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inessential, hypotheses. If the Cartan matrix is invertible, the corresponding Lie superal-
gebra is simple otherwise the quotient of the derived Lie superalgebra modulo center is simple
(if its rank is greater than 1). Eleven new exceptional simple modular Lie superalgebras
are discovered. Several features of classic notions, or notions themselves, are clarified or
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Cartan matrix are obtained from simple Lie algebras with Cartan matrix by declaring several
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1 Introduction

The ground field K is algebraically closed of characteristic p > 0. (Algebraic closedness of K
is only needed in the quest for parametric families.) The term “Cartan matrix” will often be
abbreviated to CM. Let the size of the square n x n matrix be equal to n.

Except the last section, we will only consider indecomposable Cartan matrices A with entries
in K (so the integer entries are considered as elements of Z/pZ C K), indecomposability being
the two conditions:

1. Aij:0<:>Aji:0~

2. By a reshuffle of its rows and columns A can not be reduced to a block-diagonal form.

1.1 Main results
1. We clarify several key notions — of Lie superalgebra in characteristic 2, of Lie superalgebra
with Cartan matrix, of weights and roots.
2. We introduce several versions of restrictedness for Lie (super)algebras in characteristic 2.
These clarifications are obtained by/with A. Lebedev.

3. We give an algorithm that, under certain (conjecturally immaterial) hypotheses, see Sec-
tion 9.2.5), produces the complete list of all finite dimensional Lie superalgebras possessing
indecomposable Cartan matrices A, i.e., of the form g(A). Our proof follows the same lines
Weisfeiler and Kac outlined for the Lie algebra case in [54]. The result of application of
the algorithm — the classification — is summarized in the following theorem:

Theorem (Sections 10-13).

1. There are listed all finite dimensional Lie superalgebras (which are not Lie algebras) of the
form g(A) with indecomposable A over K.

2. There are listed all inequivalent systems of simple roots (inequivalent Cartan matrices) of
each of the above listed Lie superalgebras g(A).
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3. For the above listed Lie superalgebras g = g(A), their even parts gz and the gg-modules
g7 are explicitly described in terms of simple and solvable Lie algebras and modules over
them.

4. For the above listed Lie superalgebras g = g(A), the existence of restrictedness is explicitly
established; for p = 2, various cases of restrictedness are considered and explicit formulas
given in each case.

The results forp > 5, p =5, 3 and 2 are summarized in Sections 10, 11, 12 and 13, respectively.

The following simple Lie superalgebras (where g is the Lie superalgebra with Cartan matrix
and g(M /¢ is the quotient of its first derived algebra modulo the center) are new:

1) ¢(6,1), ¢(6,6), e(7,1)M /¢, e(7,6)D /e, o(7, 7)) /¢, ¢(8,1), ¢(8, 8); bgl(4; o) and bgl(3; ) V/c
for p = 2;

2) el(5;3) for p = 3;
3) brj(2;5) for p = 5.

Observe that although several of the exceptional examples were known for p > 2, together with
one indecomposable Cartan matrix per each Lie superalgebra [17, 18, 13, 14|, the complete
description of all inequivalent Cartan matrices for all the exceptional Lie superalgebras of the
form g(A) and for ALL cases for p = 2 is new.

A posteriori we see that for each finite dimensional Lie superalgebra g(A) with indecompos-
able Cartan matrix, the module g is a completely reducible gg-module’.

Fixed points of the symmetries of Dynkin diagrams

We also listed the Lie superalgebras of fixed points of automorphisms corresponding to the
symmetries of Dynkin diagrams and described their simple subquotients. In characteristic 0,
this is the way all Lie algebras whose Dynkin diagrams has multiple bonds (roots of different
lengths) are obtained. Since, for p = 2, there are no multiple bonds or roots of different length
(at least, this notion is not invariant), it is clear that this is the way to obtain something new,
although, perhaps, not simple. Lemma 2.2 in [23] implicitly describes the ideal in the Lie algebra
of fixed points of an automorphism of a Lie algebra, but one still has to describe the Lie algebra
of fixed points explicitly. This explicit answer is given in the last section. No new simple Lie
(super)algebras are obtained.

1.1.1 On simple subquotients of Lie (super)algebras of the form g(A)
and a terminological problem

Observe that if a given indecomposable Cartan matrix A is invertible, the Lie (super)algebra
a(A) is simple, otherwise g(A)® /c — the quotient of its first (if i = 1) or second (if i = 2)
derived algebra modulo the center — is simple (if sizeA > 1). Hereafter in this situation i = 1
or 2; meaning that the chain of derived algebras stabilizes (g(A)) ~ g(A)® for any j > 4). We
will see a posteriori that dim ¢ = i = corank A, the maximal possible value of 7 above.

This simple Lie algebra g(A4)® /¢ does NOT possess any Cartan matrix. Except for Lie algeb-
ras over fields of characteristic p = 0, this subtlety is never mentioned causing confusion: The
conventional sloppy practice is to refer to the simple Lie (super)algebra g(A)® /¢ as “possessing
a Cartan matrix” (although it does not possess any) and at the same time to say “g(A) is
simple” whereas it is not. However, it is indeed extremely inconvenient to be completely correct,

'For the simple subquotient g = g(A)(i)/c of g(A), where i = corank A is equal to 1 or 2, complete reducibility
of the gg-module g7 is sometimes violated.
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especially in the cases where g(A), as well as its simple subquotient g(A)® /¢, and a central
extension of the latter, the algebra g(A)®, or all three at the same time might be needed. So
we suggest to refer to either of these three algebras as “simple” ones, and extend the same
convention to Lie superalgebras.

Thus, for ¢ = 1, there are three distinct Lie (super)algebras: g(A) with Cartan matrix,
a(A)M its derived, and g(A)(M) /¢ which is simple. It sometimes happens that the three versions
are needed at the same time and to appropriately designate them is a non-trivial task dealt with
in Section 4. When the second derived of g(A) is not isomorphic to the first one, i.e., when i = 2,
there are even more intermediate derived objects, but fortunately only the three of them — g(A)
with Cartan matrix, g(A4)®), and g(4)® /¢, the quotient modulo the whole center — appear (so
far) in applications.

1.1.2 The Elduque Supermagic Square

For p > 2, Elduque interpreted most of the exceptional (when their exceptional nature was
only conjectured; now this is proved) simple Lie superalgebras (of the form g(A)) in characte-
ristic 3 [14] in terms of super analogs of division algebras and collected them into a Supermagic
Square (an analog of Freudenthal’s Magic Square). The rest of the exceptional examples for
p =3 and p = 5, not entering the Elduque Supermagic Square (the ones described here for the
first time) are, nevertheless, somehow affiliated to the Elduque Supermagic Square [19].

1.2 Characteristic 2

Very interesting, we think, is the situation in characteristic 2. A posteriori we see that the list
of Lie superalgebras in characteristic 2 of the form g(A) or g(4)® /¢, where i = corank A can
be equal to either 1 or 2, with an indecomposable matrix A is as follows:

1. Take any finite dimensional Lie algebra of the form g(A) with indecomposable Cartan
matrix [54] and declare some of its Chevalley generators (simultaneously a positive one
and the respective negative one) odd (the corresponding diagonal elements of A should
be changed accordingly: 0 to 0 and 1 to 1, see Section 4.5). Let I be the vector of
parities of the generators; the parity of each positive generator should equal to that of the
corresponding negative one.

2. Do this for each of the inequivalent Cartan matrices of g(A) and any distribution I of
parities.

3. Construct Lie superalgebra g(A, I) from these Chevalley generators by factorizing a certain
9(A, I) modulo an ideal (explicitly described in [37, 3, 4]; for a summary, see [2]).

4. For the Lie superalgebra g(A, I), list all its inequivalent Cartan matrices.

5. If A is not invertible, pass to gV (A, T)/c.
Such superization turns
1) a given orthogonal Lie algebra into either an ortho-orthogonal or a periplectic Lie super-

algebra;

2) the three exceptional Lie algebras of ¢ type turn into seven non-isomorphic Lie superalge-
bras of e type;

3) the tot type Lie algebras discovered in [54] turn into bgl type Lie superalgebras.
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1.3. Remarks. 1) Observe that the Lie (super)algebra uniformly defined for any characteris-
tic as

e preserving a tensor, e.g., (super)trace-less; (ortho-)orthogonal and periplectic ones,

e given by an integer Cartan matrix whose entries are considered modulo p

may have different (super)dimensions as p varies (not only from 2 to “not 2”): The “same”
Cartan matrices might define algebras of similar type but with different properties and names as
the characteristic changes: for example sl(np) has CM in all characteristics, except p, in which
case it is gl(np) that has a CM.

2) Although the number of inequivalent Cartan matrices grows with the size of A, it is easy
to list all possibilities for serial Lie (super)algebras. Certain exceptional Lie superalgebras have
dozens of inequivalent Cartan matrices; nevertheless, there are at least the following reasons to
list all of them:

1. To classify all Z-gradings of a given g(A) (in particular, inequivalent Cartan matrices) is
a very natural problem. Besides, sometimes the knowledge of the best, for the occasion,
Z-grading is important. Examples of different cases: [44] (all simple roots non-isotropic),
[38] (all simple roots odd); for computations “by hand” the cases where only one simple
root is odd are useful.

In particular, the defining relations between the natural (Chevalley) generators of g(A)
are of completely different form for inequivalent Z-gradings, and this is used in [44].

2. Distinct Z-gradings yield distinct Cartan—Tanaka—Shchepochkina (CTS) prolongs (vecto-
rial Lie (super)algebras), cf. [49, 35]. So to classify them is vital, for example, in the quest
for simple vectorial Lie (super)algebras.

3. Certain properties of Cartan matrices may vary under the passage from one inequivalent
CM to the other (the Lie superalgebras that correspond to such matrices may have different
rate of growth as Z-graded algebras); this is a novel, previously unnoticed, feature of Lie
superalgebras that had lead to false claims (rectified in [11]).

1.4 Related results

1) For explicit presentations in terms of (the analogs of) Chevalley generators of the Lie algebras
and superalgebras listed here, see [2]. In addition to Serre-type relations there always are more
complicated relations.

2) For deformations of the finite dimensional Lie (super)algebras of the form g(A) and
a(A)D /¢, see [6]. Observe that whereas “for p > 3, the Lie algebras with Cartan matrices
of the same types that exist over C are either rigid or have deforms which also possess Cartan
matrices”, this is not so if p = 3 or 2.

3) For generalized Cartan—Tanaka—Shchepochkina (CTS) prolongs of the simple Lie (su-
per)algebras of the form g(A), and the simple subquotients of such prolongs, see [5, 7].

4) With restricted Lie algebras one can associate algebraic groups; analogously, with re-
stricted Lie superalgebras one can associate algebraic supergroups. For this and other results
of Lebedev’s Ph.D. thesis pertaining to the classification of simple modular Lie superalgebras,
see [37].

2 Basics: Linear algebra in superspaces (from [39])

2.1 General notation

For further details on basics on Linear Algebra in Superspaces, see [39].
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For the definition of the term “Lie superalgebra”, especially, in characteristic 2, see Section 3.

For the definition of the Lie (super)algebras of the form g(A), i.e., with Cartan matrix A
(briefly referred to CM Lie (super)algebras), and simple relatives of the Lie superalgebras of the
form g(A) with indecomposable Cartan matrix A, see Section 4. For simplicity of typing, the
ith incarnation of the Lie (super)algebra g(A) with the ith CM (according to the lists given
below) will be denoted by ig(A).

For the split form of any simple Lie algebra g, we denote the g-module with the ith fundamen-
tal weight m; by R(m;) (as in [41, 8]; these modules are denoted by I'; in [24]). In particular, for
0(2k+1), the spinor representation sping, , 1 is defined to be the kth fundamental representation,
whereas for or1(2k), the spinor representations are the kth and the (k — 1)st fundamental repre-
sentations. The realizations of these representations and the corresponding modules by means
of quantization (as in [40]) can also be defined, since, as is easy to see, the same quantization
procedure is well-defined for the restricted version of the Poisson superalgebra. (Fortunately,
we do not need irreducible representations of o01(2k); their description is unknown, except the
trivial, identity and adjoint ones.)

In what follows, ad denotes both the adjoint representation and the module in which it
acts. Similarly, id denotes both the identity (a.k.a. standard) representation of the linear Lie
(super)algebra g C gl(V) in the (super)space V and V itself. (We disfavor the adjective “natural”
applied to id only, since it is no less appropriate to any of the tensor (symmetric, exterior) powers
of id.) In particular, having fixed a basis in the n-dimensional space and having realized s((V)
as sl(n), we write id instead of V', so V' does not explicitly appear. The ezterior powers and
symmetric powers of the vector space V are defined as quotients of its tensor powers

T'(V) = \(V) = S'(V):=V,
T(V):=V®- @V fori>0.

i factors

We set:
ANV)=T"(V)/(z@z|zeV), SV)=T"(V)/ey+yz|z,yeV),

where T (V) := @T*(V); let A\'(V) and S?(V') be homogeneous components of degree 1.
Describing the gg-module structure of g7 for a Lie superalgebra g, we write g7 ~ R(+), though
it is, actually, II(R(-)).
The symbol A & B denotes a semi-direct sum of modules of which A is a submodule; when
dealing with algebras, A is an ideal in A & B.

2.2 Superspaces

A superspace is a Z/2-graded space; for any superspace V. = V5 @ V;, where 0 and 1 are
residues modulo 2; we denote by II(V') another copy of the same superspace: with the shifted
parity, i.e., (II(V)); = Vi 7. The parity function is denoted by p. The superdimension of V is
sdim V' = a + be, where €2 = 1, and a = dim Vj, b = dim V4. (Usually, sdim V is shorthanded as
a pair (a,b) or a|b; this notation obscures the fact that sdimV @ W = sdim V - sdim W.)

A superspace structure in V' induces the superspace structure in the space End(V'). A basis
of a superspace is always a basis consisting of homogeneous vectors; let Par = (p1,...,pdimv)
be an ordered collection of their parities. We call Par the format of (the basis of) V. A square
supermatriz of format (size) Par is a sdim V' x sdim V' matrix whose ith row and ith column are

of the same parity p; € Par. The matrix unit £; ; is of parity p; + p;.
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Whenever possible, we consider one of the simplest formats Par, e.g., the format Parg of
the form (0,...,0;1,...,1) is called standard. Systems of simple roots of Lie superalgebras
corresponding to distinct nonstandard formats of supermatrix realizations of these superalgebras
are related by so-called odd reflections.

2.3 The Sign Rule
The formulas of Linear Algebra are superized by means of the Sign Rule:

if something of parity p moves past something of parity q, the sign (—1)P4
accrues; the expressions defined on homogeneous elements are extended
to arbitrary ones via linearity.

Examples of application of the Sign Rule: By setting
[X,Y] = XY — (—1)PXrMy x

we get the notion of the supercommutator and the ensuing notions of supercommutative and
superanti-commutative superalgebras; Lie superalgebra is the one which, in addition to superanti-
commutativity, satisfies Jacobi identity amended with the Sign Rule; a superderivation of a given
superalgebra A is a linear map D: A — A satisfying the super Leibniz rule

D(ab) = D(a)b + (—1)PPP@qD(b).

Let V' be a superspace, sdim V' = m|n. The general linear Lie superalgebra of operators
acting in V is denoted by gl(V') or gl(m|n) if an homogeneous basis of V' is fixed. The Lie
subsuperalgebra of supertraceless operators (supermatrices) is denoted sl(V') >~ sl(m|n). If a Lie
superalgebra g C gl(V') contains the ideal of scalar matrices s = K1), then pg = g/s denotes
the projective version of g.

Observe that sometimes the Sign Rule requires some dexterity in application. For example,
we have to distinguish between super-skew and super-anti although both versions coincide in
the non-super case:

ba = (—1)POP@)gp
ba = —(—1)POP@) g, superanti-commutativity),

(

(
ba = (—1)POFDE@FD) 4 (superskew-commutativity),
ba = —(—1)POFD@@+1) 4, (

supercommutativity),

superantiskew-commutativity).

In other words, “anti” means the total change of the sign, whereas any “skew” notion can be
straightened by the parity change. In what follows, the supersymmetric bilinear forms and
supercommutative superalgebras are named according to the above definitions.

The supertransposition of supermatrices is defined so as to assign the supertransposed su-
permatrix to the dual operator in the dual bases. For details, see [36]; an explicit expression
in the standard format is as follows (we give a general formula for matrices with entries in
a supercommutative superalgebra; in this paper we only need the lower formula):

t t
< abt Zt) for X even,
X:(a b)'—)XSt:: -

d t_t
¢ <at f) for X odd.
b d
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2.4 What the Lie superalgebra is

Dealing with superalgebras it sometimes becomes useful to know their definition. Lie superalge-
bras were distinguished in topology in 1930’s, and the Grassmann superalgebras half a century
earlier. So it might look strange when somebody offers a “better” definition of a notion which
was established about 70 year ago. Nevertheless, the answer to the question “what is a (Lie)
superalgebra?” is still not a common knowledge.

So far we defined Lie superalgebras naively: via the Sign Rule. However, the naive definition
suggested above (“apply the Sign Rule to the definition of the Lie algebra”) is manifestly inad-
equate for considering the supervarieties? of deformations and for applications of representation
theory to mathematical physics, for example, in the study of the coadjoint representation of
the Lie supergroup which can act on a supermanifold or supervariety but never on a vector
superspace — an object from another category. We were just lucky in the case of finite dimen-
sional Lie algebras over C that the vector spaces can be viewed as manifolds or varieties. In
the case of spaces over K and in the super setting, to be able to deform Lie (super)algebras or
to apply group-theoretical methods, we must be able to recover a supermanifold from a vector
superspace, and vice versa.

A proper definition of Lie superalgebras is as follows. The Lie superalgebra in the category
of supervarieties corresponding to the “naive” Lie superalgebra L = Lg @& L1 is a linear super-
manifold £ = (Lg, O), where the sheaf of functions O consists of functions on Ly with values
in the Grassmann superalgebra on L7; this supermanifold should be such that for “any” (say,
finitely generated, or from some other appropriate category) supercommutative superalgebra C,
the space £(C) = Hom(SpecC, L), called the space of C-points of L, is a Lie algebra and the
correspondence C' — L£(C) is a functor in C. (A. Weil introduced this approach in algebraic
geometry in 1953; in super setting it is called the language of points or families.) This definition
might look terribly complicated, but fortunately one can show that the correspondence £ «— L
is one-to-one and the Lie algebra £(C), also denoted L(C), admits a very simple description:
L(C)= (L& ).

A Lie superalgebra homomorphism p: L1 — Lo in these terms is a functor morphism,
i.e., a collection of Lie algebra homomorphisms pc: Li(C) — L2(C) such that any homo-
morphism of supercommutative superalgebras ¢: C — (] induces a Lie algebra homomor-
phism ¢: L(C) — L(C}) and products of such homomorphisms are naturally compatible. In
particular, a representation of a Lie superalgebra L in a superspace V is a homomorphism
p: L — gl(V), i.e., a collection of Lie algebra homomorphisms pc: L(C) — (gl(V) @ C);.

2.4.1. Example. Consider a representation p: g — gl(V'). The space of infinitesimal de-
formations of p is isomorphic to H'(g;V ® V*). For example, if g is the 0|n-dimensional (i.e.,
purely odd) Lie superalgebra (with the only bracket possible: identically equal to zero), its only
irreducible modules are the trivial one, 1, and II(1). Clearly,

1©1* ~TI(1) @ I(1)* ~ 1,

and, because the Lie superalgebra g is commutative, the differential in the cochain complex is
zero. Therefore H'(g;1) = /\l(g*) ~ g*, so there are dim g odd parameters of deformations of
the trivial representation. If we consider g “naively”, all of these odd parameters will be lost.

Examples that lucidly illustrate why one should always remember that a Lie superalgebra is
not a mere linear superspace but a linear supermanifold are, e.g., the deforms with odd parame-
ters. In the category of supervarieties, these deforms, listed in [6], are simple Lie superalgebras.

2A supervariety is a ringed space such that the collection of functions on it — the sections of its sheaf —
constitute a supercommutative superring. Morphisms of supervarieties are only the ring space morphisms that
preserve parity of the superrings of sections of the structure sheaves.
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2.5 Examples of simple Lie superalgebras over C

Recall that the Lie superalgebra g without proper ideals and of dimension > 1 is said to be
simple. Examples: Serial Lie superalgebras sl(m|n) for m > n > 1, psl(n|n) := sl(n|n)/c for
n > 1, osp(m|2n) for mn # 0, and spe(n) for n > 2; and the exceptional Lie superalgebras:
ag(2), ab(3), and osp(4|2; «) for a # 0, —1.

3 What the Lie superalgebra in characteristic 2 is (from [34])

Let us give a naive definition of a Lie superalgebra for p = 2. We define it as a superspace
g = gy D g7 such that gj is a Lie algebra, g7 is an gg-module (made into the two-sided one by
anti-symmetry, but if p = 2, it is the same) and on g7 a squaring (roughly speaking, the halved
bracket) is defined as a map

x+— x> such that (ax)? = a®2” for any = € g7 and a € K, and

(z +y)? — 22— y? is a bili £ . . (3.1)
y)© — x° — y* is a bilinear form on g7 with values in gg.

(We use a minus sign, so the definition also works for p # 2.) The origin of this operation is

as follows: If char K # 2, then for any Lie superalgebra g and any odd element x € g7, we have

z? = %[CE, z] € gg. If p = 2, we define 22 first, and then define the bracket of odd elements to

be (this equation is valid for p # 2 as well):
[z, 9] = (2 +y)? — 2 — . (3:2)

We also assume, as usual, that

if z,y € gy, then [x,y] is the bracket on the Lie algebra;
if z € gg and y € gy, then [z,y] := l.(y) = —[y,2] = —rs(y), Where |
and r are the left and right gg-actions on gi, respectively.

The Jacobi identity involving odd elements has now the following form:
[2?,y] = [z, [x,y]] for any x € g1,y € g. (3.3)
If K # Z /27, we can replace the condition on two odd elements by a simpler one:
?]

[z,2°] =0 for any z € gj. (3.4)

Because of the squaring, the definition of derived algebras should be modified. For any Lie
superalgebra g, set g(» := g and

g :==[g,0] + Span{g® g € g7}, 8"V :=[g@, "] + Span{g® | g € (8™)i}.  (3.5)

3.1 Examples: Lie superalgebras preserving non-degenerate forms [34]

Lebedev investigated various types of equivalence of bilinear forms for p = 2, see [34]; we just
recall the verdict and say that two (anti)-symmetric bilinear forms B and B' on a superspace V
are equivalent if there is an even non-degenerate linear map M : V — V such that

B'(z,y) = B(Mz, My) forall x,y€V. (3.6)

We fix some basis in V' and identify a given bilinear form with its Gram matriz in this basis;
let us also identify any linear operator on V with its matriz. Then two bilinear forms (rather
supermatrices) are equivalent if there is an even invertible matrix M such that

B'= MBM?", where T is for transposition. (3.7)
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We often use the following matrices

(0 1’“) if n = 2k,
1 O

ba=(, %) Ma={f0 0 (3.8)
010 ifn=2k+1.
1 0 O

Let Jy),, and 1L, be the same as Ja, and Ilz, but considered as supermatrices.

Lebedev proved that, with respect to the above natural® equivalence of forms (3.7), every
even symmetric non-degenerate form on a superspace of dimension ng|ni over a perfect field of
characteristic 2 is equivalent to a form of the shape (here: i = 0 or 1 and each n; may equal
to 0)

B = (BG 0 ), where B; = 1_7“ ?f i TS odd,
0 Bi either 1,,, or Il,,, if n; is even.

In other words, the bilinear forms with matrices 1,, and II,, are equivalent if n is odd and non-
equivalent if n is even; antidiag(1,...,1) ~ I, for any n. The precise statement is as follows:

3.1.1. Theorem. Let K be a perfect field of characteristic 2. Let V' be an n-dimensional space
over K.

1) Forn odd, there is only one equivalence class of non-degenerate symmetric bilinear forms
onV.

2) For n even, there are two equivalence classes of non-degenerate symmetric bilinear forms,
one — with at least one non-zero element on the main diagonal — contains 1, and the other one —
with only 0s on the main diagonal — contains Sy, := antidiag(1,...,1) and II,,.

The Lie superalgebra preserving B — by analogy with the orthosymplectic Lie superalgebras
osp in characteristic 0 we call it ortho-orthogonal and denote oop(ng|ni) — is spanned by the
supermatrices which in the standard format are of the form

(A6 B()CTB{1> where A € op;(ng), A1 € 0p;(n7), and
c Az ’ C' is arbitrary ny X ng matrix.

Since, as is easy to see,
ooriz(ng|ng) ~ oo (ni|ng),

we do not have to consider the Lie superalgebra oorr(ng|ni) separately unless we study Cartan
prolongations — the case where the difference between these two incarnations of the same algebra
is vital.

For an odd symmetric form B on a superspace of dimension (ng|nj) over a field of charac-
teristic 2 to be non-degenerate, we need ng = nj, and every such form B is equivalent to I,
where k = ng = ny. This form is preserved by linear transformations with supermatrices in the
standard format of the shape

(g 1%), where A € gl(k), C and D are symmetric k x k matrices. (3.9)

The Lie superalgebra pe(k) of supermatrices (3.9) will be referred to as periplectic, as A. Weil
suggested, and denoted by peg(k) or just pe(k). (Notice that the matrix realization of peg(k)

31t is interesting and unexpected that for non-symmetric bilinear forms, another equivalence is more natural.



Classification of Finite Dimensional Modular Lie Superalgebras 11

over C or R is different: its set of roots is not symmetric relative the change of roots “positive
—— negative”.)

The fact that two bilinear forms are inequivalent does
not, generally, imply that the Lie (super)algebras that (3.10)
preserve them are not isomorphic.

In [34], Lebedev proved that for the non-degenerate symmetric forms, this implication (3.10) is,
however, true (except for oor(ng|ny) ~ oomnr(ni|ng) and 001(11%[(6]2) ~ pe(M(4)) and described
the distinct types of Lie (super)algebras preserving non-degenerate forms. In what follows, we
describe which of these Lie (super)algebras (or their derived ones) are simple, and which of them
(or their central extensions) “have Cartan matrix”. But first, we recall what does the term in
quotation marks mean.

4 What g(A) is

4.1 Warning: certain of sl’s and all psl’s have no Cartan matrix.
Which of their relatives have Cartan matrices

For the most reasonable definition of Lie algebra with Cartan matrix over C, see [28]. The same
definition applies, practically literally, to Lie superalgebras and to modular Lie algebras and to
modular Lie superalgebras. However, the usual sloppy practice is to attribute Cartan matrices
to many of those (usually simple) modular Lie algebras and (modular or not) Lie superalgebras
which, strictly speaking, have no Cartan matrix!

Although it may look strange for the reader with non-super experience over C, neither the
simple modular Lie algebra psl(pk), nor the simple modular Lie superalgebra psl(a|pk + a),
nor — in characteristic 0 — the simple Lie superalgebra psl(a|a) possesses a Cartan matrix. Their
central extensions — s[(pk), the modular Lie superalgebra sl(a|pk +a), and — in characteristic 0 —
the Lie superalgebra sl(a|a) — do not have Cartan matrix, either.

Their relatives possessing a Cartan matrix are, respectively, gl(pk), gl(a|pk + a), and gl(ala),
and for the “extra” (from the point of view of sl or psl) grading operator (such operators are
denoted in what follows d;, to distinguish them from the “inner” grading operators h;) we
take El,l-

Since often all the Lie (super)algebras involved (the simple one, its central extension, the
derivation algebras thereof) are needed (and only representatives of one of the latter types of
Lie (super)algebras are of the form g(A)), it is important to have (preferably short and easy to
remember) notation for each of them.

For the Lie algebras that preserve a tensor (bilinear form or a volume element) we retain
the same notation in all characteristic; but the (super)dimension of various incarnations of
the algebras with the same name may differ as characteristic changes; simplicity may also be
somewhat spoilt.

For the Lie (super)algebras which are easiest to be determined by their Cartan matrix (the
Elduque Supermagic Square is of little help here), we have:

for p = 3: ¢(6) is of dimension 79, its derived ¢(6)(!) is of dimension 78, whereas its “simple
core” is ¢(6)™) /¢ of dimension 77;

g(2) is not simple (moreover, its CM is decomposable); its “simple core” is isomorphic to
psi(3);

for p=2: ¢(7) is of dimension 134, its derived ¢(7)(!) is of dimension 133, whereas its
“simple core” is ¢(7)(1) /¢ of dimension 132;
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9(2) constructed from its CM reduced modulo 2 is now isomorphic to gl(4); it is not simple,
its “simple core” is isomorphic to ps((4);

the orthogonal Lie algebras and their super analogs are considered in detail later.

In our examples, the notation D/d|B means that sdim g(A) = D|B whereas sdim g(A4)® /¢ =
d|B, where

d =D — 2(size(A) — rk(A)) and i = size(A) —rk(A) = dime. (4.1)

4.2 Generalities

Let us start with the construction of a CM Lie (super)algebra. Let A = (A4;;) be an n X n-matrix.
Let rk A = n —[. It means that there exists an [ x n-matrix T = (7T};) such that

a) the rows of T are linearly independent;

b) TA =0 (or, more precisely, “zero [ x n-matrix”). (4.2)

Indeed, if rk AT = rk A = n — I, then there exist [ linearly independent vectors v; such that
ATv; = 0; set

Tij = (vi)j-

Let the elements ezi and h;, where i = 1,...,n, generate a Lie superalgebra denoted g(A, I),
where I = (p1,...ps) € (Z/2)" is a collection of parities (p(ef) = p;), free except for the
relations

e, e; ] = dijhi; [hj, ejt] = :I:AijejE and [hi, hj] =0 for any ¢, j. (4.3)

Let Lie (super)algebras with Cartan matrix g(A, ) be the quotient of g(A, I) modulo the ideal
we explicitly described in [3, 4, 2].

By abuse of notation we retain the notations ejE and h; — the elements of g(A, I) — for their
images in g(A, ) and g (A T).

The additional to (4.3) relations that turn g(A, I) into g(A, I) are of the form R; = 0 whose
left sides are implicitly described, for the general Cartan matrix with entries in K, as

the R; that generate the ideal t maximal among the ideals of g(A, I)
whose intersection with the span of the above h; and the d; described (4.4)
in equation (4.8) is zero.

Set

¢i=Y Tyjhj,  where i=1,...,1 (4.5)
j=1

Then, from the properties of the matrix 7', we deduce that

a) the elements ¢; are linearly independent;
b) the elements ¢; are central, because

n (4.6)
[Ci, ej[] =+ (Z T‘zkAkj) eji = :t(TA)UejE

k=1

The existence of central elements means that the linear span of all the roots is of dimension n —1
only. (This can be explained even without central elements: The weights can be considered as
column-vectors whose i-th coordinates are the corresponding eigenvalues of ady,. The weight
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of e; is, therefore, the i-th column of A. Since rk A = n — [, the linear span of all columns of
A is (n — [)-dimensional just by definition of the rank. Since any root is an (integer) linear
combination of the weights of the e;, the linear span of all roots is (n — [)-dimensional.)

This means that some elements which we would like to see having different (even opposite if
p = 2) weights have, actually, identical weights. To fix this, we do the following: Let B be an
arbitrary | X n-matrix such that

the (n+1) x n-matrix (g) has rank n. (4.7)

Let us add to the algebra g = g(A,I) (and hence g(A,I)) the grading elements d;, where
i=1,...,1, subject to the following relations:
[di, €;t] = iBijej; [di, dj] = 0; [di, hj] =0 (4.8)
(the last two relations mean that the d; lie in the Cartan subalgebra, and even in the maximal
torus which will be denoted by b).
Note that these d; are outer derivations of g(A, I )(1), i.e., they can not be obtained as linear
combinations of brackets of the elements of g(A, I) (i.e., the d; do not lie in g(A,I)").

4.3 Roots and weights

In this subsection, g denotes one of the algebras g(A,I) or g(A,I).
Let b be the span of the h; and the d;. The elements of h* are called weights. For a given
weight «, the weight subspace of a given g-module V is defined as

Vo = {x € V| an integer N > 0 exists such that (a(h) — ady,)Nz = 0 for any h € h}.

Any non-zero element x € V is said to be of weight . For the roots, which are particular
cases of weights if p = 0, the above definition is inconvenient because it does not lead to the
modular analog of the following useful statement.

4.3.1. Statement ([28]). Over C, the space of any Lie algebra g can be represented as a direct
sum of subspaces

g= @ Ja- (4'9)

aeh*

Note that if p = 2, it might happen that h C gg. (For example, all weights of the form 2«
over C become 0 over K.)

To salvage the formulation of Statement in the modular case with minimal changes, at least
for the Lie (super)algebras g with Cartan matrix — and only this case we will have in mind
speaking of roots, we decree that the elements eii with the same superscript (either + or —)
correspond to linearly independent roots a;, and any root « such that g, # 0 lies in the Z-span
of {aq,...,an}, ie.,

i= P g (4.10)

a€Z{ar,....,on}

Thus, g has a R"-grading such that eii has grade (0,...,0,£1,0,...,0), where £1 stands
in the i-th slot (this can also be considered as Z"-grading, but we use R™ for simplicity of
formulations). If p = 0, this grading is equivalent to the weight grading of g. If p > 0, these
gradings may be inequivalent; in particular, if p = 2, then the elements e;r and e; have the same
weight. (That is why in what follows we consider roots as elements of R™, not as weights.)
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Any non-zero element o« € R"™ is called a root if the corresponding eigenspace of grade «a
(which we denote g, by abuse of notation) is non-zero. The set R of all roots is called the root
system of g.

Clearly, the subspaces g, are purely even or purely odd, and the corresponding roots are said
to be even or odd.

4.4 Systems of simple and positive roots

In this subsection, g = g(A, I), and R is the root system of g.
For any subset B = {o1,...,0,} C R, we set (we denote by Z, the set of non-negative
integers):

RE = {a ER|a= iZnio—i, where n; € Z+}.

The set B is called a system of simple roots of R (or g) if o1,...,0,, are linearly independent
and R = RE URE. Note that R contains basis coordinate vectors, and therefore spans R"; thus,
any system of simple roots contains exactly n elements.

A subset RT C R is called a system of positive roots of R (or g) if there exists x € R™ such
that

(o, x) € R\{0} for all o € R, Rt ={a€R|(a,z) >0} (4.11)

(Here (-,-) is the standard Euclidean inner product in R™). Since R is a finite (or, at least,
countable if dim g(A) = co) set, so the set

{y € R" | there exists o € R such that (o, y) = 0}

is a finite/countable union of (n — 1)-dimensional subspaces in R", so it has zero measure. So
for almost every x, condition (4.11) holds.

By construction, any system B of simple roots is contained in exactly one system of positive
roots, which is precisely RE.

4.4.1. Statement. Any finite system R of positive roots of g contains exactly one system of
simple roots. This system consists of all the positive roots (i.e., elements of R™) that can not be
represented as a sum of two positive T00ts.

We can not give an a priori proof of the fact that each set of all positive roots each of which is
not a sum of two other positive roots consists of linearly independent elements. This is, however,
true for finite dimensional Lie algebras and Lie superalgebras of the form g(A) if p # 2.

4.5 Normalization convention

Clearly,
the rescaling e s /e, sends A to A" := diag(A1, ..., \n) - A. (4.12)

Two pairs (A4, 1) and (A, I') are said to be equivalent if (A’,I') is obtained from (A, I) by
a composition of a permutation of parities and a rescaling A" = diag(A1,...,\,) - A, where
AL A # 0. Clearly, equivalent pairs determine isomorphic Lie superalgebras.

The rescaling affects only the matrix Ap, not the set of parities Ig. The Cartan matrix A is
said to be normalized if

Aj;=0 orl,or2, (4.13)
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We let A;; = 2 only if i; = 0; in order to distinguish between the cases where i; = 0 and i; = 1,
we write A;; = 0 or 1, instead of 0 or 1, if ¢; = 0. We will only consider normalized Cartan
matrices; for them, we do not have to describe I.

The row with a 0 or 0 on the main diagonal can be multiplied by any nonzero factor; usually
(not only in this paper) we multiply the rows so as to make Ap symmetric, if possible.

4.6 Equivalent systems of simple roots

Let B = {a1,...,a,} be a system of simple roots. Choose non-zero elements eli in the 1-
dimensional (by definition) superspaces giq,; set h; = [ej,e; ], let Ag = (4;;), where the
entries A;; are recovered from relations (4.3), and let Ip = {p(e1),--- ,p(en)}. Lemma 7.3.2
claims that all the pairs (Ap, Ip) are equivalent to each other.

Two systems of simple roots By and Bz are said to be equivalent if the pairs (Ap,, Ip,) and
(Ap,, Ip,) are equivalent.

It would be nice to find a convenient way to fix some distinguished pair (Ap,Ip) in the
equivalence class. For the role of the “best” (first among equals) order of indices we propose
the one that minimizes the value

max li — 7] (4.14)
i,j€{1,...,n} such that (Ap);; 70
(i.e., gather the non-zero entries of A as close to the main diagonal as possible). Observe that
this numbering differs from the one that Bourbaki use for the ¢ type Lie algebras.

4.6.1 Chevalley generators and Chevalley bases

We often denote the set of generators corresponding to a normalized matrix by Xli, o XE
instead of ef, ...,er; and call them, together with the elements H; := [X;F,X;], and the
derivatives d; added for convenience for all < and j, the Chevalley generators.

For p = 0 and normalized Cartan matrices of simple finite dimensional Lie algebras, there
exists only one (up to signs) basis containing XijE and H; in which A;; = 2 for all ¢ and all
structure constants are integer, cf. [51]. Such a basis is called the Chevalley basis.

Observe that, having normalized the Cartan matrix of o(2n + 1) so that A;; = 2 for all i # n
but A,, = 1, we get another basis with integer structure constants. We think that this basis
also qualifies to be called Chevalley basis; for Lie superalgebras, and if p = 2, such normalization
is a must.

Conjecture. If p > 2, then for finite dimensional Lie (super)algebras with indecomposable
Cartan matrices normalized as in (4.13), there also exists only one (up to signs) analog of
the Chevalley basts.

We had no idea how to describe analogs of Chevalley bases for p = 2 until recently; clearly,
the methods of the recent paper [12] should solve the problem.

5 Restricted Lie superalgebras

Let g be a Lie algebra of characteristic p > 0. Then, for every = € g, the operator ad? is
a derivation of g. If it is an inner derivation for every = € g, i.e., if ad}, = adj; for some element
denoted zP!| then the corresponding map

p]: x> 2l (5.1)

is called a p-structure on g, and the Lie algebra g endowed with a p-structure is called a restricted
Lie algebra. If g has no center, then g can have not more than one p-structure. The Lie algebra
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gl(n) possesses a p-structure, unique up to the contribution of the center; this p-structure is
used in the next definition.

The notion of a p-representation is naturally defined as a linear map p : g — gl(V) such
that p(zlP)) = (p(z))P)); in this case V is said to be a p-module.

Passing to superalgebras, we see that, for any odd D € detA, we have

D>(ja,b]) =Y (’;) (D% (a), D=2 (b)] for any a,b € A. (5.2)

So, if char K = p, then D? is always an even derivation for any odd D € derA. Now, let g be
a Lie superalgebra of characteristic p > 0. Then

for every x € gg, the operator ad? is a derivation of g, i.e., gg-action on
g7 is a p-representation;
for every x € gi, the operator adip = adi , is a derivation of g.

So, if for every = € gg, there is zlP! € g5 such that ad? = ad,;, for any x € gg, then we can
define 2P| := (22)[P! for any 2 € g;. We demand that for any z € g5, we have

ad? = ad,;; as operators on the whole g, i.e., g7 is a restricted gg-module.

Then the pair of maps
pl:gg— 85 (z—a) and  [2p]: g1 — g5 (¢ 2

is called a p|2p-structure — or just p-structure — on g, and the Lie superalgebra g endowed with
a p-structure is called a restricted Lie superalgebra.

5.1 The case where gz has center

The p-structure on gg does not have to determine a p|2p-structure on g: Even if the actions of
ad? and ad, ) coincide on g, they do not have to coincide on the whole of g. This remark affects
even simple Lie superalgebras if gg has center. We can not say if a p-structure on gz defines
a p|2p-structure on g in the case of centerless gg: To define it we need to have, separately, a
p-module structure on gi over gg.

For the case where the Lie superalgebra g or even gz has center, the following definition is
more appropriate: g is said to be restricted if

there is given the map [p]: 2 — 2P} for any = € g5 (5.3)

such that, for any a € K, we have

1) (az)lP! = a? . 2lPl for any z € g5, a € K,

p—1
2) (24 )P =all 4yl 457 si(2,y) for any a,y € g5,
i=1

where is;(x,y) is the coefficient of a*~! in the expression of (adgzy)P 1 (z) (5-4)

for an indeterminate a,

3) (2, y] = (ad, ) (y) for any z € go, y € 0.
We set

2p]: z — 2PP .= (2P for any z € g7.
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5.1.1. Remark. If g is centerless, we do not need conditions 1) and 2) of (5.4) since they
follow from 3).

5.2. Proposition.
1) If p > 2 (orp =2 but Ay; # 1 for all i) and g(A) is finite-dimensional, then g(A) has
a p|2p-structure such that
(za)P) = 0 for any even a € R and x4 € ga, pliPl c p. (5.5)

2) If all the entries of A are elements of Z/pZ, then we can set hEp] =h; foralli=1,...,n.

3) The quotient modulo center of g(A) or gV (A) always inherits the p-structure of g(A) or
aM(A) (if any) whereas gV (A) does not necessarily inherit the p-structure of g(A).

Proof. For the simple Lie algebras, the p-structure is unique if any exists, see [27]. The same
proof applies to simple Lie superalgebras and p|2p-structures. The explicit construction com-
pletes the proof of headings 1) and 2). To prove 3) a counterexample suffices; we leave it as an
exercise to the reader to produce one. |

5.2.1. Remarks.
1) It is not enough to define p|2p-structure on generators, one has to define it on a basis.
2) If p(XF) =1, then (X)P! is not defined unless p = 2: Only (X:)2] is defined.

3) For examples of simple Lie superalgebras without Cartan matrix but with a p|2p-structure,
see [37]. In addition to the expected examples of the modular versions of Lie superalgebras
of vector fields, and the queer analog of the gl series, there are — for p = 2 — numerous
(and hitherto unexpected) queerifications, see [37].

5.2.2 (2,4)-structure on Lie algebras

If p = 2, we encounter a new phenomenon first mentioned in [33]. Namely, let g = g4+ @ g_ be
a Z/2-grading of a Lie algebra. We say that g has a (2, —)-structure, if there is a 2-structure
on g, but not on g. It sometimes happens that this (2, —)-structure can be extended to a* (2, 4)-
structure, which means that

for any x € g_ there exists an 2/ € g such that ad? = ad 4. (5.6)
For example, if indecomposable symmetrizable matrix A is such that (g(4) = o) (2n + 1))
AH:L Aii:(_)fori>1,

and the Lie algebra g(A) (i.e., g(A, (0,...,0)) is finite-dimensional, then g(A) has no 2-structure
but has a (2, 4)-structure inherited from the Lie superalgebra g(A, (1,0,...,0)).

(2,4|2)-structure on Lie superalgebras. A generalization of the (2,4)-structure from Lie

algebras to Lie superalgebras (such as 00%) (2n 4 1|2m)) is natural: Define the Z/2-grading
g = g+ @ g— of a Lie superalgebra having nothing to do with the parity similarly to that of
g(A) = oM (2n+1), and define the squaring on the plus part and a (2, 4)-structure on the minus
part such that the conditions

ad, 21 (y) = ad2(y) for all z € (oofy] (2kg + 1/2k1)g)+,

A O (5.7)
ad ) (y) = ady(y) for all x € (oopy (2kg + 1|2k1)5) -

are satisfied for any y € 00%) (2kg + 1|2k7), not only for y € 00%)(2]{:6 + 1|2k1)5-

“Observe a slightly different notation: (2,4), not 2|4.
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(2]2)-structure on Lie superalgebras. Lebedev observed that if p = 2 and a Lie superal-
gebra g possesses a 2|4-structure, then the Lie algebra F(g) one gets from g by forgetting the
superstructure (this is possible since [z, 7] = 22? = 0 for any odd z) possesses a 2-structure
given by

the “2” part of 2|4-structure on the former gg;
the squaring on gi;

the rule (z + y)? = 2P + 4@ + [z, 9] on the formerly inhomogeneous (with respect to
parity) elements.

So one can say that if p = 2, then any restricted Lie superalgebra g (i.e., the one with
a 2|4-structure) induces a 2|2-structure on the Lie algebra F'(g) which is defined even on inho-
mogeneous elements (unlike p|2p-structures defined on homogeneous elements only).

5.2.2.1. Remark. The restricted Lie superalgebra structures resemble (somehow) a hidden
supersymmetry of the following well-known fact:

The product of two vector fields is not necessarily a vector field, whereas

their commutator always is a vector field. (5-8)

This fact was not considered to be supersymmetric until recently: Dzhumadildaev investigated
a similar phenomenon: For the general and divergence-free Lie algebras of polynomial vector
fields in n indeterminates over C, he investigated for which N = N(n) the anti-symmetrization

of the map D +—— DV (i.e., the expression Y. sign(o) Xos(1) - - Xo(n)) yields a vector field. For
geSN
the answer for n = 2,3 and a conjecture, see [16]. But the most remarkable is Dzhumadildaev’s

discovery of a hidden supersymmetry of the usual commutator described by a universal odd
vector field. Dzhumadildaev deduced the above fact (5.8) from the following property of odd
vector fields:

The product of two vector fields is not necessarily a vector field, whereas

the square of any odd field always is a vector field. (5.9)

6 Ortho-orthogonal and periplectic Lie superalgebras

In this section, p = 2 and K is perfect. We also assume that ng,ni > 0. Set n := ng + ni.

6.1 Non-degenerate even supersymmetric bilinear forms
and ortho-orthogonal Lie superalgebras

For p = 2, there are, in general, four equivalence classes of inequivalent non-degenerate even
supersymmetric bilinear forms on a given superspace. Any such form B on a superspace V of
superdimension ng|nj can be decomposed as follows:

B:Bﬁ@Biv

where By, By are symmetric non-degenerate forms on Vg and Vi, respectively. For i = 0, 1, the
form B; is equivalent to 1,, if n; is odd, and equivalent to 1,, or I, if n; is even. So every
non-degenerate even symmetric bilinear form is equivalent to one of the following forms (some
of them are defined not for all dimensions):

Brr = 1,5 @ 1ps; B = 1y © Il if ng is even;
B = Iy @ 1y, if ng is even; Brn = I,y @ I, if ng,ng are even.

We denote the Lie superalgebras that preserve the respective forms by oori(ng|ni), oom(ng|ni),
oomr(ng|ni), oomm(ng|ni), respectively. Now let us describe these algebras.
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6.1.1 oo1r(ng|ng)

If n := ng + n7 > 3, then the Lie superalgebra 00%11 )(n()]ni) is simple. This Lie superalgebra has
a 2|4-structure; it has no Cartan matrix.

6.1.1.1. Remark. To prove that a given Lie (super)algebra g has no Cartan matrix, we have
to consider its maximal tori, and for each of them, take the corresponding root grading. Then,
if the simple roots are impossible to define, or the elements of weight 0 do not commute, etc. — if
any of the requirements needed to define the Lie (super)algebra with Cartan matrix is violated —
we are done. We skip such proofs in what follows.

6.1.2 ooma(ng|ni) (n7 = 2k;3)

The Lie superalgebra ooy (2kg + 1|2k1) possesses a 2|4-structure.
The Lie superalgebra 00%) (ng|ni) is simple;
9|4-struct ifng=1 (kg =0
008—2(2]{:@ + 1|2k7) possesses [4-structure 1 "0 (kg = 0),
(2,4]2)-structure if ng > 1 (kg > 0);
oo%) (ng|n7) has a Cartan matrix if and only if ng is odd; this matrix has the following form
(up to a format; all possible formats — corresponding to * = 0 or * = 0 — are described in Table
Section 14 below):

1 * 1
0 1 1

6.1.3 oomm(ng|ni) (ng = 2kg, n; = 2k7)
If n = ng 4+ ngy > 6, then

if kg + k1 is odd, then the Lie superalgebra oogﬂ (ng|ni) is simple;

if kg + ki is even, then the Lie superalgebra Uﬂg%[(n()mi)/Kln@mi is simple.

(6.2)

Each of these simple Lie superalgebras has a 2|4-structure; it is also close to a Lie superalgebra
with Cartan matrix. To describe this CM Lie superalgebra in most simple terms, we will choose
a slightly different realization of oor(2kg|2k1): Let us consider it as the algebra of linear
transformations that preserve the bilinear form II(2kg + 2k1) in the format kg|kt|kg|ki. Then

the algebra ooﬁ)H(Qk:@DkI) is spanned by supermatrices of format kg|k1|kg|k7 and the form

A gl(kglky) ifi <1,
(A C ) where sl(kglky) ifi>2, (6.3)
D AT)° oD symmetric matrices if 1 =0,
,D are

symmetric zero-diagonal matrices if ¢ > 1.

If ¢ > 1, these derived algebras have a non-trivial central extension given by the following cocycle:

A C A
F<<D AT)’(D’ A’T>>: Y. (CyDi;+CisDij) (6.4)
1§i<j§k()-‘rkj
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(note that this expression resembles 3 tr(CD’ + C’'D)). We will denote this central extension of
0041, (2kg|2k7) by ooc(i, 2kg|2k7).
Let

Io = diag(lkﬁ\ki 5 0k6|ki)' (65)
Then the corresponding CM Lie superalgebra is

ooc(2, 2kg|2k1) € Kl if kg + k7 is odd;

. . (6.6)
ooc(1, 2kp|2k7) € Kl if kg + k7 is even.

The corresponding Cartan matrix has the form (up to format; all possible formats — corre-
sponding to * = 0 or * = 0 — are described in Table Section 14 below):

* 1 0 0
6.7
1 * 1 1 (67)
0 1 00
0 1 00
6.2 The non-degenerate odd supersymmetric bilinear forms.
Periplectic Lie superalgebras
In this subsection, m > 3.
If m is odd, then the Lie superalgebra peg)(m) is simple; (6.8)

If m is even, then the Lie superalgebra peg) (m) /K1, is simple.

If we choose the form B to be Il,,,,, then the algebras peg) (m) consist of matrices of the

form (6.3); the only difference from oog-ﬁ-l is the format which in this case is m|m.

Each of these simple Lie superalgebras has a 2-structure. Note that if p # 2, then the Lie
superalgebra peg(m) and its derived algebras are not close to CM Lie superalgebras (because,
for example, their root system is not symmetric). If p = 2 and m > 3, then they are close to
CM Lie superalgebras; here we describe them.

The algebras peg) (m), where ¢ > 0, have non-trivial central extensions with cocycles (6.4);
we denote these central extensions by pec(i,m). Let us introduce one more matrix

Iy := diag(1ys, 0 ). (6.9)
Then the CM Lie superalgebras are

pec(2,m) € Ky if m is odd; (6.10)
pec(1,m) € Kl if m is even. '

The corresponding Cartan matrix has the form (6.7); the only condition on its format is that
the last two simple roots must have distinct parities. The corresponding Dynkin diagram is
shown in Table Section 14; all its nodes, except for the “horns”, may be both ® or ®, see (7.1).
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6.3 Superdimensions

The following expressions (with a + sign) are the superdimensions of the relatives of the ortho-
orthogonal and periplectic Lie superalgebras that possess Cartan matrices. To get the superdi-
mensions of the simple relatives, one should replace +2 and +1 by —2 and —1, respectively, in
the two first lines and the four last ones:

dim oc(1;2k) € KIy = 2k* — k + 2 if k is even;

dim oc(2;2k) € Klp = 2k* —k + 1 if k is odd;

dim o™ (2k 4+ 1) = 2k% + k;

sdim oo™ (2kg + 1|2k1) = 2k2 + kg + 2k2 + ky | 2k1(2kg + 1); (6.11)

sdim ooc(1; 2kg|2ky) € Ko = 2k% — kg + 2k% — ky £2 | dkghy  if kg + Ky is even;
sdim ooc(2; 2kg|2ky) € Ko = 2k% — kg + 2k% — ky £ 1| dkghy  if kg + ky is odd;
sdimpec(1;m) € KIp = m? +2 | m? —m if m is even;

(

sdimpec(2;m) € Klp = m? +1 | m? —m if m is odd.

6.3.1 Summary: The types of Lie superalgebras preserving
non-degenerate symmetric forms

Let
g:=g&€KlIy. (6.12)

We have the following types of non-isomorphic Lie (super) algebras (except for an occasional
isomorphism intermixing the types, e.g., 00%}1(6]2) ~ pe(D(4)):

no relative has Cartan matrix with Cartan matrix
oor(2n + 12m + 1), oop(2n + 1|2m) | oc(i; 2n), oM (2n+1); pec(i; k) (6.13)
oor1(2n|2m), oo (2n|2m); o1(2n); | ooc(i; 2n[2m), ool (2n + 1/2m)

The superdimensions are as follows (in the second and third column stand the additions to the
superdimensions in the first column):

sdim ooy (alb) sdim 0o} (alb) | sdim 002 (alb)

sa(a+ 1)+ 5b(b+1) | ab | —1]0

sdim oorrr(alb) sdim 00§Q(a|b) sdim 00%) (ald) (6.14)
sa(a+1)+ 3b(b+1) | ab | —al0 '
sdim oorr (alb) sdim 001}, (alb) | sdim 0o (a|b)

ta(a+1)+ 3b(b+1) | ab | —a —b|0 —1/0

7 Dynkin diagrams

A usual way to represent simple Lie algebras over C with integer Cartan matrices is via graphs
called, in the finite dimensional case, Dynkin diagrams (DD). The Cartan matrices of certain in-
teresting infinite dimensional simple Lie superalgebras g (even over C) can be non-symmetrizable
or (for any p in the super case and for p > 0 in the non-super case) have entries belonging to the
ground field K. Still, it is always possible to assign an analog of the Dynkin diagram to each
(modular) Lie (super)algebra (with Cartan matrix, of course) provided the edges and nodes of
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the graph (DD) are rigged with an extra information. Although these analogs of the Dynkin
graphs are not uniquely recovered from the Cartan matrix (and the other way round), they give
a graphic presentation of the Cartan matrices and help to observe some hidden symmetries.

Namely, the Dynkin diagram of a normalized n x n Cartan matrix A is a set of n nodes
connected by multiple edges, perhaps endowed with an arrow, according to the usual rules [28]
or their modification, most naturally formulated by Serganova: compare [47, 20] with [21]. In
what follows, we recall these rules, and further improve them to fit the modular case.

7.1 Nodes

To every simple root there corresponds

anode O if p(a;) =0 and A;; = 2,
anode x if p(a;) =0 and A;; = 1;
anode ® if p(a;) =1 and A;; = 1; (7.1)
anode ® if p(a;) =1 and A;; =0,
anode ® if p(a;) =0 and A; =0

The Lie algebras s[(2) and 0(3)(") with Cartan matrices (2) and (1), respectively, and the Lie
superalgebra osp(1]|2) (which is 00%11-1)(1\2) if p = 2) with Cartan matrix (1) are simple.

The Lie algebra with Cartan matrix (0) and the Lie superalgebra with Cartan matrix (0)
are solvable of dim4 and sdim 2|2, respectively. Their derived algebras are Heisenberg algeb-
ra hei(2) ~ bhei(2]0) and Heisenberg superalgebra hei(0|2) =~ sl[(1]1), respectively; their (su-
per)dimensions are 3 and 1|2, respectively.

7.1.1 Digression

Let £ = (&1,...,&,) and n = (n1,...,m,) be odd elements, p = (p1,...,0m), ¢ = (q1,---,qm)
and z even elements. hei(2m|2n) = Span(p, ¢,&, 7, z), where the brackets are

[pi, qj] = dij2, [€ism5] = dij2, [, hei(2m|2n)] = 0. (7.2)

In what follows we will need the Lie superalgebra hei(2m|2n) (for the cases where mn = 0) and
its only (up to the change of parity) non-trivial irreducible representation, called the Fock space,
which in characteristic p is K[g,£]/(q}, ..., gh) on which the elements ¢; and &; act as operators
of left multiplication by ¢; and §j, respectively, whereas p; and 7; act as hd,, and hdg,;, where
h € K\ {0} can be fixed to be equal to 1 by a change of the basis.

7.1.2. Remark. A posteriori (from the classification of simple Lie superalgebras with Cartan
matrix and of polynomial growth for p = 0) we find out that the roots ® can only occur if
g(A, I) grows faster than polynomially. Thanks to classification again, if dim g < oo, the roots
of type ® can not occur if p > 3; whereas for p = 3, the Brown Lie algebras are examples of
g(A) with a simple root of type ®; for p = 2, such roots are routine.

7.2 Edges

If p =2 and dimg(A) < oo, the Cartan matrices considered are symmetric. If A;; = a, where
a # 0 or 1, then we rig the edge connecting the ith and jth nodes by a label a.

If p > 2 and dimg(A) < oo, then A is symmetrizable, so let us symmetrize it, i.e., consider
DA for an invertible diagonal matrix D. Then, if (DA);; = a, where a # 0 or —1, we rig the
edge connecting the ith and jth nodes by a label a.
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If all off-diagonal entries of A belong to Z/p and their representatives are selected to be
non-positive integers, we can draw the DD as for p = 0, i.e., connect the ith node with the jth
one by max(|A;jl|,|A;i|) edges rigged with an arrow > pointing from the ith node to the jth if
|A;j| > |Aj;| or in the opposite direction if |A;;| < |Aj].

7.3 Reflections

Let R' be a system of positive roots of Lie superalgebra g, and let B = {o1,...,0,} be the
corresponding system of simple roots with some corresponding pair (A = Ap,I = Ig). Then
for any k € {1,...,n}, the set (R*\{ox}) [[{—0%} is a system of positive roots. This operation
is called the reflection in o; it changes the system of simple roots by the formulas

0, if k= j
ro(o;) =1 e (7.3)
O‘j—l-Bijk if k #£ 7,

where
2AL; _ 2AL;
M g =0, A £ 0, and — L € 7/pZ,
Ak 2Akk
p—1 ifik:(_),Akk;«éOand—AkJ¢Z/pZ,
k
Ap; _ .
_ ki if ip =1, Agr # 0, and —ﬂGZ/pZ,
Ap ;411@1;
Brj=q9p—1 ifip=1,A #0, and — Tk] ¢ 7./pZ, (7.4)
kk
1 lfzk:i,AkkIO,Akj#O,
0 if i = 1, Apy = Ap; = 0,
p—1 if i, =0, Apr, = 0, Ag; #0,
0 if g = 0, A = 0, Ag; = 0,

where we consider Z/pZ as a subfield of K.

7.3.1. Remark. In the second, fourth and penultimate cases, the matrix entries in (7.4) can,

in principle, be equal to kp — 1 for any k € N, and in the last case any element of K may occur.

We may only hope at this stage that, at least for dim g < oo, this does not happen.

Agj Agj .

1 and 1 are elements of K, while the roots are elements of a vector space

kk kk

over R. Therefore These expressions in the first and third cases in (7.4) should be understood as

A A
M or ﬁ, respectively”. (If dimg < oo,
kk kk

these expressions are always congruent to integers.)

The values —

“the minimal non-negative integer congruent to —

24,
Apr;

There is known just one exception: If p =2 and Ay = Ajy, the expression — should be

understood as 2, not 0.

The name “reflection” is used because in the case of (semi)simple finite-dimensional Lie
algebras this action extended on the whole R by linearity is a map from R to R, and it does
not depend on R™, only on 0. This map is usually denoted by 74, or just 7. The map ry,
extended to the R-span of R is reflection in the hyperplane orthogonal to o; relative the bilinear
form dual to the Killing form.

The reflections in the even (odd) roots are referred to as even (odd) reflections. A simple
root is called isotropic, if the corresponding row of the Cartan matrix has zero on the diagonal,
and non-isotropic otherwise. The reflections that correspond to isotropic or non-isotropic roots
will be referred to accordingly.
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If there are isotropic simple roots, the reflections r,, do not, as a rule, generate a version of the
Weyl group because the product of two reflections in nodes not connected by one (perhaps, mul-
tiple) edge is not defined. These reflections just connect pair of “neighboring” systems of simple
roots and there is no reason to expect that we can multiply two distinct such reflections. In the
general case (of Lie superalgebras and p > 0), the action of a given isotropic reflections (7.3)
can not, generally, be extended to a linear map R — R. For Lie superalgebras over C, one can
extend the action of reflections by linearity to the root lattice but this extension preserves the
root system only for sl(m|n) and osp(2m + 1|2n), cf. [48].

If o; is an odd isotropic root, then the corresponding reflection sends one set of Chevalley
generators into a new one:

[X;5, X5 if Ay #0,0,

7.5
X;—L otherwise. (7.5)

vt v
XE=XF; X; :{

7.3.2 Lebedev’s lemma

Serganova [47] proved (for p = 0) that there is always a chain of reflections connecting B
with some system of simple roots Bj equivalent to Bs in the sense of definition 4.6. Here is
the modular version of Serganova’s Lemma. Observe that Serganova’s statement is not weaker:
Serganova used only odd reflections.

Lemma ([37]). For any two systems of simple roots By and By of any finite dimensional Lie
superalgebra with indecomposable Cartan matriz, there is always a chain of reflections connect-
ing B1 with Bs.

8 A careful study of an example

Now let p = 2 and let us apply all the above to the Lie superalgebra pe(k) (the situation
with or(2k) and oom(2kg|2k1) is the same). For the Cartan matrix (all possible formats —

corresponding to * = 0 or * = 0 — are listed in Table Section 14) we take

A= 1“ é (1) (8.1)
1 0 0

The Lie superalgebra pe() (k) consists of supermatrices of the form
B C
D BT)>

for i =0, we have B € gl(k), C, D are symmetric;
for i =1, we have B € gl(k), C, D are symmetric zero-diagonal; (8.2)
for i = 2, we have B € sl(k), C, D are symmetric zero-diagonal.

where

We expect (by analogy with the orthogonal Lie algebras in characteristic # 2) that

+ _ ) - _ . .
e; = Eiit1+ Ektitr1 ktis ¢; = Eiy1i+ Egrigyirn fori=1,... k-1, (8.3)
ey = Ex_12k + By ok-1; e, = Fop_1k+ Fog 1.
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Let us first consider the (simpler) case of k odd. Then rk A = k — 1 since the sum of the
last two rows is zero. Let us start with the simple algebra pe(z)(k). The Cartan subalge-
bra (i.e., the subalgebra of diagonal matrices) is (k — 1)-dimensional because the elements
lef.er],....[e) ;.e. 4] are linearly independent, whereas [e;, e, ] = [ef ;,e; ;). Thus, we
should first find a non-trivial central extension, spanned by z satisfying the condition

z = [ez, ep ]+ [6;—17 ep_1)- (8.4)

Elucidation: The values of egt in (8.3) are what we ezpect them to be from their p = 0 analogs.
But from the definition of CM Lie superalgebra we see that the algebra must have a center z,
see (8.4). Thus, the CM Lie superalgebra is not pe(?) (k) but is spanned by the central extension
of pe(?) (k) plus the grading operator defined from (4.6). The extension pec(2, k) described in (6.4)
satisfies this condition.
Now let us choose B to be (0,...,0,1). Then we need to add to the algebra a grading operator

d such that

[d,egt] =0foralli=1,...,k—1;

d, ef] = e (8.5)

d commutes with all diagonal matrices.

The matrix Iy = diag(1y,0) satisfies all these conditions. Thus, the corresponding CM Lie
superalgebra is

pec(2, k) &€ K. (8.6)

Remark. Rather often we need ideals of CM Lie (super)algebras that do not contain the outer
grading operator(s), cf. Section 4.1. These ideals, such as pec(2, k) or sl(n|n), do not have Cartan
matrix.

Now let us consider the case of k even. Then the simple algebra is pe(® (k)/(Klg). The
Cartan matrix is of rank k& — 2:

(a) the sum of the last two rows is zero;

(b) the sum of all the rows with odd numbers is zero. (8.7)

The condition (8.7a) gives us the same central extension and the same grading operator an in
the previous case.
To satisty condition (8.7b), we should find a non-trivial central extension such that

e= ) lefier).
1 is odd
(This formula follows from (4.5) and the 2nd equality in (8.7).) But we can see that, in pe(® (k),
we have
Yo lehel= D (Bii+ Eivvivt + Exgigti + Expisiprin) = Lok

1 is odd 4 is odd

It means that the corresponding central extension of pe(® (k)/(Klgy) is just pe® (k).
Now, concerning the grading operator: Let the second row of B be (1,0,...,0) (the first row

is, as in the previous case, (0,...,0,1)). Then we need a grading operator ds such that
[d2, eli] = 61i;
da, €] = 0 for all i > 1; (8.8)

dy commutes with all diagonal matrices.

The matrix dy := F1 1 + Ej41 541 satisfies these conditions. But pe(Q)(k:) EK(E1 1 + Egt1kt1)
is just pe() (k). So, the resulting CM Lie superalgebra is

pec(l, k) & K.
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9 Main steps of our classification

In this section we deal with Lie (super)algebras of the form g(A) or their simple subquotients
a(A)® /¢, where i = 1 or 2.

9.1 Step 1: An overview of known results

Lie algebras (nothing super). There are known the two methods of classification:

1) Over C, Cartan [10] did not use any roots, instead he used what is nowadays called in his
honor Cartan prolongations and a generalization (which he never formulated explicitly) of this
procedure which we call CTS-ing (Cartan—Tanaka—Shchepochkina prolonging).

2) Nowadays, to get the shortest classification of the simple finite dimensional Lie algebras,
everybody (e.g. [8, 41]) uses root technique and the non-degenerate invariant symmetric bilinear
form (the Killing form).

In the modular case, as well as in the super case, and in the mixture of these cases we
consider here, the Killing form might be identically zero. However, if the Cartan matrix A
is symmetrizable (and indecomposable), on the Lie (super)algebra g(A) if g(A) is simple (or
on g(A)® /¢ if g(A) is not simple), there is a non-degenerate replacement of the Killing form.
(Astonishingly, this replacement might sometimes be not coming from any representation, see
[46]. Much earlier Kaplansky observed a similar phenomenon in the modular case and associated
the non-degenerate bilinear form with a projective representation. Kaplansky pointed at this
phenomenon in his wonderful preprints [31] which he modestly did not publish.)

In the modular case, and in the super case for p = 0, this approach — to use a non-degenerate
even invariant symmetric form in order to classify the simple algebras — was pursued by Kaplan-
sky [31].

For p > 0, Weisfeiler and Kac [54] gave a classification, but although the idea of their proof
is OK, the paper has several gaps and vague notions (the Brown algebra bt(3) was missed,
whereas Brown [9] who discovered it did not write that it possesses Cartan matrix, actually
two inequivalent matrices first observed by Skryabin [50, 30]; the notion of the Lie algebra with
Cartan matrix nicely formulated in [28] was not properly developed at the time [54] was written;
the Dynkin diagrams mentioned there were not defined at all in the modular case; the algebras
a(A) and g(A)® /¢ were sometimes identified). The case p > 3 being completely investigated
by Block, Wilson, Premet and Strade [42, 52] (see also [1]), we double-checked the cases where
p < 5. The answer of [54]U[50] is correct.

Lie superalgebras.
Over C, for any Lie algebra gg, Kac [29] listed all

gg-modules g7 such that the Lie superalgebra g = gg @ g7 is simple. (9.1)

Kaplansky [31, 22, 32], Djokovié¢ and Hochschild [15], and also Scheunert, Nahm and Rit-
tenberg [45] had their own approaches to the problem (9.1) and solved it without gaps for
various particular cases, but they did not investigate which of the simple finite dimensional Lie
superalgebras possess Cartan matrix.

Kac observed that (a) some of the simple Lie superalgebras (9.1) possess analogs of Cartan
matrix, (b) one Lie superalgebra may have several inequivalent Cartan matrices. His first list
of inequivalent Cartan matrices (in other words, distinct Z-gradings) for finite dimensional Lie
superalgebras g(A) in [29] had gaps; Serganova [47] and (by a different method and only for
symmetrizable matrices) van de Leur [53] fixed the gaps and even classified Lie superalgebras
of polynomial growth (for the proof in the non-symmetrizable case, announced 20 years earlier,
see [26]). Kac also suggested analogs of Dynkin diagrams to graphically encode the Cartan
matrices.
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Kaplansky was the first (see his newsletters in [31]) to discover the exceptional algebras ag(2)
and ab(3) (he dubbed them T'y and T's, respectively) and a parametric family osp(4|2; «) (he
dubbed it I'(A, B, ('))); our notations reflect the fact that ag(2)s = sl(2) @ g(2) and ab(3)5 =
s[(2) @ o(7) (0(7) is Bs in Cartan’s nomenclature). Kaplansky’s description (irrelevant to us at
the moment except for the fact that A, B and C are on equal footing) of what we now identify as
0sp(4]2; o), a parametric family of deforms of 0sp(4]2), made an Ss-symmetry of the parameter
manifest (to A. A. Kirillov, and he informed us, in 1976). Indeed, since A + B + C' = 0, and
a € CU oo is the ratio of the two remaining parameters, we get an Ss-action on the plane
A+ B+ C =0 which in terms of « is generated by the transformations:

1
ar— —1—a, ar— . (9.2)
This symmetry should have immediately sprang to mind since o0sp(4|2; «) is strikingly similar
to we(3;a) found 5 years earlier, cf. (9.5), and since S3 ~ SL(2;Z/2).
The following figure depicts the fundamental domains of the Ss-action. The other transfor-
mations generated by (9.2) are

, o — .
leY a+1 a+1

9.1.1 Notation: On matrices with a “—” sign and other notations
in the lists of inequivalent Cartan matrices

The rectangular matrix at the beginning of each list of inequivalent Cartan matrices for each
Lie superalgebra shows the result of odd reflections (the number of the row is the number of the
Cartan matrix in the list below, the number of the column is the number of the root (given by
small boxed number) in which the reflection is made; the cells contain the results of reflections
(the number of the Cartan matrix obtained) or a “~” if the reflection is not appropriate because
A # 0. Some of the Cartan matrices thus obtained are equivalent, as indicated.

The number of the matrix A such that g(A) has only one odd simple root is , that
with all simple roots odd is underlined. The nodes are numbered by small boxed numbers; the
curly lines with arrows depict odd reflections.

Recall that ag(2) of sdim = 17|14 has the following Cartan matrices



28 S. Bouarroudj, P. Grozman and D. Leites

3]
G

]

2 — _
1 3 —
— 2 4
- -3
0 -1 0 0 -1 0 0 -3 1 2 -1 0
D [-1 2 3], 2 (-1 0 3], 3|3 0 2], 493 0 2].(93)
0 -1 2 0 -1 2 1 -2 2 0 -1 1

31 4 —
2 _ _ _
— - 25
6 — 4
_ 5 _ 5)
6)
2 -1 0 0 0 -3 1 0 2 -1 0 0
-3 0 1 0 -3 0 2 0 -1 2 -1 0
0—12—2’2)120—2’0—203’
0 0 -1 2 0 0 -1 2 0 0 -1 2

(9.4)

Modular Lie algebras and Lie superalgebras.

p = 2, Lie algebras. Weisfeiler and Kac [54] discovered two new parametric families that we
denote to€(3;a) and we(4;a) (Weisfeiler and Kac algebras).

w¥(3;a), where a # 0,—1, of dim 18 is a non-super version of 0sp(4/2;a) (although no osp
exists for p = 2); the dimension of its simple subquotient 1(3;a)") /c is equal to 16; the
inequivalent Cartan matrices are:

0 1

0 a O +a a
1) (e 0 1|, 2) |[1+a 0 1
010 a 1 0
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wt(4;a), where a # 0, —1, of dim = 34; the inequivalent Cartan matrices are:

0 a 00 0 1 14+4a O 0 a 0 0
a 010 1 0 a O a 0 a+1 0
1) 01 0 1| 2) a+1 a 0 al’ 3) 0 a+1 0 1
0010 0 0 a 0 0 0 1 0

Weisfeiler and Kac investigated also which of these algebras are isomorphic and the answer
is as follows:

aa—i—ﬁ’ where | b € SL(2;Z/2),

va+0 ) (9.5)
1
a.

we(3;a) ~ wk(3;d') < d =
we(4;a) ~ wt(4;d) —d =

9.1.2 2-structures on ot algebras

1) Observe that the center ¢ of to€(3;a) is spanned by ahi + hs. The 2-structure on 1#(3;a) is
given by the conditions (e£)!? = 0 for all root vectors and the following ones:
a) For the matrix B = (0,0, 1) in (4.7) for the grading operator d, set:

(adp,)® = (1 + at)hy +ths = h1  (mod ¢),
(adhz)@] = athy + he +ths + a(l14+a)d = hy + a(1 + a)d (mod ¢),
(a'dhg)p] = (at -+ a2)h1 + thy = a2h1 (mod c), (96)
(adg)® = athy +ths + d=d (mod c),

where t is a parameter.

b) Taking B = (1,0,0) in (4.7) we get a more symmetric answer:

(adp, ) = (1 + at)hy +ths =h1  (mod ¢),
(adp, ) = athy + ahy + ths + (1 + a)d = aho + (1 +a)d (mod c),
(adp, )[2] = (at + a®)hy +thg = a®h;  (mod ¢), (9.7)
(

3
adg)? = athy +ths +d=d (mod ¢),

(The expressions are somewhat different since we have chosen a different basis but on this simple
Lie algebra the 2-structure is unique.)
2) The 2-structure on w¢(4; a) is given by the conditions (eX)[? = 0 for all root vectors and

(adhl)[2] = ahl + (1 + a)h4,

(ath)[z] = ahs,

(ath)p] ~ by, (9.8)
(adh4)[2] = h4

p = 3, Lie algebras. Brown® algebras:

br(2,a) with CM (2 _21> and br(2) = ¢ lim ”bt(2,a) with CM (21 _01> (9.9)

7E*>0
The reflections change the value of the parameter, so

br(2,a) ~ br(2,d') &= d = —(1 +a). (9.10)

°To interpret the limit in (9.9), set e = 1+ X, and br(2) := br(2;¢) for e = 1.
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2 -1 0 2 -1 0
16v(3) with CM [ -1 2 —1| and 26r(3) with CM [ -2 2 —1]. (9.11)
0 -1 0 0 -1 0

p = 3, Lie superalgebras.
Brown superalgebra brj(2;3) of sdim = 10|8 (recently discovered in [17, Theorem 3.2(i)]; its
Cartan matrices are first listed in [5]) has the following Cartan matrices

(% 7)) 2 (8 T) (4 T)

The Lie superalgebra brj(2;3) is a super analog of the Brown algebra bt(2) = btj(2;3)g, its even
part; btrj(2;3); = R(2m) is irreducible btj(2; 3)g-module.

Elduque [17, 18, 13, 14] considered a particular case of the problem (9.1) and arranged the
Lie (super)algebras he discovered in a Supermagic Square all its entries being of the form g(A).
These Elduque and Cunha superalgebras are, indeed, exceptional ones. For the complete list of
their inequivalent Cartan matrices, reproduced here, see [3], where their presentation are also
given; we also reproduce the description of the even and odd parts of these Lie superalgebras
(all but one discovered by Elduque and whose description in terms of symmetric composition
algebras is due to Elduque and Cunha), see Section 12.1.

p = b5, Lie superalgebras. Brown superalgebra brj(2;5) of sdim = 10|12, recently discovered
in [5], such that btj(2;5)5 = sp(4) and brj(2;5)7 = R(m1+72) is an irreducible brj(2; 5)g-module®.
The Lie superalgebra btj(2;5) has the following Cartan matrices:

2 - 0 -1 0 -1
) (&) (G )
Elduque superalgebra ¢[(5;5) of sdim = 55|32, where el(5;5)5 = 0(11) and el(5;5)7 = spiny;.
Its inequivalent Cartan matrices, first described in [4], are as follows:

Instead of joining nodes by four segments in the cases where A;; = A;; =1 = —4 mod 5 we
use one dotted segment.

OlE]
Ol

[\)
~

OH

2 0 -1 0 0 0 0 -4 0 0
0o 2 0 0 -1 0 2 0 0 -1
Hl-1 0 0 -4 —4|, 2|l-4 0 0 -1 —-1],
0 0 -4 0 -2 0 0 -1 2 0
0 -1 -4 -2 0 0 -1 -1 0 2

5To the incredulous reader: The Cartan subalgebra of sp(4) is generated by he and 2h1 + ha. The highest
weight vector is z10 = [[z2, [z2, [r1, z2]]],[[x1, 2], [x1,22]]] and its weight is not a multiple of a fundamental
weight, but (1,1). We encounter several more instances of non-fundamental weights in descriptions of exceptions
for p = 2.



Classification of Finite Dimensional Modular Lie Superalgebras 31

2 0 -1 0 0 2 0 -10 0
0 2 0 0 -1 0 0 0 2 —4
-1 0 2 -1 0], 9]-1 0 2 0o -1,
0 0 -1 0 2 0 -1 0 2 -1
0 -2 0 -1 2 0 -4 -1 2 0
0 0 -1 0 0 2 0 -1 0 0
0 2 0 0 -1 0 0 0 -2 -1
-1 0 2 -1 -1|, 6]-1 0 2 0 -1
0 0 -1 2 0 0 -2 0 0 0
0 -1 -1 0 2 0 -1 -1 0 2
- 3 4
2 0 -1 0 0 5 - 1 — -
0 2 0 -1 -2 - - -1 -
-1 0 2 0 -1/, 8 6 — — 1
0 2 0 0 0 2 — - -
0 -1 -1 0 2 -4 - 7 -
_ _ 6 _

9.2 Step 2: Studying 2 X 2 and 3 X 3 Cartan matrices

1) We ask Mathematica to construct all possible matrices of a specific size. The matrices are
not normalized and they must not be symmetrizable: we can not eliminate non-symmetrizable
matrices at this stage. Fortunately, all 2 x 2 matrices are symmetrizable.

2) We ask Mathematica to eliminate the matrices with the following properties:

a) Matrices A for whose submatrix B we know that dim g(B) = oc;

b) decomposable matrices. (9.12)

3) Matrices with a row in each that differ from each other by a nonzero factor are counted
once, e.g.,

1 1\ (2 2\ (6 6
3 2) \3 2} \6 4)°
4) Equivalent matrices are counted once, where equivalence means that one matrix can be

obtained from the other one by simultaneous transposition of rows and columns with the same
numbers and the same parity. For example,

0 a 0 0 0 a1 0 00 0 1
a 0 0 1 a 0 00 00 a1
000 1] 7|1 0017 7]0oa0o0
0110 0010 1100

At the substeps 1.1)-1.4) we thus get a store of Cartan matrices to be tested further.

5) Now, we ask SuperLie, see [25], to construct the Lie superalgebras g(A) up to certain
dimension (say, 256). Having stored the Lie superalgebras g(A) of dimension < 256 we increase
the range again if there are any algebras left (say, to 1024 or 2048). At this step, we conjecture
that the dimension of any finite dimensional simple Lie (super)algebra of the form g(A), where
A is of size n x n, does not grow too rapidly with n. Say, at least, not as fast as n'0.

If the dimension of g(A) increases accordingly, then we conjecture that g(A) is infinite

dimensional and this Lie superalgebra is put away for a while (but not completely eliminated as
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decomposable matrices that correspond to non-simple algebras: The progress of science might
require soon to investigate how fast the dimension grows with n: polynomially or faster).

6) For the stored Cartan matrices A, we have dimg(A) < co. Once we get the full list all of
such Cartan matrices of a given size, we have to check if g(A) is simple, one by one.

7) The vectors of parities of the generators Pty = (p1, ..., p,) are only considered of the form

i,...,1,0,...,0).
9.2.1 The case of 2 X 2 Cartan matrices

On the diagonal we may have 2, 1 or 0, if the corresponding root is even; 0 or 1 if the root is
odd. To be on the safe side, we redid the purely even case. We have the following options to

consider:
Pty = (0,0) <22b 2;) <2 2a>~(21b ;> <llv (DN(CZJ (Zb> 9.13
1 -1 0)°
Pty = (1,0) a4 <2(; 21>2< >
. Eol >01>( > (11 g) (9.14)
1 a
“ \op 2) T \p 1)°
Pty = (1,1) ag <i 61L>2<;b C;b>’
o (Ba) w6 .

Obviously, some of these CMs had appeared in the study of (twisted) loops and the correspon-
ding Kac-Moody Lie (super)algebras. One could expect that the reduction of the entries of A
modulo p might yield a finite dimensional algebra, but this does not happen.

9.2.2. Lemma. If A is non-symmetrizable, then dim g(A) = cc.

Proof. We prove this by inspection for 3 x 3 matrices, but the general case does not follow by
reduction and induction: For example, for p = 2 and the normalized non-symmetrizable matrix
(here the value of x* is irrelevant)

S = =%
= O % =
QL *x O =
* = = O

where a # 0, 1, or analogous n x n matrix whose Dynkin diagram is a loop, any 3 x 3 submatrix
is symmetrizable.

To eliminate non-symmetrizable Cartan matrices, and any loops of length > 3 in Dynkin
diagrams, is, nevertheless, possible using Lemmas 3.1, 3.3, and 3.10, 3.11 of [54]. (Van de
Leur [53] used these Lemmas for p = 0.) [

That was the idea of the proof. Now we pass to the case-by-case study.
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9.3 Step 3: Studying n X n Cartan matrices for n > 3

By Lemma 9.2.2 we will assume that A is symmetrizable. The idea is to use induction and the
information found at each step.

9.3.1. Hypothesis. Fach finite dimensional Lie superalgebra of the form g(A) possesses
a “simplest” Dynkin diagram — the one with only one odd node.

Therefore passing from n x n Cartan matrices to (n+1) x (n+ 1) Cartan matrices it suffices
to consider just two types of n x n Cartan matrices: Purely even ones and the “simplest” ones —
with only one odd node on their Dynkin diagrams. To the latter ones only even node should be
added.

9.3.2 Further simplification of the algorithm

Enlarging Cartan matrices by adding new row and column, we let, for n > 4, its only non-zero
elements occupy at most four slots (apart from the diagonal). Justification: Lemmas from § 3
in [54] and Lemma 9.2.2.

Even this simplification still leaves lots of cases: To the 5 cases to be enlarged for Cartan
matrices of size < 8 that we encounter for p = 0, we have to add 16 super cases, each producing
tens of possibilities in each of the major cases p = 2, 3 and 5. To save several pages per each n
for each p, we have omitted the results of enlargements of each Cartan matrix and give only the
final summary.

9.4 On a quest for parametric families

Even for 2 x 2 Cartan matrices we could have proceeded by “enlarging” but to be on the safe
side we performed the selection independently. We considered only one or two parameters using
the function called ParamSolve (of SuperLie, see [25]). It shows all cases where the division
by an expression possibly equal to zero occurred. Every time SuperLie shows such a possibility
we check it by hand; these possibility are algebraic equations of the form § = f(«), where «
and [ are the parameters of the CM. We saw that whenever a and 3 are generic dim g(A) grows
too fast as compared with the height of the element (i.e., the number of brackets in expressions
like [a, [b, [c,d]]]) that SuperLie should not exceed constructing a Lie (super)algebra. We did
not investigate if the growth is polynomial or exponential, but definitely dimg(A) = co. For
each pair of singular values of parameters § = f(«), we repeat the computations again. In most
cases, the algebra is infinite-dimensional, the exceptions being 3 = a + 1 that nicely correspond
to some of CMs we already know, like tot algebras.

For three parameters, we have equations of the form v = f(a, 3). For generic o and f3. the
Lie superalgebra g(A) is infinite-dimensional. For the singular cases given by SuperLie, the
constraints are of the form 5 = g(a). Now we face two possibilities: If 7 is a constant, then we
just use the result of the previous step, when we dealt with two parameters. In the rare cases
where v is not a constant and depends on the parameter «, we have to recompute again and
again the dim g(A) is infinite in these cases.

We find Cartan matrices of size 4 x 4 and larger by “enlarging”. For p = 2, we see that 3 x 3
CMs with parameters can be extended to 4 x 4 CMs. However, 4 x 4 CMs cannot be extended
to 5 x 5 CMs whose Lie (super)algebras are of finite dimension. For p > 2, even 3 x 3 CMs
cannot be extended.

9.5 Super and modular cases: Summary of new features
(as compared with simple Lie algebras over C)

The super case, p = 0.
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1) There are three types of nodes (®, ® and 0),
2) there may occur a loop but only of length 3;
3) there is at most 1 parameter, but 1 parameter may occur;

4) to one algebra several inequivalent Cartan matrices can correspond.

The modular case. For Lie algebras, new features are the same as in the p = 0 super case;
additionally there appear new types of nodes (® and ).

10 The answer: The case where p > 5

This case is the simplest one since it does not differ much from the p = 0 case, where the answer
is known.
Simple Lie algebras:

1) Lie algebras obtained from their p = 0 analogs by reducing modulo p. We thus get

the CM versions of sl, namely: either simple sl(n) or gl(pn) whose “simple core” is
psl(pn);

the orthogonal algebras o(2n + 1) and o(2n);

the symplectic algebras sp(2n);

the exceptional algebras are g(2), f(4), ¢(6), ¢(7), ¢(8).

Simple Lie superalgebras
Lie superalgebras obtained from their p = 0 analogs by reducing modulo p. We thus get

1) the CM versions of sl, namely: either simple sl(m|n) or gl(a|pk + a) whose “simple core”
is psl(alpk + a) and psl™M (a|pk + a) if @ = kn;

2) the ortho-symplectic algebras osp(m|2n);
3) a parametric family osp(4|2; a);
4) the exceptional algebras are ag(2) and ab(3).

11 The answer: The case where p =5

Simple Lie algebras:

1) same as in Section 10 for p = 5.

Simple Lie superalgebras

1) same as in Section 10 for p = 5 and several new exceptions:

2) The Brown superalgebras [5]: brj(2;5) such that btj(2;5); = sp(4) and the brj(2;5)5-
module btj(2;5); = R(m + m2) is irreducible with the highest weight vector

T1io = [[1‘2, [va [x17$2m7 Hxla $2]7 [xleZH]

(for the CM 2): with the two Cartan matrices

2 - 0 -1 0 -1
(12) »(&) 2G5)
3) The Elduque superalgebra el(5;5). Having found out one Cartan matrix of el(5;5), we
have listed them all, see 9.1.2.
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12

The answer: The case where p = 3

Simple Lie algebras:

1)

2)

same as in Section 10 for p = 3, except g(2) which is not simple but contains a unique
minimal ideal isomorphic to ps((3), and the following additional exceptions:

the Brown algebras br(2;a) and br(2) as well as br(3), see Section 9.1.

Simple Lie superalgebras

1)

2)
3)

same as in Section 10 for p = 3 and ¢(6) (with CM) which is not simple but has a “simple
core” ¢(6)/c;
the Brown superalgebras, see Section 9.1;

the Elduque and Cunha superalgebras, see [14, 3]. They are respective “enlargements” of
the following Lie algebras (but can be also obtained by enlarging certain Lie superalgebras):

a(2,3) (gl(3) yields 2g(1,6) and 1g(2, 3)) (with CM) has a simple core bj := g(2,3)V/c;

9(3,6) (sl(4) yields 7g(3,6));

9(3,3) (sp(6) yields 1g(3,3) and 10g(3, 3));

9(4,3) (o(7) yields 1g(4,3));

9(8,3) (7(4) yields 1g(8,3));

a(2,6) (sl(5) yields 3g(2,6)) (with CM) has a simple core g(2,6)™M) /c;
9(4,6) (gl(6) yields 3g(4,6) and 0(10) yields 7g(4,6));

9(6,6) (o(11) yields 21g(6,6));

9(8,6) (sl(7) yields 8g(8,6) and ¢(6) yields 3g(8,6));

the Lie superalgebra el(5;3) we have discovered is a p = 3 version of the Elduque super-
algebra el(5;5): Their Cartan matrices (whose elements are represented by non-positive
integers) 7) for el(5;5) and 1) for el(5;3) are identical after a permutation of indices (that
is why we baptized ¢l(5;3) so). It can be obtained as an “enlargement” of any of the
following Lie (super)algebras: sp(8), sl(1]4), s[(2]3), osp(4[4), osp(6]2), g(3, 3).

12.1 Elduque and Cunha superalgebras: Systems of simple roots

For details of description of Elduque and Cunha superalgebras in terms of symmetric composition
algebras, see [17, 13, 14]. Here we consider the simple Elduque and Cunha superalgebras with
Cartan matrix for p = 3. In what follows, we list them using somewhat shorter notations as
compared with the original ones: Hereafter g(A, B) denotes the superalgebra occupying (A, B)th
slot in the Elduque Supermagic Square; the first Cartan matrix is usually the one given in [13],
where only one Cartan matrix is given; the other matrices are obtained from the first one by
means of reflections. Accordingly, ig(A, B) is the shorthand for the realization of g(A, B) by
means of the ith Cartan matrix. There are no instances of isotropic even reflections. On notation
in the following tables, see Section 9.1.1.

12.1.1 g(1,6) of sdim = 21|14
We have g(1,6)5 = sp(6) and g(1,6)7 = R(m3).
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2 -1 0 2 -1 0
(-1 1 -1, -1 2 -2
0 -1 0 0 -2 0

12.1.2  g(2,3) of sdim = 12/10|14

We have g(2,3)5 = gl(3) @ sl(2) and g(2,3)7 = psl(3) ® id.

- -2
3 .41
2 5 —
5 2 —

4 3 — 3 "
2 -1 -1 0 0 -1 0 0 -1
—12—1,1)00—1,3)00—2,

-1 -1 0 -1 -1 0 -1 -2 2
0 0 -2 0 0 -1
/10 0o —1f, 510 0 -1
-2 -1 2 -1 -1 1
12.1.3 g(3,6) of sdim = 36|40
We have g(3,6)5 = sp(8) and g(3,6)7 = R(73).
2 — — 3
é f - ? 0 -1 0 0 0 -1 0 0
-1 2 -1 0 -1 0 -1 0
gz:g’ Do 11 <10 2o 211
5 7o 0 0 -1 0 0 0 -1 0
- - 6 =
0 -1 0 0 2 -1 0 0 0 -1 0 0
-1 2 -1 0 -1 0 -2 0 -2 0 -1 0
o -1 2 2 Yo 2 2 1 Yo 1 2 —2f
0 -1 0 0 -1 0 0 0 -1 0
-1 0 2 -1 0 0
-1 0 -2 0 -1 2 -1 -1
910 2 0 -2 0 -1 0 -1
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12.1.4 g(3,3) of sdim = 23/21|16

We have g(3,3)5 = (0(7) ®Kz) ®Kd and g(3,3)7 = (spiny)+ @ (spiny)_; the action of d separates
the summands — identical o(7)-modules spin; — acting on one as the scalar multiplication by 1,

on the other one by —1.

(@)=

4) 5)
6) 7)
9) 8)
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w B~ |
|

N oo | |

o © |

2
-2
-1

0

8)

N W |

—1
—1

-1
—1

2
1 2 -1 0
- -1 2 -1
6 0 -2 2
7 0 0 -1
4] 2 -1 0
5 -1 0 -2
- Do —2 o
- 0 -1 -1
-1 0 0 0
2 -1 -1 ~1
~1 2 o | © 0
~1 0
—1 0
2
—1 ~1
~1

12.1.5 g(4,3) of sdim = 24|26

We have g(4,3)5 = sp(6) @ s[(2) and g(4, 3)7

© Ut O W o |
| oo | N w |

3 |
o

2

1 2 -1 0
— -1 2 =2
_ 0 1 2
7 0 -1 0
91’ 0 -1 0
5 -2 0 -1
10 3) 0 -1 0
6 0 -1 -1
8

-1
-1
0
0

0
-1
0

= R(Trz) ® id.

-1

-1
-1

2
-1
-1

2
0
0
-1
0
-1

-2
0
0

0

-1
-1
2

)
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-1 0
2 -1
-1 0
0 -1
-1 0
0 -1
-1 2
0 -1

0 -1 0
-1 0 =2
0 -1 0
0 0 -1
0 -1 0
-1 0 =2
0 -2 2
0 0 -1

12.1.6 g(2,6) of sdim = 36/34|20

We have g(2,6)5 = gl(6) and g(2,6); = R(m3).

(@)

>

[

\V)

0
0

0
-1
0

11

0
-1
7) 0
0
2
-2
10) 0
0

5)
O O
) g i 2 -1 0 0
R 1 2 -1 0
, Do -1 0 -1
o, 0 0 -1 2
0 0 -1 0
10 0 0 0 -1
2 -1 0 0 1 2
1 2 -1 -1 ~ 0 -1
0 -1 2 0 0 -1
0 -1 0 0 0 0
1 0 0 0 2 -1
0 -1 -1 0 1 2
1 2 0 -1}, 0 0
1 0 2 0 0 -1
0 -1 0 2 0 0

od
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12.1.7 g¢(8,3) of sdim = 55|50
We have g(8,3)5 = f(4) ® sl(2) and g(8,3)

OH

]
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12.1.8 g(4,6) of sdim = 66|32
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12.1.9 g(6,6) of sdim = 78|64

We have g(6,6)5 = 0(13) and g(6,6)7 = spin,;.
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12.1.10 g(8,6) of sdim = 133|56

We have g(8,6)5 = ¢(7) and g(8,6); = R(m1).
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—1

-2

12.2 The Elduque superalgebra el(5;3): Systems of simple roots

Its superdimension is 39|32; the even part is el(5; 3)5 = 0(9) Dsl(2) and its odd part is irreducible:

R(my) ® id.
The following are all its Cartan matrices:
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2 0 0 -10 2 0 0 -10 2 0 0 -10
0 0 -1-120 0 0 -2-20 0 2 -1-220
)0 -10 0 —2f, 121 0 -2 0 -2 -1, [13) 0 -2 0 0 —-11,
-1 -1 0 2 0 -1-2-2 0 0 -1 -1 0 2 0
0 0 -2 0 O 0 0 -1 0 O 0 0 -1 0 2
2 0 0 -1 0 2 0 0 -1 0
0 0 -1 -1 0 0 2 -1 0 O
4)1 0 =1 2 0 —1{, |15) 0 -1 0 -1 -2
-1 -1 0 2 0 -1 0 -1 2 O
0 0 -1 0 O 0 0 -1 0 2
13 The answer: The case where p = 2

Simple Lie algebras:

1)

2)

The Lie algebras obtained from their Cartan matrices by reducing modulo 2 (for o(2n+1)
one has, first of all, to divide the last row by 2 in order to adequately normalize CM). We
thus get:

the CM versions of sl, namely: s[(2n+ 1), and gl(2n) whose “simple core” is psl(2n);
in the “second” integer basis of g(2) given in [24, p. 346], all structure constants
are integer and g(2) becomes, after reduction modulo 2, a simple Lie algebra psl((4)
(without Cartan matrix, as we know);

the “simple cores” of the orthogonal algebras, namely, of 0")(2n + 1) and o¢(2n);
(6), (7)) /e, ¢(8);

the Weisfeiler and Kac algebras w€(3; )™ /¢ and w(4; a).

Simple Lie superalgebras

In the list below the term “super version” of a Lie algebra g(A) stands for a Lie superalgebra
with the “same” root system as that of g(A) but with some of the simple roots considered odd.

1)

The Lie superalgebras obtained from their p = 0 analogs that have no —2 in off-diagonal
slots of the Cartan matrix by reducing the structure constants modulo 2 (for osp(2n+1|2m)
one has, first of all, to divide the last row by 2 in order to normalize CM), we thus get

the CM versions of sl, namely: either simple sl(ala + 2k + 1) or gl(a|2k + a) whose
“simple core” is psl(ala + 2k) for a odd or psl(ala + 2k)) for a even;

the ortho-orthogonal algebras, namely: 00" and ooc whose “simple cores” are described
in Section 6;

bal(3;a)M /¢ which is an analog of w(3;a))/c with the “same” Cartan matrices but
different root systems;

the CM versions of periplectic algebras, namely: pec; these are at the same time super
versions of oc; their “simple cores” are described in Section 6;

a super version of to€(4; a), namely: bgl(4;a);
the super versions of ¢(6), namely: ¢(6,1), ¢(6,6);

the super versions of ¢(7), namely: ¢(7,1), ¢(7,6), ¢(7,7) whose “simple cores” are described
in Section 13.1.5;

the super versions of ¢(8), namely: ¢(8,1), ¢(8,8).
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13.1 On the structure of bgl(3; ), bgl(4; «), and e(a,b)

In this section we describe the even parts gg of the new Lie superalgebras g = g(A) and their
odd parts g7 as gg-modules. SuperLie enumerates the elements of the Chevalley basis the z;
(positive), starting with the generators, then their brackets, etc., and the y; are negative root
vectors opposite to the x;. Since the irreducible representations of the Lie algebras may have
neither highest nor lowest weight, observe that the gg-modules g7 always have both highest and
lowest weights.

13.1.1 Notation A @, B needed to describe bgl(4; o), ¢(6,6), ¢(7,6), and ¢(8,1)

This notation describes the case where 21 and 2 are nontrivial central extensions of the Lie
algebras a and b, respectively, and A @. B — a nontrivial central extension of a @ b (or, perhaps,
a more complicated a & b) with 1-dimensional center spanned by ¢ — is such that the restriction
of the extension of a @ b to a gives 2 and that to b gives B. (In other words, the situation
resembles the (nontrivial) central extension of the Lie algebra of derivations of the loop algebra,
namely, g ® C[t~1,¢] &€ ver(C[t~1,]), where one central element serves both central extensions:
That of g ® C[t~!,#] and of der(C[t~1,1]).)

In these four cases, g(A)j is of the form

9(B) @ hei(2) ~ g(B) & Span(X T, X ™),

where the matrix B is not invertible (so g(B) has a grading element d and a central element c),
and where X', X~ and ¢ span the Heisenberg Lie algebra hei(2). The brackets are:

6 (B), X*] =0,
[d, X*] = X%, ([d, XF] = aX* for bgl(4;a)), (13.1)
XT, X |=c

The odd part of g(A) (at least in two of the four cases) consists of two copies of the same g(B)-

module N, the operators ad y+ permute these copies, and adgﬁ = 0, so each of the operators
maps one of the copies to the other, and this other copy to zero.

13.1.2 bgl(3; ), where o # 0,1; sdim = 10/8|8

We consider the following Cartan matrix and the corresponding positive root vectors (odd |
even)

0 } 0 o) | 2, T3,
10 a T4 = [11,22] | w5 = [0, 73], w6 = |73, [71,72]], |
0 a 0 x7 = [[x1, 22], [12, 23] | .

Then gy ~ gl(3) ® KZ. The gg-module g7 is reducible, with the two highest weight vectors,
x7 and y;. The Cartan subalgebra of gl(3) @ KZ is spanned by ahy + hs, he, hs and Z. In this
basis, the weight of z7 is (0,14 «,0,1). The weight of y; is (0, 1,0, 1), if for the grading operator
we take (1,0,0) € gl(3).

The lowest weight vectors of these modules are x; and y; and their weights are (0, 1,0, 1) and
(0,1 + «,0,1). The module generated by x7 is Span {z1, 24, z¢,z7}. The module generated by

y1 is Span {y1,ya, y6, y7}-
All inequivalent Cartan matrices are

d o 1 dy a 1+«
[0} d2 0 s (e} d2 1 )
1 0 dj l+4a 1 ds

where (dy, ds,ds3) is any distribution of 0’s and 0’s, except (0, 0,0).
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13.1.3 bgl(4; o), where a # 0,1, of sdim = 18|16

We consider the following Cartan matrix and the corresponding positive root vectors (odd |
even)

T \362, T3, T4,
r5 = [11,22], w6 = [w1, 73] | w7 = [73, 4],

0 a 10 xg = [x3, [T1,22]], ®9 = [x4,[T1,23]] |
a 0 00 z11 = [[x1, 22, [x3, 24]] | ®10 = [[71, 22], [71, 23]]
1001 | @12 = [[21, w2], [x4, [v1, 23]]],
0010 | 213 = [[w3, [x1, 22]], [w4, [1, 3],
T14 = [[24, [21, 23]], [[21, 22], [21, 23]]] |
w15 = [[[#1, 32], [x1, w3]], [[w1, w2], [w3, 24]]] | -

In this case gz ~ gl(4) ®. hei(2) see Section 13.1.1 with commutation relations (13.1). The
gg-module g7 is irreducible: g7 ~ N ® id, where id is the standard 2-dimensional hei(2)-module
and N is an 8-dimensional gl(4)-module.

The highest weight vector z15 has weight («,0,0,0, «) with respect to

¢ = ho, d = hq, Hy = hs, Hy = hs, H3 = hg + hs,

where the h;’s are the Chevalley generators of the Cartan subalgebra of bgl(4;«). The lowest
weight vector is y15 of the same weight as x15.
All inequivalent Cartan matrices of bgl(4; «) are

d o 0 0 dq 1 1+a O dy « 0 0
a do 1 0 1 ds « 0 « do a+1 0
0 1 ds 1]’ a+l « ds a |’ 0 a+1 ds 1]’
0 0 1 dy 0 0 a dy 0 0 1 dy

where {dy,ds,ds,ds} is any distribution of 0’s and 0’s, except {0,0,0,0}.
13.1.4. Proposition (cf. (9.5) and (9.2)).

1) We have
bgl(3;a) ~ bgl(3;d') <= d = M, where | p € SL(2;Z/2)
va+9 ) (13.2)
bgl(4;a) ~ bgl(4;d) < d' = —.
a

2) The 2|4-structures on bgl(3;a) and bgl(4;a) are given by the same formulas (9.6), (9.7),
(9.8) as for wt(3;a) and rot(4;a) with the following amendment:

(ei)@] =0 for any root vector e, even,

(e = ()2 for any root vector e, odd.

(13.3)

13.1.5 The ¢-type superalgebras

Notation. The e-type superalgebras will be denoted by (one of) their simplest Dynkin diagrams,
i.e., e(n,i) denotes the Lie superalgebra whose diagram is of the same shape as that of the Lie
algebra ¢(n) but with the only — ith — node ®. This, and other “simplest”, Cartan matrices are
boxed. We enumerate the nodes of the Dynkin diagram of ¢(n) as in [8, 41]: We first enumerate
the nodes in the row corresponding to sl(n) (from the end-point of the “longest” twig towards
the branch point and further on along the second long twig), and the nth node is the end-point
of the shortest “twig”.
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e(6,1) ~ ¢(6,5) of sdim = 46|32. We have gg ~ 0c(2;10) 8KZ and g5 is a reducible module
of the form R(my) @& R(ms) with the two highest weight vectors

x36 = [[[24, 75], (26, [x2, 23]]]; [[73, [T1, 22]], [76, [3, T4]]]]

and ys. Denote the basis elements of the Cartan subalgebra by Z, hy, ho, hs, hg, hg. The
weights of x3¢ and ys are respectively, (0,0,0,0,0,1) and (0,0,0,0,1,0). The module generated
by z3¢ gives all odd positive roots and the module generated by y5 gives all odd negative roots.

¢(6,6) of sdim = 38|40. In this case, g(B) ~ gl(6), see Section 13.1.1. The module g7 is
irreducible with the highest weight vector

x35 = [[[x3, z6), [Ta, [x2, x3]]], [[T4, x5], [73, [x1, 22]]]] of weight (0,0,1,0,0,1).
We consider the highest weight with respect to the elements
hy := E11 — Eag, ..., hs := E55 — Ege, he := E11 + Eaa + Es3
in gl(6). We can equally well set
he := E11 + Eag + Es3 + ac for any a € K, where ¢ is the non-zero central element of g(B)

but in our choice of hg = E11 + Foo + E33, we have M = /\3(id), as a gl(6)-module (note that
to write M = R(m3) is not enough since this only describes M as an s[(6)-module).

e(7,1) of sdim = 80/78|54. Since the Cartan matrix of this Lie superalgebra is of rank 6,
a grading operator d; should be (and is) added. Now if we take d; = (1,0,0,0,0,0,0), then
g5 =~ (e(6) ® Kz) @ KIy. The Cartan subalgebra is spanned by hi + hs + h7, he, hs, hg, hs, he,
h7 and dy. We see that g7 has the two highest weight vectors:

L63 = [[[[5527 :C3], [$47 SU7H, ng, ‘T4]v [l’g,, xGH]’ [[[5547 :C7]7 [5557 xﬁH’ [[m4’ 1:5]7 ['T3’ [xlv 5'32]]“]

and y;. Their respective weights (if we take d; = (1,0,0,0,0,0,0)) are (0,0,0,0,0,1,0,1) and
(0,1,0,0,0,0,0,0). The module generated by xg3 gives all odd positive roots and the module
generated by y; gives all odd negative roots.

¢(7,6) of sdim = 70/68|64. We are in the same situation as before (Section 13.1.1). We
have g(B) ~ oc(1;12) € Klp. Note that in this case size(B) — rk(B) = 2, so the center of g(B)
is 2-dimensional, and dim g(B) — dim g((B) = 2. So we should be a bit more specific than
in (13.1); namely, we have

[0c(1;12), XE] = 0,
[Io, X¥] = X,
[XT,X"] = hy+ hs+ hs (which corresponds to 115 in oc(1;12)).

The module g7 is irreducible with the highest weight vector

T62 = H[$7, [$57 [:L'g, 'T4ma Hxla 'TQ]? [x3a 904“]a H[$27 $3]7 [5543 $5H7 [[$4, $7], [$5, 'TGHH

The Cartan subalgebra is spanned by hi 4+ hs + hs, h1, ho, hs, hs, h7 and also hg and d;. The
weight of xg2 is (1,0,0,0,0,0,1,0). The highest weight vector of gj is the highest weight vector
of one of the copies of the g(B)-module N, see Section 13.1.1, so the highest weight of N is the
same as the highest weight of g7. (Of course, this is true for the other two similar cases as well;
in the case of ¢(6,6), we used Lebedev’s choice — another basis of h — and expressed the weight
with respect to it.)
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e(7,7) of sdim = 64/62|70. Since the Cartan matrix of this Lie superalgebra is of rank 6,
a grading operator dy should be (and is) added. Then gg ~ gl(8). The module g7 has the two
highest weight vectors:

z58 = [[[23, [71, 22]], [w6, [74, 5], [[27, [3, 4], [[22, 23], [24, 25]]]]

and y7. The Cartan subalgebra is spanned by hy, ho, hs, h4, hs, hg and also hy + hs+ h7 and d;.
The weight of x5g with respect to these elements of the Cartan subalgebra is (0,0,1,0,0,0,0,1)
and the weight of y7 is (0,0,0,1,0,0,0,1). The module generated by z5g gives all odd positive
roots and the module generated by y; gives all odd negative roots.

¢(8,1) of sdim = 136/112. We have (cf. Section 13.1.1) g(B) =~ ¢(7). (Recall that, in our
notation, e(7)(1) has a center but not the grading operator, see Section “Warning” 4.1.) The
Cartan subalgebra is spanned by ha + hy + hg and hy, ha, hs, ha, hs, hg, hr. The gg-module g3
is irreducible with the highest weight vector:

r119 = [[[[xa, [x2, z5]], [[xs, 28], [w6, 27]]], [[zs, [24, z5]], [[23, 24], (25, 26]]]],
[[[#7, [z5, 6]l [[21, 2], [w3, 24]]], [[@8, [x5, T6]], [[22, 23], [24, z5]]]]]
of weight (1,1,0,0,0,0,0,1) and one lowest weight vector y119 whose expression is as above the

x’s changed by the y’s, of the same weight as that of z119. (Again, the highest weight of the
g(B)-module N, see Section 13.1.1, is the same as the highest weight of gi.)

¢(8,8) of sdim = 120|128. In the Z-grading with the 1st CM with deg egt = 41 and deg efﬁ =
0 for ¢ # 8, we have go = gl(8) = gl(V'). There are different isomorphisms between go and gl(8);
using the one where h; = E;; + Eij1,4+1 foralli =1,...,7, and hg = Es 6 + E77 + Eg g, we see
that, as modules over gl(V),

5 6
n=AV" @e=AWV g3 =V,

5 6
g-1= /\V7 g2 = /\V*u g-3= V.

We can also set hg = F11 + Fao + E33 + Ey4 + E5 5. Then we get

3 6 7
n=AV o=V gs =\ V",

3 6 7
g-1 Z/\V*, g2 Z/\V*, g3 :/\V.

The algebra gg is isomorphic to 0(H2)(16)€EKd, where d = Egg + -+ + Eq313, and g7 is
an irreducible gg-module with the highest weight the highest weight element x;99 of weight
(1,0,...,0) with respect to hy, ..., hg; g7 also possesses a lowest weight vector.

13.2 Systems of simple roots of the e-type Lie superalgebras

13.2.1. Remark. Observe that if p = 2 and the Cartan matrix has no parameters, the
reflections do not change the shape of the Dynkin diagram. Therefore, for the e-superalgebras,
it suffices to list distributions of parities of the nodes in order to describe the Dynkin diagrams.
Since there are tens and even hundreds of diagrams in these cases, this possibility saves a lot of
space, see the lists of all inequivalent Cartan matrices of the e-type Lie superalgebras.
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13.2.2 ¢(6,1) ~ ¢(6,5) of sdim 46|32

All inequivalent Cartan matrices are as follows (none of the matrices corresponding to the
symmetric pairs of Dynkin diagrams is excluded but are placed one under the other for clarity,
followed by three symmetric diagrams):

000010  3) 010001  5) 100110 7) 000011  9) 000110 11) 000111

100000 4) 000101  6) 110010 8) 100001 10) 110000 12) 110001

13) 111001 15) 101001 17) 011000 19) 101100 21) 011001 23) 011110
14) 001111 16) 001011 18) 001100 20) 011010 22) 001101 24) 111100
25) 010100  26) 100010  27) 110110

13.2.3 ¢(6,6) of sdim = 38|40

All inequivalent Cartan matrices are as follows:

000001 000100 001000 010000 5) 011011 6) 101110 7) 111110

B) 011100 9) 101111 10) 011101 1I1) 101010 12) 111101 13) 010110 14) 101011
15) 110011 16) 001001 17) 011111 18) 110100 19) 010011 20) 101000 21) 111011
22) 001010 23) 100011 24) 110101 25) 001110 26) 111000 27) 010010 28) 100111
29) 100100 30) 110111 31) 100101 32) 111010 33) 010101 34) 010111 35) 101101
36) 111111

13.2.4 ¢(7,1) of sdim = 80/78|54

All inequivalent Cartan matrices are as follows:

1000000 2) 1000010  3) 1000110  4) 1001100 25) 0110000 26) 0110010 27) 0110110

5) 1010001  6) 1011001 7) 1100000  8) 1100010 21) 0011010 22) 0011110 23) 0100001
9) 1100110 10) 1101100 11) 1110001 12) 1111001 17) 0001101 18) 0001111 19) 0010100
13) 0000011 14) 0000101 15) 0000111 16) 0001011 28) 0111100 24) 0101001 20) 0011000

13.2.5 ¢(7,6) of sdim = 70/68|64

All inequivalent Cartan matrices are as follows:

0000010 0000100  3) 0000110

5) 0001010  6) 0001100  7) 0001110
9) 0010011 10) 0010101 11) 0010111

13) 0011011 14) 0011101 15) 0011111

17) 0100010  18) 0100100 19) 0100110
21) 0101010 22) 0101100 23) 0101110
25) 0110011  26) 0110101 27) 0110111
29) 0111011  30) 0111101 31) 0111111 1000001  48) 1100001  49) 1100011
33) 1000011  34) 1000101  35) 1000111 1001001  46) 1011100  47) 1011110
37) 1001011 38) 1001101 39) 1001111 40) 1010000  44) 1011000  45) 1011010
41) 1010010  42) 1010100  43) 1010110

0001000  62) 1111100 63) 1111110
0010001 60 1111000 61) 1111010
0011001  58) 1110100  59) 1110110
0100000  56) 1110000  57) 1110010

0101000  54) 1101101  55) 1101111
0110001  52) 1101001  53) 1101011
0111001  50) 1100101  51) 1100111

13.2.6 ¢(7,7) of sdim = 64,/62|70

All inequivalent Cartan matrices are as follows:

0000001  2) 0001001 0010000  4) 0010010  34) 1111011 35) 1111101

5) 0010110 6) 0011100 7) 0100011 8) 0100101 32) 1110101 33) 1110111
9) 0100111 10) 0101011 11) 0101101 12) 0101111 30) 1101110 31) 1110011
13) 0110100 14) 0111000 15) 0111010 16) 0111110 28) 1101000 29) 1101010
17) 1000100 18) 1001000 19) 1001010 20) 1001110 26) 1011111 27) 1100100
21) 1010011 22) 1010101 23) 1010111 24) 1011011 25) 1011101
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13.2.7 ¢(8,1) of sdim = 136[112

All inequivalent Cartan matrices are as follows:

10000000  2) 10000010  3) 10000011  4) 10000101 120) 01111110
10000110  6) 10000111 7) 10001011  8) 10001100 119) 01111010
10001101 10) 10001111 11) 10010001 12) 10010100 118) 01111001
10011000  14) 10011001 15) 10011010  16) 10011110 117) 01111000
10100000  18) 10100001 19) 10100010  20) 10100110 116) 01110100
10101001 22) 10101100  23) 10110000  24) 10110001 115) 01110001
10110010  26) 10110110 27 10111001  28) 10111100 114) 01101111
11000000  30) 11000010  31) 11000011  32) 11000101 113) 01101101
11000110  34) 11000111  35) 11001011  36) 11001100 112) 01101100
11001101  38) 11001111  39) 11010001  40) 11010100 111) 01101011
11011000  42) 11011001  43) 11011010  44) 11011110 110) 01100111
11100000  46) 11100001  47) 11100010  48) 11100110 109) 01100110
11101001  50) 11101100  51) 11110000  52) 11110001 108) 01100101
11110010  54) 11110110  55) 11111001  56) 11111100 107) 01100011
00000011 00000100 59) 00000101 60) 00000111 106) 01100010
00001000  62) 00001010 63) 00001011 64) 00001101 105) 01100000
65) 00001110  66) 00001111  67) 00010011 68) 00010100 104) 01011100
69) 00010101  70) 00010111 71) 00011000 72) 00011010 103) 01011001
73) 00011011 74) 00011101  75) 00011110 76) 00011111 102) 01010110
7T7) 00100001  78) 00100100 79) 00101000 80) 00101001 101) 01010010
81) 00101010  82) 00101110 83) 00110000 84) 00110010 100) 01010001
85) 00110011  86) 00110101 87) 00110110 88) 00110111 99) 01010000
89) 00111011  90) 00111100 91) 00111101 92) 00111111 98) 01001100
01000000  94) 01000001  95) 01000010 96) 01000110 97) 01001001

13.2.8 ¢(8,8) of sdim = 120[128

All inequivalent Cartan matrices are as follows:

00000001 00000010 00100000 00010000  109) 11010101
00001100  4) 00001001 00010001 00010010  110) 11010110
00010110  10) 00011001 00011100 00000110  111) 11010111
00100010  14) 00100011 00100101 00100110  112) 11011011
00100111 18) 00101011 00101100 00101101 113) 11011100
00101111 22) 00110001 00110100 00111000 114) 11011101
00111001  26) 00111010 00111110 01000011 115) 11011111
01000100  30) 01000101 01000111 01001000  116) 11100011
01001010  34) 01001011 01001101 01001110  117) 11100100
01001111  38) 01010011 01010100 01010101 118) 11100101
01010111 42) 01011000 01011010 01011011 119) 11100111
01011101  46) 01011110 01011111 01100001 120) 11101000
01100100  50) 01101000 01101001 01101010 121) 11101010
01101110  54) 01110000 01110010 01110011 122) 11101011
01110101  58) 01110110 01110111 01111011 123) 11101101
01111100 62) 01111101 01111111 10000001 124) 11101110
10000100  66) 10001000 10001001 10001010  125) 11101111
10001110  70) 10010000 10010010 10010011 126) 11110011
10010101 74) 10010110 10010111 10011011 127) 11110100
10011100  78) 10011101 10011111 10100011 128) 11110101
10100100  82) 10100101 10100111 10101000  129) 11110111
10101010  86) 10101011 10101101 10101110  130) 11111000
10101111 90) 10110011 10110100 10110101 131) 11111010
10110111 94) 10111000 10111010 10111011 132) 11111011
10111101 98) 10111110 10111111 11000001 133) 11111101
11000100  102) 11001000 11001001 11001010  134) 11111110
11001110 106) 11010000 11010010 11010011 135) 11111111



14 Table.

Dynkin diagrams for p = 2

Diagrams g v ev od png ng < min(x , *)
kg — 2 k1 0 2kg — 4, 2kz
o ki kg — 2 1 2kg — 3,2k; — 1
) ooc(2; 2kg|2k1) € Kl ky — 2 ko 5 kg, 2k — 4
if ko + kp Is odd; ko+ki | kg ke — 2 i % — 1,2k — 3
ooc(1; 2kg|2k1) € Kl 1 1 b 2.9h 1
A if kg + k1 is even. 0 1 0 1
2) k1 —1 kg — 1 2kg — 1,2k; — 2
kg —1 k1 0 2kg — 2, 2k1
3) o— . ..—o——k o) ki kg —1 1 2k — 1,2k7 — 1
2kg + 1|2k kg + k1 —
g o ———e oom (2ko + 1[2kr) otk T ko 0 2k, 2kt — 2
kg ki —1 1 2ksg — 1,2k; — 1
pec(2; m) € Kl
.. if m is odd;
m
pec(1;m)€ Kl
5) if m is even.

14.1 Notation

The Dynkin diagrams in Table 14 correspond to CM Lie superalgebras close to ortho-orthogonal and periplectic Lie superalgebras. Each thin
black dot may be ® or ®; the last five columns show conditions on the diagrams; in the last four columns, it suffices to satisfy conditions in
any one row. Horizontal lines in the last four columns separate the cases corresponding to different Dynkin diagrams. The notations are:

v is the total number of nodes in the diagram;

ng is the number of “grey” nodes ®’s among the thin black dots;

png is the parity of this number;

ev and od are the number of thin black dots such that the number of ®’s to the left from them is even and odd, respectively.

se1qoSrerodng o1 IRNPOJN [EUOISUSWI(] 93IUL] JO UOTJRIIJISSL[)

qq
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15 Fixed points of symmetries of the Dynkin diagrams

15.1 Recapitulation

For p =0, it is well known that the Lie algebras of series B and C and the exceptions F' and G
are obtained as the sets of fixed points of the outer automorphism of an appropriate Lie algebra
of ADE series. All these automorphisms correspond to the symmetries of the respective Dynkin
diagram. Not all simple finite dimensional Lie superalgebras can be obtained as the sets of fixed
points of the symmetry of an appropriate Dynkin diagram, but many of them can, see [21].
Recall Serganova’s result [47] on outer automorphisms (i.e., the modulo the connected com-
ponent of the unity of the automorphism group) of simple finite dimensional Lie superalgebras
for p = 0. The symmetry of the Dynkin diagram of sl(n) corresponds to the transposition with
respect to the side diagonal, conjugate in the group of automorphisms of sl(n) to the “minus
transposition” X +— —X*. In the super case, this automorphism becomes X —— —X*¢ where

A B\® _/at ¢
() = o)
This automorphism, seemingly of order 4, is actually of order 2 modulo the connected component

of the unity of the automorphism group, and is of order 4 only for sl(2n + 1|2m + 1).
The queer Lie superalgebra q(n) is obtained as the set of fixed points of the automorphism

n:(e 5)— (5 %)

of gl(n|n) corresponding to the symmetry of the Dynkin diagram

11 in 21 2n 21 2n 11 in
O—-0-®-0—+—0+——> 0——0—-8@—0—---— O
which interchanges the identical maximal parts O—---—O preserving the order of nodes; whereas

pe(n) is the set of fixed points of the composition automorphism II o (—st).

15.2 New result

The modular version of the above statements is given in the next Theorem in which, speaking
about ortho-orthogonal and periplectic superalgebras, we distinguish the cases where the fork
node is grey or white (gg(A) and wg(A), respectively); to squeeze the data in the table, we
write g instead of g & KIy. We also need the following decomposable Cartan matrices (p = 2):

0100 0100
1 000 1 000
N = 010 1)’ M= 0101
0010 0010

15.2.1 The Lie algebra g(N)

It is of dim 34 and not simple; it contains a simple ideal of dim = 26 which is o(1;8)™) /¢ and
the quotient is isomorphic to s((3).

15.2.2 The Lie superalgebra g(M)

It is of sdim 18|16 and not simple. Its even part is hei(2) @, g(C), where hei(2) = Span{X*, c}
and c is the center of the Lie algebra g(C'), where

0 00
C:=10 0 1
010
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The brackets are as follows:
[Xi,g<0)(1)] :0? [X:tvd] :Xi7 [X+,X_] =¢

where d is the grading operator of the Lie algebra g(C').
Now the Cartan subalgebra of g(M) is generated by hs, hg, hi + hs, ha + hy and the highest
weight vector of the module g(M)z is x32 + x33, where

z32 = [[[21, 22], 73, wal], [[23, 6], [24, 25])], @33 = [[[w1, 2], [73, w6]], [[2, @3], [w4, 5]]].

Its weight is (0,0,1,0) (according to the ordering of the generators of the Cartan subalgebra
as above).

The restriction of the module to hei(2) consists of 8 copies of the 2-dimensional irreducible
Fock module; the restriction to g(C') consists of 2 copies of an irreducible 8-dimensional module.

The lowest weight vector is ys2 + y33 with weight (0,0, 1,0).

The Lie superalgebra g(M) has a simple ideal, of sdim = 10|16 which is o0(1;4[4)™) /¢ (to be
described separately below) and the quotient is isomorphic to sl(3).

15.2.3. Theorem. If the Dynkin diagram of ig(A) is symmetric, it gives rise to an outer
automorphism o whose fized points constitute the Lie superalgebra (ig(A))° which occupies the
slot under ig(A) in the following tables (15.1), (15.2), (15.3).

1) p = 2 : The order 2 automorphisms of the sl series corresponding to the symmetries of
Dynkin diagrams give the following fized points, where o = t is the transposition, unless otherwise
stated:

sl(2n +1) gl(2n) sl(2k + 1|2m)

o(2n+1) 0(2n) 00(2k + 112m) || gl(2k + 1]2m + 1) (15.1)
gl(n|n) gl(n|n) gl(2k|2m) 00(2k + 1|2m + 1)

q(n), o=1I| pe(n), o=1Ilo(t) | oo(2k|2m)

2) p=2: The order 2 automorphisms of the orthogonal and ortho-orthogonal series give the
following fixed points (recall the definition of g in (6.12)):

00c(2; 2kg|2k;) for kg + ky odd | o0c(2;2k) for k odd 152)
00C<1;/2k\(j‘2k1) for kg + k1 even om) for k even .

3) The following are the fized points of order 2 automorphisms of the exceptional Lie (su-
per)algebras for p = 3, and also, for p = 2, of the periplectic superalgebras, and of order 3
automorphisms of the orthogonal algebra and ortho-orthogonal superalgebras.

19(2,3) | 29(23) | 59(23) |50(2,6) |20(26) | oc(Li8)

p5[(2/]2)\ 5[(1\2/)\ 05@ g(lf)\ g(l,i)\ g[(4)/\ (15.3)
gooc(1;4[4) | wooc(1;4]4) | gpec(1;4) | wpec(1;4) | gooc(2;6]|2) | wooc(2;6/2)

gl(2]2) gl(2|2) gl(13) | gl(1)3) gl(2]2) gl(2]2)

Besides, ¢(6)7 = g(N), whereas
25¢(6,1)7 ~ 26e(6,1)7 =~ 27¢(6,1)7 ~
1¢(6,6)7 ~ 7¢(6,6)7 ~ 5¢(6,6)7 ~ 33¢(6,6)° ~ 8¢(6,6)” ~ 29¢(6,6)7 ~
32¢(6,6)7 ~ 10¢(6,6)7 ~ 14¢(6,6)7 ~ 18¢(6,6)7 ~ 28¢(6,6)7 ~ 36¢(6,6)7 ~ g(M).
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16 A realization of g = o00(4|4)™ /¢

This simple Lie superalgebra g admits a realization in which gg ~ hei(8) & KE, where hei(8) =
Span(p, ¢, ¢) with p = (p1,...,p1), ¢ = (q1,-..,q4), and E := > (p;iOp, + ¢i0y,) and with ¢ being
central in hei, and in which g7 is a copy of the Fock space (over hei(8)) considered purely odd,
ie., as I(K[p]/(p3,...,p7)). (Obviously, the indeterminates p and ¢, as well as & and 7, cf.
Section 7.1.1, are interchangeable.)

Indeed, consider the following isomorphism

@ : I(K[p]/(pi,...,p3)) — Span(go, ..., P1234),
o :=1I(1), ¢; :=11(ps), wij :=(pip;), --., p1234 := H(p1p2ap3pas).

Now the multiplication is given by the following two tables, where D := ¢ 4+ E to save space:

(16.1)

$1234 Y234 ¥134 Y124 $123 Y34 Y24 ¥23 P14 ¥13 P12 P4 ¥3 P2 P1 o
1234 0 0 0 0 0 0 0 0 0 0 O pa p3 p2 p1 D
0234 0 0 0 0 0 0 0 0 pa p3 p2 O 0 0O @
$134 0 0 0 0 0 0 j2 p3 0 0 p1 0 0 E 0 q2
P124 0 0 0 0 0 j2 0 P2 0 p1 0 0 E 0 0 q3
©123 0 0 0 0 0 P3 P2 0 P1 0 0 E 0 0 0 q4
©34 0 0 0 P4 p3 0 0 0 0 0 D 0 0 q1 q2 0
P24 0 0 P4 0 P2 0 0 0 0 D 0 0 q1 0 q3 0
23 0 0 p3 P 0 0 0 0 D 0 0 ¢ 0 0 q O (16.2)
$14 0 P4 0 0 p1 0 0 D 0 0 0 0 q2 q3 0 0
©$13 0 p3 0 p1 0 0 D 0 0 0 0 q2 0 q4 0 0
©$12 0 P2 P1 0 0 D 0 0 0 0 0 q3 q4 0 0 0
©»4q P4 0 0 0 E 0 0 q1 0 q2 q3 0 0 0 0 0
©3 p3 0 0 E 0 0 q1 0 q2 0 q4 0 0 0 0 0
w2 p2 0 E 0 0 q1 0 0 q3 q4 0 0 0 0 0 0
P1 p1 E 0 0 0 q2 q3 q4 0 0 0 0 0 0 0 0
©®o D q1 q2 q3 q4 0 0 0 0 0 0 0 0 0 0 0
c D P1 P2 P3 P4 Q@ 43 q
©o o o 1 P2 ©3 7z 0 0 0 0
Y1 Y1 0 0 Y12 P13 P14 Po 0 0 0
V2 P2 0 012 0 w23 P2 0 Yo 0 0
3 ©3 0 ©13 P23 0 ©34 0 0 ©0 0
2% P4 0 P14 P24 P34 0 0 0 0 ©0
Y12 | P12 P12 0 0 P123 Y124 Y2 Q1 0 0
Y13 | P13 P13 0 0123 0 0134 P3 0 Y1 0
V14 | P14 P14 0 P124  P134 0 P4 0 0 1 (16.3)
P23 | Y23 P23 P123 0 0 w234 0 Y3 P2 0
024 | P24 P2a4 P124 0 P234 0 0 P4 0 V2
034 | P34 P34 ©134  P234 0 0 0 0 Y4 P3
Y123 | P123 0 0 0 0 1238 w23 w13 w12 O
©124 | P124 0 0 0 1234 0 waa w14 0 12
©134 | P134 0 0  i23¢ 0 0 w3a 0 o p13
V234 | P234 0 234 O 0 0 0 @314 ©w2u P23
P1234 | Q1234 1234 0 0 0 0 234 134 Q124 P123

16.1. Remark. If p = 0, every irreducible module over a solvable Lie algebra is 1-dimensional.
A theorem, based on this fact, states that any Lie superalgebra g is solvable if and only if gg is
solvable. The example above shows that if p > 0, life is much more interesting.

We were unable to answer: For 2n # 8, is there a simple Lie superalgebra &(2n) with
&(2n)5 ~ hei(2n) € KE and &(2n)7 ~ I1(Fock module over hei(2n))? In the next subsection we
cite Irina Shchepochkina’s answer to this question.
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16.2 Shchepochkina’s comments. Other simple Lie superalgebras
with solvable even part

We consider g = g5 @ g7, where

g5 = hei(2n) € K- E = Span(p1, ..., Pn, @1, - -, qn, ¢, E), with ¢ central,
ie.,

[pisq;] = dije,  [E.pil=pi,  [E,q]=aq,

and g7 = IT(A(p1,...,pn)). The Lie algebra hei(2n) acts in g7 as in the Fock space:

ad,. |gi = idgi’ adpz‘ |QT = Pis adqz‘ |gi = api'
The space g7 is spanned by ¢o := 1, and ¢;, 4, = I(pi, ...pi,) for all sets I of distinct
indices. For any I, let I* denote the complementary set to {1,...,n}. For clarity, we set
©7 = Qr-.

How can the operator E act in g7? Let us begin with Eyq:

(4, Bwo] = [[ai, E), o] + [E, [¢i,¢0]] =0 for all 4.

But there is only one (up to a constant factor) element in g7 annihilated by all the g;, namely
. Hence Epg = X - ¢g.

Since g7 is generated from ¢y under the action of operators p; of weight 1 with respect to F,
the action of E on the monomial ¢ is of the form:

Ep=(\+degp)p, ie., adglg;=A-id|g; + deg.

Replacing E by E + X - ¢ (this does not affect the commutation relations in gg), we may assume
that adg |g; = deg.

Let us try to define the bracket on g7. I claim that it suffices to determine the only bracket
(determine )

z = [po, ¢y

Everything else follows from the Jacobi identity. Indeed,

[©0, ¥7] = [wos a5, ©5]] = [0, a]s w0l + lai» [vo, ©o]] = lai, ],

and the inverse induction on the degree of monomials ¢ yields all the brackets [¢g, ¢]:

[©0, PTui] = [0, [4i, ©1]] = [lo, ails w1 + ai, [vo, ©1]] = 14i, [0, 7] (16.4)

If we know the brackets of a monomial ¥ with all monomials of the form ¢, we can recover the
brackets of the form [p; - ¥, ¢]:

[pi -, 0l = [lpi ], ol = [pi [, 0]l + [¥ [pi, - (16.5)

Thus, by the induction on the degree of 1) we recover all the brackets from the brackets of the
form [pg, ¢]. Equations (16.4)-(16.5) imply that [g7, g1] C g5 + K - 2, where g5 := [g5, go]-

For g to be simple, we should have [g1, g7] = g5, i-e., = € gj. But o and f are eigenvectors
of the operator E of weight 0 and n, respectively. Hence their bracket, z, is an eigenvector of
weight n and, since x should have a non-zero projection to F, the number n must be even:

r=a-E+4+ (- ¢ where a # 0.
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Note that we have one more degree of freedom: We can multiply all elements of g7 by the
same non-zero scalar. This helps us to fix a = 1. Thus, z=FE+ (- c.

Now, using equations (16.4)—-(16.5) we can recover the general formula for the bracket in gj.
I claim that it is of the following beautiful form

.91 = ¢ [(ade()g)+ (B + 60) [t )+ 3 <pz- Jeduno+a [ <adm<f>g) (16.6)

where [ is the Berezin integral = the coefficient of the highest term (once the basis of the
Grassmann algebra is chosen). To see this, it suffices to verify that (16.6) is invariant with
respect to ady, and adp, (the invariance with respect to ad. and adg is obvious).

Here comes an incomplete argument. It remains to verify the Jacobi identity only for
triples of odd elements, moreover, it suffices to check it only for triples of the form ¢g, ¢g, ¢.
We have

[[w0, ol ]l = (B + B c)p = (degp + B)¢p. (16.7)

What can one say about the sum

([0, €1, ol + [0, [0, l]? (16.8)

Observe that the first summand can only be non-zero if ¢ = ¢ or ¢}, the second summand can
only be non-zero if ¢ = ¢q or ;.

For ¢ = ¢ and ¢ = ¢, the Jacobi identity holds for any (3, whereas for ¢ = ¢} and ¢ = ¢;
only if 6 =1forn=2and 8 =0 for n > 2.

For n = 2, the above-listed possibilities exhaust all possible values of ¢.

For n = 4, there are also elements ¢ = (;; yielding 0 in both formulas. However, for n > 4
and ¢ = @193, equation (16.7) yields @123, whereas equation (16.8) yields 0, so there is no Lie
superalgebra.

Thus, for n = 2, one may have a Lie superalgebra &(4) with brackets of its odd elements
(the squares of each odd element being 0)

[p1,02] = E, [P0, p12] = E + ¢, (16.9)

where in the right hand sides stand the elements that act on the odd part of the hypothetical
Lie superalgebra &(4) as in (16.3), i.e., E counts the degree of the element of the Grassmann
algebra; the other bracket being defined similar to (16.2):

[pis p12] = iy [©0, 1] = a2, [p0, 2] = a1, (16.10)

the element p; acts on &(4)7 as the multiplication by p; (i.e., [pi, w0l = @i, [pi, ¢j] = @i; and so
on), and ¢; as Op,.

Here comes the complete argument: In the above argument we forgot that the Jacobi
identity for p = 2 and odd elements is of the form (3.3), not of the usual form [z, [z, z]] = 0.
And taking x = g, y = p1 we fail to satisfy the Jacobi identity although it is so tempting to set

I1 =4y, T2 = 1, Y1 == p1, Y2 1= P2
and (correctly) deduce that the relations between these z’s and y’s yield the same Cartan matrix
of &(4) as that of oo%) (1]4). However, due to squaring the space of &(4) is not a Lie superalgebra.
There are, however, simple Lie superalgebras with solvable even part other than 00(&%[(4|4) /c.

Indeed, we know that the Lie algebras 0%1)(n) are solvable (only) for n =1 and 2, and or(n) are

solvable (only) for n = 2 and 4. Therefore the Lie superalgebras

ool (112), ool (112), ool’(22), ool})(2]2),

i ) 1 (16.11)
00l (214), 00l (24), ool (4]4),
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though simple (perhaps, modulo center), have solvable even parts. One can not get a simple Lie
superalgebra from 00%%(2]2) passing to derived and factorizing.
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