorphism.

Thus ω is a Cartan connection form. For each σ ∈ Γ(g) there is a unique H-invariant vector
field Xσ on P such that ω(Xσ) = σ. Then

∇T
π∗Xσ

τ = Xσ(τ) + {σ, τ} = ∇T

Π(σ)τ = Dστ + {σ, τ},

so Dστ = Xσ(τ). Since D is a representation we have

D[[ρ,σ]]τ = X[[ρ,σ]](τ) = [Xρ, Xσ](τ).

Thus

[[ρ, σ]] = ω(X[[ρ,σ]]) = ω([Xρ, Xσ]);

but the latter expression is just the Lie algebroid bracket of ρ and σ defined by the Cartan
connection form ω. �

Any Lie algebroid equipped with a Cartan connection, that is, a connection which is com-
patible with the Lie algebroid bracket in the sense given in Section 4, is a Cartan algebroid, in
Blaom’s terminology; Cartan algebroids are to be regarded as generalizations, at an infinitesimal
level, of Cartan geometries. Each Cartan geometry gives rise to a transitive Cartan algebroid,
by the construction described in Section 4, but conditions for a Cartan algebroid to come from
a Cartan geometry are not given by Blaom. Clearly, one of those conditions must be that
the algebroid is transitive. Now a Cartan connection ∇C on any Lie algebroid A determines
an A-connection D: we have merely to reverse the definition of ∇C given earlier, and set
Dσρ = ∇C

Π(ρ)σ + [[σ, ρ]]. Then D is a self-representation such that Dσs = [[σ, s]] when Π(s) = 0.
Thus for a transitive algebroid the existence of a Cartan connection is equivalent to the existence
of a self-representation extending the canonical representation, as Blaom points out. That is to
say, a transitive Cartan algebroid is simply a transitive Lie algebroid with a self-representation
extending the canonical representation. The theorem above therefore provides an answer to the
question of which Cartan algebroids correspond to Cartan geometries.

7 Symmetric Cartan algebroids

There is one situation in which it is possible to derive a Lie-algebraic structure from a Cartan
algebroid: this occurs when the latter is what Blaom calls (locally) symmetric. A Cartan alge-
broid is symmetric when its Cartan connection ∇C is flat. Such an algebroid is, locally at least,
isomorphic to an action algebroid, that is, to an algebroid generated by an infinitesimal action
of a Lie algebra on a manifold. The term ‘symmetric’ comes from this latter property, when the
algebra is conceived as an algebra of infinitesimal symmetries.
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When the algebroid is transitive one may work with the self-representation D rather than
the Cartan connection, and in view of remarks made in Section 4 the condition for symmetry is
that the torsion T of D should satisfy DT = 0.

Theorem 3. Let A → M be a transitive Cartan algebroid, with self-representation D, which
is locally symmetric. Set {σ, τ} = −T (σ, τ) where T is the torsion of D: then {·, ·} is a Lie-
algebraic bracket on Γ(A) such that

1) A is a Lie algebra bundle, whose Lie-algebraic bracket is {·, ·};
2) the restriction of the Lie algebroid bracket to Γ(ker(A)) is the negative of the restriction

of {·, ·};
3) each operator Dσ of the self-representation acts as a derivation of {·, ·}, and for s ∈

Γ(ker(A)), Ds coincides with the negative of inner derivation by s.

Proof. Evidently−T (σ, τ) is C∞(M)-bilinear and skew. AnyA-connection D satisfies a Bianchi
identity, which when its curvature vanishes is just a differential condition on its torsion, namely⊕

ρ,σ,τ

(DρT (σ, τ) + T (T (ρ, σ), τ)) = 0,

where ⊕ stands for the cyclic sum. When DT = 0 therefore, −T , thought of as defining
a bracket, satisfies the Jacobi identity, and so {·, ·} is a Lie-algebraic bracket on Γ(A).

Consider (following [1]) those sections of A which are parallel with respect to the Cartan
connection ∇C. By the properties of flat connections the set of such sections, say A0, forms
a finite-dimensional real vector space whose dimension is the fibre dimension of A. Elements
of A0 are sections σ for which Dστ = [[σ, τ ]] for every τ (even those τ ∈ Γ(ker(A)), since
by assumption D extends the canonical representation). It follows from the fact that D is
a representation that A0 is closed under the algebroid bracket. The restriction to A0 of −[[·, ·]]
gives it the structure of a Lie algebra. Moreover, each fibre of A → M acquires the same Lie
algebra structure: the bracket of a, b ∈ Ax is −[[α, β]](x) where α, β are the unique elements
of A0 such that α(x) = a, β(x) = b. Thus A is a Lie algebra bundle modelled on the Lie
algebra A0. For any α, β ∈ A0,

T (α, β) = Dαβ −Dβα− [[α, β]] = [[α, β]]− [[β, α]]− [[α, β]] = [[α, β]],

so that the restriction of the algebroid bracket to A0 coincides with the restriction of T . Take
a (local) basis {αi} of A0 (over R). By dimension, A0 spans Γ(A) over C∞(M); that is,
every σ ∈ Γ(A) may be uniquely written in the form σiαi (summation over i intended) with
σi ∈ C∞(M). Then

T (σ, τ) = σiτ jT (αi, αj) = σiτ j [[αi, αj ]].

Thus the Lie-algebraic bracket on A arising from the fact that it is a Lie algebra bundle is {·, ·}.
Now take s, t ∈ Γ(ker(A)). Then since Π(s) = Π(t) = 0,

[[s, t]] = sitj [[αi, αj ]] = T (s, t).

Thus on Γ(ker(A)) the algebroid bracket coincides with T , and therefore with −{·, ·}.
The condition DT = 0 becomes

Dρ{σ, τ} = {Dρσ, τ}+ {σ,Dρτ}.

Since D extends the canonical representation of A on ker(A), for s ∈ Γ(ker(A)), Dσs = [[σ, s]].
Thus

T (s, σ) = Dsσ −Dσs− [[s, σ]] = Dsσ.

That is to say, Dsσ = −{s, σ} for all s ∈ Γ(ker(A)). �
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In view of the correspondence mentioned earlier between sections of A which are parallel with
respect to ∇C and infinitesimal automorphisms of the Cartan connection form ω, we see that
a transitive Cartan algebroid which is locally symmetric in Blaom’s sense is one in which the Lie
algebra of infinitesimal automorphisms of ω (which is A0) has maximal dimension. Since A0 is
closed under the Lie algebroid bracket we may write [[αi, αj ]] = Ck

ijαk; the Ck
ij are the structure

constants of A0 relative to the basis {αi}. The anchor map, which restricts to a homomorphism
of A0 into Γ(TM), defines an infinitesimal action of A0 on M . We have

[[σ, τ ]] =
(
Π(σ)(τk)−Π(τ)(σk) + σiτ jCk

ij

)
αk, σ = σkαk, τ = τkαk.

This realises A as an action algebroid corresponding to the Lie algebra A0.
Recall that if one starts with a Cartan geometry one finds that the torsion of the fundamental

self-representation is given by

T (σ, τ) = κ(Π(σ),Π(τ))− {σ, τ}.

A flat Cartan geometry, that is, one for which κ = 0, is of course symmetric, and the Lie-
algebraic bracket constructed by the procedure in the theorem coincides with the original one.
But DT can be zero without κ being zero, and then the new Lie-algebraic bracket is different
from the original one. In such a case we find ourselves dealing with what Sharpe in [4] calls
Cartan space forms and mutation.

The curvature Ω of a Cartan geometry is constant, according to Sharpe, if Ω(X, Y ) (a g-
valued function on the principal H-bundle P ) is constant for every pair of vector fields X, Y
on P such that ω(X) and ω(Y ) are constant. A Cartan geometry whose curvature is constant
is a Cartan space form.

Until now I have for the most part restricted my attention to vector fields on P which are
H-invariant, and vector fields X for which ω(X) is constant are not H-invariant. However, it
is not difficult to show that Ω is constant in Sharpe’s sense if and only DT = 0. Let {ei} be
a basis for g, {Ei} the vector fields on P such that ω(Ei) = ei. Then Ω(Ei, Ej) = Ωk

ijek, and
in a space of constant curvature the coefficients Ωk

ij are constants. Let Ck
ij be the structure

constants of g relative to the basis {ei}. Then Ck
ij − Ωk

ij are the structure constants for a new
Lie algebra stucture on (the vector space) g, making it into a new Lie algebra g′. This process
of changing the Lie algebra bracket is called mutation. Note that since Ω vanishes if one of its
arguments is vertical, mutation does not change h.

Starting with a Cartan space form modelled on (g,h) with group H, by carrying out the
procedure in Theorem 3 one obtains, for the same Cartan algebroid, the Lie-algebraic bracket
appropriate to a Cartan geometry modelled on (g′,h) with group H, where g′ is the mutation
of g determined by the (constant) curvature Ω. With respect to the new Lie-algebraic bracket
we have T (σ, τ) = −{σ, τ}, so the mutant geometry has curvature zero. This illustrates an
observation of Sharpe’s, that all Cartan space forms are mutants of flat geometries. Blaom puts
the same idea in a different way: his theory, he says, ‘has no models: all symmetric structures
are created equal and the curvature [of ∇C] . . . merely measures deviation from some symmetric
structure’ (his italics). The tractor connection ∇T, on the other hand, does differentiate between
different Cartan space forms.
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