Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 5 (2009), 035, 30 pages      arXiv:0903.4102      https://doi.org/10.3842/SIGMA.2009.035
Contribution to the Proceedings of the Workshop “Elliptic Integrable Systems, Isomonodromy Problems, and Hypergeometric Functions”

Hypergeometric τ-Functions of the q-Painlevé System of Type E7(1)

Tetsu Masuda
Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa, 229-8558, Japan

Received November 27, 2008, in final form March 10, 2009; Published online March 24, 2009

Abstract
We present the τ-functions for the hypergeometric solutions to the q-Painlevé system of type E7(1) in a determinant formula whose entries are given by the basic hypergeometric function 8W7. By using the W(D5) symmetry of the function 8W7, we construct a set of twelve solutions and describe the action of  ~W(D6(1)) on the set.

Key words: q-Painlevé system; q-hypergeometric function; Weyl group; τ-function.

pdf (413 kb)   ps (281 kb)   tex (29 kb)

References

  1. Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and Its Applications, Vol. 96, Cambridge University Press, Cambridge, 2004.
  2. Gupta D.P., Masson D.R., Contiguous relations, continued fractions and orthogonality, Trans. Amer. Math. Soc. 350 (1998), 769-808, math.CA/9511218.
  3. Hamamoto T., Kajiwara K., Hypergeometric solutions to the q-Painlevé equation of type A4(1), J. Phys. A: Math. Theor. 40 (2007), 12509-12524, nlin.SI/0701001.
  4. Hamamoto T., Kajiwara K., Witte N.S., Hypergeometric solutions to the q-Painlevé equation of type (A1+A¢1)(1), Int. Math. Res. Not. 2006 (2006), Art. ID 84619, 26 pages, nlin.SI/0607065.
  5. Ismail M.E.H., Rahman M., The associated Askey-Wilson polynomials, Trans. Amer. Math. Soc. 328 (1991), 201-237.
  6. Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.
  7. Kajiwara K., Kimura K., On a q-difference Painlevé III equation. I. Derivation, symmetry and Riccati type solutions, J. Nonlinear Math. Phys. 10 (2003), 86-102, nlin.SI/0205019.
  8. Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., 10E9 solutions to the elliptic Painlevé equation, J. Phys. A: Math. Gen. 36 (2003), L263-272, nlin.SI/0303032.
  9. Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., Hypergeometric solutions to the q-Painlevé equations, Int. Math. Res. Not. 2004 (2004), no. 47, 2497-2521, nlin.SI/0403036.
  10. Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., Construction of hypergeometric solutions to the q-Painlevé equations, Int. Math. Res. Not. 2005 (2005), no. 24, 1439-1463, nlin.SI/0501051.
  11. Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., Point configurations, Cremona transformations and the elliptic difference Painlevé equation, in Théories asymptotiques et équations de Painlevé, Seminaires et Congres Editors É. Delabaere et al., Sémin. Congr., Vol. 14, Soc. Math. France, Paris, 2006, 169-198, nlin.SI/0411003.
  12. Kajiwara K., Noumi M., Yamada Y., A study on the fourth q-Painlevé equation, J. Phys. A: Math. Gen. 34 (2001), 8563-8581, nlin.SI/0012063.
  13. Lievens S., Van der Jeugt J., Invariance groups of three term transformations for basic hypergeometric series, J. Comput. Appl. Math. 197 (2006), 1-14.
  14. Masuda T., Hypergeometric t-functions of the q-Painlevé system of type E8(1), Preprint 2009-12, Kyushu University, 2009.
  15. Ramani A., Grammaticos B., Tamizhmani T., Tamizhmani K.M., Special function solutions of the discrete Painlevé equations, Comp. Math. Appl. 42 (2001), 603-614.
  16. Sakai H., Casorati determinant solutions for the q-difference sixth Painlevé equation, Nonlinearity 11 (1998), 823-833.
  17. Sakai H., Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Comm. Math. Phys. 220 (2001), 165-229.
  18. Tsuda T., Tropical Weyl group action via point configurations and τ-functions of the q-Painlevé equations, Lett. Math. Phys. 77 (2006), 21-30.

Previous article   Next article   Contents of Volume 5 (2009)