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1 Introduction

In this paper we present new explicit solutions for the two-point QD-algorithm [5] (which is
equivalent to the discrete-time relativistic Toda chain [23, 28, 16]). These solutions can be
naturally constructed starting from the famous Frobenius elliptic determinant (see, e.g., [8, 3]).
This approach allows one to find an explicit expression for corresponding Laurent biorthogonal
polynomials in terms of the elliptic hypergeometric function 3E2(z). These polynomials contain
several free parameters and appear to be biorthogonal on the unit circle with respect to a dense
point spectrum. In two special cases we already obtained explicit examples of cn- and dn-
elliptic polynomials which are orthogonal on the unit circle with respect to a positive dense
point measure [33]. These polynomials provide first known explicit (i.e. expressed in terms
of the elliptic hypergeometric function) examples of such measures (see also [24] for general
properties of polynomials orthogonal with respect to measures of singular type and [21] for an
example of such polynomials). The obtained polynomials Pn(z) possess a remarkable “classical”
property. This means that DPn(z) = µnP̃n−1(z), where D is a generalized derivative operator:
Dzn = µnz

n−1 (with some coefficients µn) and P̃n(z) are polynomials of the same type but
with shifted parameters. In our case the operator D is an elliptic generalization of the ordinary
derivative operator D = ∂z, µn = n and q-derivative operator with µn = (qn − 1)/(q − 1).

?This paper is a contribution to the Proceedings of the Workshop “Elliptic Integrable Systems, Isomonodromy
Problems, and Hypergeometric Functions” (July 21–25, 2008, MPIM, Bonn, Germany). The full collection is
available at http://www.emis.de/journals/SIGMA/Elliptic-Integrable-Systems.html
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In the degenerated case (when both periods of elliptic functions become infinity) we obtain
biorthogonal analogs of the Krall–Jacobi orthogonal polynomials. We show that these biorthogo-
nal polynomials satisfy a 4th order differential equation which can be presented in the form of
quadratic operator pencil.

2 Laurent biorthogonal polynomials and their basic properties

The Laurent biorthogonal polynomials LBP Pn(z) appeared in problems connected with the
two-points Padé approximations (see, e.g., [15]).

We shall recall their definition and general properties (see, e.g., [15, 12, 14], where equivalent
Laurent orthogonal functions are considered).

Let L be some linear functional defined on all possible monomials zn by the moments

cn = L{zn}, n = 0,±1,±2 . . . .

In general the moments cn are arbitrary complex numbers. The functional L is defined on

the space of Laurent polynomials P(z) =
N2∑

n=−N1

anz
n where an are arbitrary complex numbers

and N1,2 arbitrary integers:

L{P(z)} =
N2∑

n=−N1

ancn.

The monic LBP Pn(z) are defined by the determinant [12]

Pn(z) = (∆n)−1

∣∣∣∣∣∣∣∣∣∣
c0 c1 . . . cn
c−1 c0 . . . cn−1

. . . . . . . . . . . .
c1−n c2−n . . . c1

1 z . . . zn

∣∣∣∣∣∣∣∣∣∣
, (2.1)

where ∆n is defined as the Toeplitz determinant

∆n =

∣∣∣∣∣∣∣∣
c0 c1 . . . cn−1

c−1 c0 . . . cn−2

. . . . . . . . . . . .
c1−n c2−n . . . c0

∣∣∣∣∣∣∣∣ .
It is obvious from definition (2.1) that the polynomials Pn(z) satisfy the orthogonality property

L{Pn(z)z−k} = hnδkn, 0 ≤ k ≤ n,

where the normalization constants hn are

h0 = c0, hn = ∆n+1/∆n.

This orthogonality property can be rewritten as the biorthogonal relation [22, 12],

L{Pn(z)Qm(1/z)} = hnδnm,

where the polynomials Qn(z) are defined by the formula

Qn(z) = (∆n)−1

∣∣∣∣∣∣∣∣∣∣
c0 c−1 . . . c−n

c1 c0 . . . c1−n

. . . . . . . . . . . .
cn−1 cn−2 . . . c−1

1 z . . . zn

∣∣∣∣∣∣∣∣∣∣
. (2.2)
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We note that the polynomials Qn(z) are again LBP with moments c{Q}n = c−n.
In what follows we will assume that

∆n 6= 0, n = 1, 2, . . . (2.3)

and that

∆(1)
n 6= 0, n = 1, 2, . . . , (2.4)

where by ∆(j)
n we denote the determinants

∆(j)
0 = 1, ∆(j)

n =

∣∣∣∣∣∣∣∣
cj cj+1 . . . cn+j−1

cj−1 cj . . . cn+j−2

. . . . . . . . . . . .
c1+j−n c2+j−n . . . cj

∣∣∣∣∣∣∣∣ . (2.5)

If the conditions (2.3) and (2.4) are fulfilled, the polynomials Pn(z) satisfy the recurrence
relation (see, e.g., [12])

Pn+1(z) + (dn − z)Pn(z) = zbnPn−1(z), n ≥ 1, (2.6)

where the recurrence coefficients are

dn = −Pn+1(0)
Pn(0)

= h−1
n

Tn+1

Tn
=
Tn+1∆n

Tn∆n+1
6= 0, n = 0, 1, . . . , (2.7)

bn = dn
hn

hn−1
=
Tn+1∆n−1

Tn∆n
6= 0, n = 1, 2, . . . (2.8)

with Tn = ∆(1)
n . Note the important relation

bn
dn

=
hn

hn−1
=

∆n−1∆n+1

∆2
n

, n = 1, 2, . . .

from which one can obtain expression for the normalization constant hn in terms of the recurrence
parameters:

hn =
n∏

i=1

bi
di
. (2.9)

There is a one-to-one correspondence between the moments cn and the recurrence coeffi-
cients bn, dn (provided restrictions bndn 6= 0 are fulfilled).

We say that the LBP are regular if bndn 6= 0. This condition is equivalent to the condition

∆n∆(1)
n 6= 0, n = 0, 1, . . . .

In the regular case there is a simple formula relating the biorthogonal partners Qn(z) with
polynomials Pn(z) [12]:

Qn(z) =
zPn+1(1/z)− zn−1Pn(1/z)

Pn(0)
. (2.10)

In what follows we will use so-called rescaled LBP

P̃n(z) = qnPn(z/q), n = 0, 1, . . .
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with some non-zero parameter q. It is easily verified that the rescaled polynomials P̃n(z) are
monic LBP satisfying the recurrence relation

P̃n+1(z) + (d̃n − z)P̃n(z) = zb̃nP̃n−1(z)

with

d̃n = qbn, b̃n = qbn.

The rescaled LBP P̃n(z) differ from initial LBP Pn(z) only by a trivial rescaling of recurrence
parameters. The moments c̃n of the rescaled LBP are connected with initial moments cn by the
relation c̃n = qncn. Note that the rescaled biorthogonal partners Qn(z) are transformed as

Q̃n(z) = q−nQn(zq). (2.11)

There is a connection between the LBP and the restricted relativistic Toda chain [16]. Assume
that LBP Pn(z; t) depend on an additional (so-called “time”) parameter t. This mean that the
recurrence coefficients bn(t), dn(t) become functions of the parameter t. We assume that the
relation

Ṗn(z) = − bn
dn
Pn−1(z)

holds for all n = 0, 1, . . . . This ansatz leads to the following equations for the recurrence
coefficients [16]

ḋn =
bn+1

dn+1
− bn
dn−1

, ḃn = bn

(
1
dn

− 1
dn−1

)
. (2.12)

For the corresponding moments cn(t) we have the relation

ċn = cn−1, n = 0,±1,±2, . . . .

Another possible ansatz [16]

Ṗn(z) = −bn(Pn(z)− zPn−1(z))

leads to the equations

ḋn = −dn(bn+1 − bn), ḃn = −bn(bn+1 − bn−1 + dn−1 − dn). (2.13)

In this case we have for the moments the relation

ċn = cn+1, n = 0,±1,±2, . . . .

In spite of the apparent difference between equations (2.12) and (2.13), it can be shown
(see, e.g., [16]) that these two systems are both equivalent to the restricted relativistic Toda
chain equations. The term “restricted” in this context means that it is assumed an additional
condition

b0 = 0.

This means that in formulas (2.12) or (2.13) we should assume n = 0, 1, 2, . . . . For the non-
restricted relativistic Toda chain equations (2.12) or (2.13) are valid for all integer values of
n = 0,±1,±2, . . . .
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3 Laurent biorthogonal polynomials and QD-algorithm

The (restricted) “discrete-time” relativistic Toda chain corresponds to the following ansatz for
the moments

cn(t+ h) = cn+1(t), n = 0,±1,±2, . . . ,

where h is an arbitrary parameter. We have the transformation formula for the corresponding
Laurent biorthogonal polynomials

Pn(z; t+ h) = Pn(z; t) + bn(t)Pn−1(z; t) (3.1)

and

(dn − bn)Pn(z; t− h) = zPn(z; t)− Pn+1(z; t). (3.2)

Formulas (3.1) and (3.2) can be interpreted as Christoffel and Geronimus transformations for
LBP [32].

The corresponding recurrence coefficients are transformed as [32]

dn(t+ h) = dn−1
bn+1 − dn

bn − dn−1
, bn(t+ h) = bn

bn+1 − dn

bn − dn−1
(3.3)

(in r.h.s. of (3.3) it is assumed the argument t for the coefficients bn, dn). These relations can
be presented in a slightly different equivalent form as

bnd̃n = dn−1b̃n, b̃n − d̃n = bn+1 − dn, (3.4)

where we have denoted b̃n = bn(t + h) etc for brevity. Relations (3.4) describe so-called QD-
algorithm for the two-point Padé approximation (see, e.g., [5] for details). In other words,
the (restricted) discrete-time relativistic Toda chain is equivalent to the QD-algorithm for the
two-point Padé approximation.

Usually, this algorithm works as follows. We start from the given moments cn(t), n =
0,±1,±2 . . . where the dependence on “time” is trivial:

cn(t+ h) = cn+1(t)

and define the coefficient d0(t) for all t = t0 + jh, j = 0,±1,±2 as

d0(t) =
c0(t+ h)
c0(t)

.

The initial value t0 is not essential, usually it is assumed that t0 = 0, in this case we can write

d0(t+ jh) ≡ d
(j)
0 =

cj+1

cj
.

Assume that b0(t) = 0 for all t. Then at the first step we find b1(t) = b
(j)
1 for all t = jh from

the second relation (3.4):

b
(j)
1 = d

(j)
0 − d

(j+1)
0 .

Then we find d(j)
1 from the first relation (3.4)

d
(j+1)
1 =

b
(j+1)
1 d

(j)
0

b
(j)
1

.
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This process can be continued to find b(j)2 , d(j)
2 , . . . . The process is non-degenerate if b(j)n d

(j)
n 6= 0

for all n and j. Then we obtain all sequences d(j)
n , b(j)n , n = 0, 1, 2, . . . for j = 0,±1,±2, . . . .

There is a remarkable connection with the QD-algorithm for the ordinary orthogonal poly-
nomials [5]. Indeed, let us introduce the monic polynomials

W (j)
n (z) ≡ P (j+n)

n (z), (3.5)

where the polynomials P (j)
n (z) are defined as P (j)

n (z) = Pn(z;hj).
Then relations (3.1) and (3.2) become

W (j−1)
n (z) = W (j)

n (z)− f (j)
n W

(j)
n−1(z) (3.6)

and

zW (j+1)
n (z) = W

(j)
n+1(z)− e(j+1)

n W (j)
n (z), (3.7)

where

f (j)
n = b(j+n−1)

n , e(j)n = b(j+n)
n − d(j+n)

n .

These relations can be interpreted as Geronimus and Christoffel transforms for the orthogonal
polynomialsW (j)

n (z). The compatibility condition between (3.6) and (3.7) leads to the recurrence
relation

W
(j)
n+1(z) + g(j)

n W (j)
n (z) + u(j)

n W
(j)
n−1(z) = zW (j)

n (z),

which describes the three-term recurrence relation for the ordinary orthogonal polynomials
W

(j)
n (z) where the recurrence coefficients are [5]

g(j)
n = −e(j)n − f

(j)
n+1, u(j)

n = e(j)n f (j)
n .

Moreover we have compatibility conditions for the coefficients e(j)n , f (j)
n

e
(j+1)
n−1 f (j+1)

n = e(j)n f (j)
n , e(j+1)

n + f (j+1)
n = e(j)n + f

(j)
n+1. (3.8)

Relations (3.8) coincide with those introduced by Rutishauser and describing the ordinary QD-
algorithm [7]. It is easy to verify that relations (3.8) are equivalent to relations (3.4) for the
two-point QD-algorithm.

Thus starting from known solution P
(j)
n (z), b(j)n , d(j)

n of the discrete-time relativistic Toda
chain (or, equivalently, two-point QD-algorithm) we can obtain a set of the ordinary orthogonal
polynomials W (j)

n (z) depending on additional “time” parameter j. Note that sometimes the
introduced orthogonal polynomials W (j)

n (z) depending on an additional discrete parameter j are
called the Hadamard polynomials [2, 13]1.

From the definition (3.5) it follows that the orthogonal polynomials W (j)
n (z) can be presented

in determinantal form as

W (j)
n (z) =

1

H
(j)
n

∣∣∣∣∣∣∣∣∣∣
cj+1 cj+2 . . . cn+j+1

cj+2 cj+3 . . . cj+n+2

. . . . . . . . . . . .
cn+j cn+j+1 . . . c2n+j

1 z . . . zn

∣∣∣∣∣∣∣∣∣∣
,

1The authors are indebted to A. Magnus for drawing their attention to these references.



Frobenius Determinant and Biorthogonal Polynomials 7

where H(j)
n stands for the Hankel determinant

H(j)
n =

∣∣∣∣∣∣∣∣
cj+1 cj+2 . . . cj+n

cj+2 cj+3 . . . cj+n+1

. . . . . . . . . . . .
cj+n cj+n+1 . . . cj+2n−1

∣∣∣∣∣∣∣∣ .
Clearly we have the relation

H(j)
n = (−1)n(n−1)/2∆(n+j)

n .

Thus the orthogonal polynomials W (j)
n (z) are orthogonal

〈τ (j),W (j)
n (z)W (j)

m (z)〉 = q(j)n δnm,

where the linear functional τ (j) is defined by the moments

τ (j)
n ≡ 〈τ (j), zn〉 = cn+j+1, n = 0, 1, 2, . . . , j = 0,±1,±2, . . . .

The normalization constant q(j)n has the expression

q(j)n =
H

(j)
n+1

H
(j)
n

= (−1)n ∆(j+n+1)
n+1

∆(j+n)
n

.

It would be instructive to interpret (3.1) and (3.2) in terms of so-called bilinear technique
by using the determinantal identities. This technique is standard in the theory of integrable
systems.

As a first step, we give a compressed expression to dn − bn as

dn − bn =
∆(1)

n+1∆
(−1)
n

∆(0)
n+1∆

(0)
n

,

which can be derived from the determinantal identity, or Jacobi identity, for the Toeplitz deter-
minant:

∆(j)
n+1∆

(j)
n−1 = (∆(j)

n )2 −∆(j+1)
n ∆(j−1)

n .

Then the relations (3.1) and (3.2) can be transformed to the following bilinear equations,

∆(j)
n σ(j+1)

n = ∆(j+1)
n σ(j)

n −∆(j+1)
n+1 σ

(j+1)
n−1 ,

σ
(j)
n+1∆

(j)
n = zσ(j)

n ∆(j)
n+1 −∆(j+1)

n+1 σ(j−1)
n ,

respectively, where the functions σ(j)
n are defined by

σ(j)
n =

∣∣∣∣∣∣∣∣∣∣∣

c
(j)
0 c

(j)
1 . . . c

(j)
n

c
(j)
−1 c

(j)
0 . . . c

(j)
n−1

. . . . . . . . . . . .

c
(j)
1−n c

(j)
2−n . . . c

(j)
1

1 z . . . zn

∣∣∣∣∣∣∣∣∣∣∣
.

(Note that σ(j)
n is proportional to the Laurent biorthogonal polynomial P (j)

n (z).)
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4 Laurent and Baxter biorthogonal polynomials

There is an alternative (but essentially equivalent) approach to biorthogonal polynomials pro-
posed by G. Baxter [4]. The pair Pn(z), Qn(z) of the biorthogonal polynomials is defined in
this approach by means of initial conditions P0 = Q0 = 1 and the following recurrence system

Pn+1(z) = zPn(z)− e(1)
n Q∗

n(z), Qn+1(z) = zQn(z)− e(2)n P ∗
n(z), (4.1)

where e(1,2)
n are some complex coefficients. It is clear that e(1)

n = −Pn+1(0), e(2)n = −Qn+1(0).
Notation P ∗

n(z) is standard for so-called reciprocal polynomials, i.e. P ∗
n(z) = znPn(1/z), Q∗

n(z) =
znQn(1/z). Assume that e(1)

n e
(2)
n (1 − e

(1)
n e

(2)
n ) 6= 0 (this is the nondegenerate case). Then,

excluding Q∗
n(z) from the system (4.1) we arrive at a 3-term recurrence relation for the polyno-

mials Pn(z):

Pn+1(z) + dnPn(z) = z(Pn(z) + bnPn−1(z))

coinciding with (2.6), where

dn = − e
(1)
n

e
(1)
n−1

, bn = − e
(1)
n

e
(1)
n−1

(1− e
(1)
n−1e

(2)
n−1).

Clearly, polynomials Qn(z) satisfy similar relations with interchanging superscripts 1, 2.
Conversely, assume that we have the nondegenerate Laurent biorthogonal polynomials Pn(z)

satisfying (2.6). We can construct their biorthogonal partners Qn(z) by (2.10). Then it is
elementary to verify that polynomials Pn(z), Qn(z) satisfy system (4.1) with e

(1)
n = −Pn+1(0),

e
(2)
n = −Qn+1(0). Sometimes system (4.1) is more convenient for analysis due to apparent

symmetry between polynomials Pn(z), Qn(z) and corresponding coefficients e(1)n , e(2)n . Note
also that the Laurent and Baxter biorthogonal polynomials in turn are equivalent to the so-
called Laurent orthogonal polynomials proposed by Jones and Thron [15]. The Jones and Thron
polynomials contains terms zk with both positive and negative degree k. For details of this
equivalence see, e.g., [12] and [22].

There is an important special case when all the Toeplitz determinants are positive ∆n > 0
and moreover the moments satisfy the condition

c̄n = c−n

(as usual, c̄n means complex conjugation of cn). In this case the biorthogonal partners Qn(z)
coincide with complex conjugated polynomials Qn(z) = P̄n(z) and there exists nondecreasing
function σ(θ) of bounded variation on the unit circle such that the orthogonality relation∫ 2π

0
Pn

(
eiθ
)
P̄m(e−iθ)dσ(θ) = hnδnm (4.2)

holds. I.e. in this case we have polynomials Pn(z) which are orthogonal on the unit circle
(abbreviated as OPUC [24]). Historically, these polynomials were introduced first by Szegő [29]
and are called the Szegő polynomials orthogonal on the unit circle. They satisfy the recurrence
relation

Pn+1(z) = zPn(z)− anz
nP̄n(1/z), (4.3)

where the coefficients an = −Pn+1(0) are called the reflection (or Schur, or Verblunsky, . . . )
parameters. The relation (4.3) was first derived by Szegő himself [29]. The reflection parameters
are complex numbers satisfying the important inequality

|an| < 1, n = 0, 1, 2, . . . . (4.4)
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In fact, condition (4.4) is equivalent to the condition of positive definite Toeplitz forms ∆n > 0
or to existence of a positive measure on the unit circle providing orthogonality property (4.2).

If, additionally, all the moments are real, then they satisfy condition c−n = cn. In this case the
reflection parameters are real parameters satisfying the restriction −1 < an < 1, n = 0, 1, 2, . . . .
The biorthogonal partners then coincide with initial polynomials Qn(z) = Pn(z). It is easy
to show that the measure dσ is symmetric with respect to real axis in this case, namely the
function σ(θ) satisfies the condition σ(2π − θ) + σ(θ) = const.

For further details concerning theory of OPUC see, e.g., [11, 24].

5 Frobenius elliptic determinant formula
and biorthogonal functions

Assume that vi, ui, i = 0, 1, . . . are two arbitrary sequences of complex numbers. Let

Hn = det ||gij ||i,j=0,...,n−1,

where

gij =
σ(ui + vj + β)
σ(ui + vj)σ(β)

exp(γ1ui + γ2vj),

where σ(z) is the standard Weierstrass sigma function (see, e.g., [1, 30]) and β, γ1, γ2 are
arbitrary.

Recall that the Weierstrass sigma function is defined by the infinite product [1]

σ(u) = Π′
(
1− u

s

)
exp

(
u

s
+

u2

2s2

)
,

where the product is taken over all points of the lattice s = 2mω1+2m′ω3, m,m′ = 0,±1,±2, . . .
excluding the point with m = m′ = 0. 2ω1 and 2ω3 are the so-called primitive elliptic periods.
It is convenient to introduce the third period 2ω2 = −2ω1 − 2ω3 [1]. The Weierstrass sigma
function possess quasi-periodic properties [1]

σ(u+ 2ωα) = − exp(2ηα(u+ ωα))σ(u), α = 1, 2, 3,

where the constants ηα are defined as

ηα = ζ(ωα), α = 1, 2, 3

and ζ(u) = σ′(u)/σ(u) is the Weierstrass zeta function [1].
We have

Hn =

σ(U + V + β)
∏
i>j

σ(ui − uj)σ(vi − vj)

σ(β)
∏
i,j
σ(ui + vj)

exp(γ1U + γ2V ) (5.1)

(we denote U =
n−1∑
i=0

ui, V =
n−1∑
i=0

vi for simplicity, moreover it is assumed that the upper limit

for i, j in the products is n− 1).
Formula (5.1) was obtained by Frobenius in [9]. A simple elementary method to derive formu-

la (5.1) can be found in [3]. Frobenius and Stickelberger derived also in [8] several other explicit
formulas for “elliptic determinants” in connection with the theory of rational interpolation.
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Let φk(x), ψk(x), k = 0, 1, . . . (we assume that φ0 = ψ0 = 1) be two sets of functions in some
argument x. Assume that there exists a linear functional L such that

〈L, φj(x)ψi(x)〉 = gij .

The linear functional L is defined on the space of functions constructed from bilinear combi-
nations of the type

f(x) =
∑
i,k=0

cikφi(x)ψk(x)

with arbitrary coefficients cik.
Introduce the following functions

Pn(x) =
1

∆n

∣∣∣∣∣∣∣∣∣∣
g00 g01 . . . g0n

g10 g11 . . . g1n

. . . . . . . . . . . .
gn−1,0 gn−1,1 . . . gn−1,n

φ0(x) φ1(x) . . . φn(x)

∣∣∣∣∣∣∣∣∣∣
(5.2)

and

Qn(x) =
1

∆n

∣∣∣∣∣∣∣∣∣∣
g00 g10 . . . gn0

g01 g11 . . . gn1

. . . . . . . . . . . .
g0,n−1 g1,n−1 . . . gn,n−1

ψ0(x) ψ1(x) . . . ψn(x)

∣∣∣∣∣∣∣∣∣∣
,

where

∆n = Hn = det ||gij ||i,j=0,...,n−1. (5.3)

By construction, these functions are biorthogonal

〈L, Pn(x)Qm(x)〉 = hnδnm

with respect to the functional L, where the normalization coefficients hn are

hn =
∆n+1

∆n
.

Expanding the determinant in (5.2) over the last row we have explicit expression for the poly-
nomial Pn(x):

Pn(x) =
n∑

k=0

(−1)n−kpnkφk(x),

where

pnk =
Hn(k)
∆n

.

The auxiliary determinants Hn(k) are defined by canceling the kth column, i.e.

Hn(k) = det ||gij(k)||i,j=0,...,n−1,
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where

gij(k) =
σ(ui + vj(k) + β)
σ(ui + vj(k))σ(β)

exp(γ1ui + γ2vj(k)).

Here the sequence vi(k) is defined as

vi(k) =
{
vi if i < k,
vi+1 if i ≥ k.

Thus the determinant Hn(k) is obtained from the determinant Hn by replacing sequence vi with
the sequence vi(k). (By definition Hn(n) = Hn and vi(n) = vi.) But formula (5.1) is valid for
any sequences ui, vi. Hence we can calculate all the determinant Hn(k) explicitly. Omitting
obvious calculations we present the result

pnk = eγ2(vn−vk)σ(U + V + vn − vk + β)
σ(U + V + β)

[n
k

] n−1∏
i=0

σ(ui + vk)
σ(ui + vn)

,

where

[n
k

]
=

n−1∏
i=0

σ(vn − vi)∏k−1
i=0 σ(vk − vi)

n∏
i=k+1

σ(vi − vk)

are “generalized binomial coefficients”. Similar expression can be obtained for the biorthogonal
partners Qn(x) if one replaces the parameters vi with ui.

In case when the sequence vj is linear with respect to j: vj = wj+ξ we obtain the conventional
“elliptic binomial coefficients” [10]:[n

k

]
=

[n]!
[k]![n− k]!

= (−1)k [−n]k
[1]k

,

where [x] = σ(wx)/σ(w) is so-called “elliptic number” and [x]k = [x][x + 1] · · · [x + k − 1]
is elliptic Pochhammer symbol. Note that usually the elliptic number is defined in terms of
the theta function [x] = θ1(wx)/θ1(w) [10], but for our purposes these definitions are in fact
equivalent.

We thus constructed an explicit system of biorthogonal functions Pn(x), Qn(x) starting from
the elliptic Frobenius determinant. This system can be further specified by a concrete choice of
the basic functions φn(x), ψn(x) and the linear functional σ. Note that the idea to construct
explicit families of biorthogonal functions directly from corresponding Gram determinants is due
to Wilson [31]. For general biorthogonal rational functions the determinant representation can
be found e.g. in [25] and [6].

6 Laurent biorthogonal polynomials
from the Frobenius determinant

In what follows we will assume that the period 2ω1 is a real while the period 2ω3 is purely imagi-
nary. This means that the fundamental parallelogram is a rectangle. Such choice is standard
for many practical purposes because in this case the function σ(x) takes real values on the real
axis x [1]. This is important for existence of a positive orthogonality measure on the unit circle.
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Put

γ1 = γ2 = γ, ui = −iw + α, vj = jw,

where w is an arbitrary real parameter which is incommensurable with the real period 2ω1 over
the integers, i.e. we will assume that

wN1 6= ω1N2 (6.1)

for any integers N1, N2. Then for the entries of the Frobenius matrix we have

gij = eγw(j−i)+γα σ(w(j − i) + β + α)
σ(w(j − i) + α)σ(β)

.

This matrix has the Toeplitz form. We can therefore define corresponding monic Laurent
biorthogonal polynomials by the formula

Pn(z) =
1

∆n

∣∣∣∣∣∣∣∣∣∣
c0 c1 . . . cn
c−1 c0 . . . cn−1

. . . . . . . . . . . .
c−n+1 c−n+2 . . . c1

1 z . . . zn

∣∣∣∣∣∣∣∣∣∣
, (6.2)

where the moments are defined as

cn = g0,n = eγwn+γα σ(wn+ β + α)
σ(wn+ α)σ(β)

(6.3)

and the Toeplitz determinant ∆n is defined by (5.3).
As in the previous section, define the elliptic numbers [x] as

[x] = σ(wx)/σ(w),

and the elliptic Pochhammer symbol

[x]n = [x][x+ 1] · · · [x+ n− 1].

The elliptic hypergeometric function is defined by the formula

r+1Er

(
~a
~b

; z
)

=
∞∑

s=0

[a1]s[a2]s · · · [ar+1]s
[1]s[b1]s[b2]s · · · [br]s

eMs(s−1)zs, (6.4)

where

M =
η1

2ω1
w2

(
1 +

r∑
i=1

bi −
r+1∑
i=1

ai

)
.

We have

Proposition 1. The Laurent biorthogonal polynomials defined by formulas (6.2) and (6.3) are
expressed in terms of the elliptic hypergeometric function:

Pn(z) = Bn 3E2

(
−n, α̂+ 1,−(α̂+ 1)n− β̂ + 1
α̂+ 1− n,−(α̂+ 1)n− β̂

; ze−γw

)
, (6.5)

where α̂ = αw−1, β̂ = βw−1 and

Bn = eγwn [−α̂]n
[α̂+ 1]n

[α̂n+ β̂ + n]

[α̂n+ β̂]
(6.6)

is the coefficient to provide monicity Pn(z) = zn +O(zn−1) of the polynomials Pn(z).
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Remark. The parameters of the elliptic hypergeometric function in our case satisfy condition

1 + b1 + b2 = a1 + a2 + a3

and hence M = 0 in the definition of the hypergeometric function (6.4). Our definition of
the elliptic hypergeometric function is in accordance with the conventional one [10, 27]. The
main difference is replacing the theta functions with the Weierstrass sigma functions. This
replacement leads to appearance of the additional factor eMs(s−1). Indeed, there is relation
between these functions [1]

σ(z) = const · exp
(
η1z

2

2ω1

)
θ1(z/(2ω1))

(the constant factor is not essential because it is canceled in all expressions for elliptic hy-
pergeometric series). Using this relation we can replace all sigma functions with the theta
functions θ1(z) which leads to formula (6.4).

Now we calculate the normalization coefficients hn directly from Frobenius formula (5.1):

hn =
∆n+1

∆n
=

eγα

σ(α)
σ(α(n+ 1) + β)
σ(αn+ β)

[n]!2

[−α̂+ 1]n[α̂+ 1]n
. (6.7)

In what follows we will assume the following restriction α 6= wm for any integers m. Indeed,
otherwise the normalization coefficient hn becomes singular and we have a degeneration.

We observe also that the determinant ∆(1)
n defined by (2.5) with j = 1 is obtained from ∆(1)

n

by the shift of the parameter α→ α+w because cn+1(α) = cn(α+w). Thus in general we have
the important formula

∆(j)
n (α) = ∆n(α+ jw).

In particular, we have

h(1)
n =

∆(1)
n+1

∆(1)
n

=
Tn+1

Tn
=

eγ(α+w)

σ(α+ w)
σ((α+ w)(n+ 1) + β)
σ((α+ w)n+ β)

[n]!2

[−α̂]n[α̂+ 2]n
. (6.8)

Formulas (6.7) and (6.8) allow us to find explicit expressions for the recurrence coeffi-
cients bn, dn.

Indeed, from (2.7) and (2.8) we have

dn =
h

(1)
n

hn
= eγw [α̂− n][β̂ + (α̂+ 1)(n+ 1)][β̂ + α̂n]

[α̂+ (n+ 1)][β̂ + (α̂+ 1)n][β̂ + α̂(n+ 1)]
(6.9)

and

bn = − h
(1)
n

hn−1
= −eγw [n]2[β̂ + (α̂+ 1)(n+ 1)][β̂ + α̂(n− 1)]

[β̂ + (α̂+ 1)n][β̂ + α̂n][α̂+ n][α̂+ n+ 1]
. (6.10)

We thus obtained a new explicit example of the Laurent biorthogonal polynomials which have
both explicit expression in terms of the elliptic hypergeometric function (6.5) and explicit re-
currence coefficients (6.9), (6.10).

As a by-product, we have also obtained a new explicit solution of the discrete-time relativistic
Toda chain or, equivalently, a new explicit solution of the two-point QD-algorithm. Indeed, the
recurrence coefficients bn, dn given by (6.9) and (6.10) provide an explicit elliptic solution of the
two-point QD-algorithm (3.4) with t = α, h = w. In turn, using correspondence (3.5) we can
obtain elliptic solution of the ordinary QD-algorithm (3.8), or equivalently, the discrete-time
Toda chain solutions. As far as we know these solutions are new.

In order to find explicit (bi)orthogonality relation for these polynomials we need first the
explicit Fourier expansion of the elliptic functions of the second kind. We will do this in the
next section.
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7 Fourier series of the elliptic functions of the second kind

Assume that f(z) is the simplest elliptic function of the second kind [1]

f(z) = κ
σ(z + α+ β)
σ(z + α)

eγz (7.1)

with some complex parameters κ, β, α, γ. The function f(z) is quasi-periodic with respect to
periods 2ω1, 2ω3:

f(z + 2ω1) = µ1f(z), f(z + 2ω3) = µ3f(z), (7.2)

where µ1 = e2η1β+2ω1γ , µ3 = e2η3β+2ω3γ . We demand that function f(z) be purely periodic with
respect to the (real) period 2ω1j:

f(z + 2ω1j) = f(z),

where j = 1, 2, . . . is an arbitrary positive integer. This leads to the condition µj
1 = 1 or

j(ω1γ + η1β) = iπm, (7.3)

where m = 0,±1,±2, . . . . Note that for j > 1 we should avoid the values m = 0,±j,±2j, . . .
because they correspond to pure 2ω1-periodicity. Of course, it is assumed that m and j are
coprime, i.e. µ1 is a primitive root of the unity of order j:

µ1 = e
2πmi

j .

Moreover, we assume that α = −α0 − iα1, where both parameters α0,1 are real and are
restricted by conditions

0 ≤ α0 < 2ω1, 0 < α1 < 2|ω3|. (7.4)

Conditions (7.4) mean that the parameter −α lies within the fundamental parallelogram (i.e.
rectangle in our case). If α takes values beyond this parallelogram, it is possible to reduce it to
canonical choice (7.4) using shifts by periods 2ω1, 2ω3. Due to quasiperiodicity property of the
function f(z) this will lead only to redefining of the parameter γ. Moreover we assume that the
imaginary part −α1 of α is nonzero. This assumption is very natural if we would like to avoid
singularities of the function f(z) on whole real axis. Equivalently, one can present α in the form

α = −α0 − 2νω3, (7.5)

where 0 < ν < 1 is a fixed parameter which describes the relative value of the imaginary part
α1 = −2iνω3 with respect to the imaginary period 2ω3.

Thus we have the function f(z) which is periodic and bounded on the whole real axis. It is
possible therefore to present f(z) in terms of the Fourier series

f(z) =
∞∑

n=−∞
An exp

(
πinz

jω1

)
. (7.6)

Our problem now is to calculate the Fourier coefficients An.
By definition,

An =
1
T

∫ T

0
f(z) exp

(
−2πinz

T

)
dz, T = 2jω1 (7.7)
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(the integral is well defined because by our assumptions the function f(z) has no singularities
on the real axis).

In order to calculate the integral in (7.7) we exploit standard method of contour integration
(see, e.g., [1] for calculation of the Fourier expansion for Jacobi elliptic functions). Choose the
contour Γ as the rectangle with vertices (0, 2jω1, 2jω1 + 2ω3, 2ω3) (i.e. the horizontal length
is 2jω1 and vertical length 2|ω3|).

We have (the contour is traversed counterclockwise)∫
Γ
f(z)/T exp

(
−2πinz

T

)
dz =

∫
1
+
∫

2
+
∫

3
+
∫

4
,

where
∫
1,
∫
3 correspond to horizontal sides of the rectangle, and integrals

∫
2,
∫
4 correspond to

vertical sides.
Due to periodicity property f(z + 2jω1) = f(z) we have

∫
2 +
∫
4 = 0. For the two remaining

horizontal integrals we have∫
1

= An

and ∫
3

= −
∫ 2ω3+T

2ω3

f(z)/T exp
(
−2πinz

T

)
dz.

Making the shift z → z + 2ω3 and using quasi-periodic property (7.2) we have∫
3

= −µ3 exp
(
−4πiω3n

T

)∫
1

and thus∫
Γ
f(z)/T exp

(
−2πinz

T

)
dz =

(
1− µ3 exp

(
−4πiω3n

T

))
An. (7.8)

Hence, in order to calculate the Fourier coefficient An we need to calculate the contour integral
in l.h.s. of (7.8). This can be done by standard methods of residue theory.

Indeed, inside the contour Γ the function f(z) exp
(−2πinz

T

)
has only j simple poles located

at points

zs = α0 + iα1 + 2sω1, s = 0, 1, . . . , j − 1.

At z0 = −α = α0 + iα1 the function f(z) has the residue

r = κe−γασ(β).

At zs the function f(z) has the residue

rs = µs
1r.

Hence we have that the residue Rn of the function f(z)/T exp
(

az
T

)
inside the rectangle Γ will

be

Rn =
re−χα

T

j−1∑
s=0

µs
1e

χTs =
re−χα

T

(
1 + q + q2 + · · ·+ qj−1

)
,
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where

χ = −πin
jω1

, q = µ1e
χT = exp

(
2πi(m− n)

j

)
.

If n 6= mmod j then Rn = 0. Nonzero value of the residue will be only for n = m + jt,
t = 0,±1,±2, . . . . In this case

Rn =
jre−χα

T
=
κσ(β)
2ω1

exp
(
αβη1

ω1

)
exp

(
iπαt

ω1

)
.

Comparing with (7.8) we get

An =
2πiRn

1− µ3 exp
(
−2πiω3n

jω1

) , n = m,m± j,m± 2j, . . .

and

An = 0, if n 6= m mod j.

We can simplify this expression using the Legendre identity [1]

η1ω3 − η3ω1 =
iπ

2

which is valid if Im(ω3/ω1) > 0. Also we use the notation [1]

h = exp
(
iπω3

ω1

)
.

In our case when ω1 > 0, iω3 < 0 we have that 0 < h < 1 (this is so-called normal case for the
elliptic function [1]).

We then have

µ3 = h2m/je
− iπβ

ω1

and

Rn = R0 exp
(
− iπα0(n−m)

jω1

)
h

2ν(m−n)
j ,

where

R0 =
κσ(β)
2ω1

exp
(
αβη1

ω1

)
and we took into account relation (7.5).

Thus for n = m+ jk, k = 0,±1,±2, . . . we have

An =
2πiR0 exp

(
− iπα0k

ω1

)
h−2νk

1− e
− iπβ

ω1 h−2k
(7.9)

and An = 0 if n 6= m mod j.
Recall that j is a fixed positive integer – the order of the root of unity µ1, while m is a fixed

nonnegative integer (lesser than j) coprime with j. Thus for large j the nonzero coefficients An

are more rare then for small j.
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There are two important simplest cases:
(i) if j = 1 and m = 0. This case corresponds to the period 2ω1. Then the Fourier coefficients

An are nonzero for all n = 0,±1,±2, . . . and we have

An =
2πiR0 exp

(
− iπα0n

ω1

)
h−2nν

1− e
− iπβ

ω1 h−2n
.

(ii) if j = 2 and m = 1. This case corresponds to the period 4ω1. In this case all even Fourier
coefficients are zero A2n = 0 and for the odd Fourier coefficients we have

A2n+1 =
2πiR0 exp

(
− iπα0n

ω1

)
h−2nν

1− e
− iπβ

ω1 h−2n
.

Note that in all cases the Fourier series (7.6) converges inside the strip −v1 < Im(z) < v2,
where

v1 = 2|ω3|(1− ν), v2 = 2|ω3|ν.

This results follows from standard theorems concerning asymptotic behavior of the Fourier
coefficients An and A−n for n→∞ [1]. The parameters v1, v2 are positive as follows from the
inequality 0 < ν < 1. These conditions are very natural because the boundary lines Im(z) =
2ν|ω3| and Im(z) = 2(ν − 1)|ω3| of the strip pass through the poles of the function φ(z). Note
that for ν = 1/2 (i.e. when the pole of the function φ(z) lies on the horizontal line Im(z) = |ω3|)
we have the strip symmetric with respect to the real line: |Im(z)| < |ω3|. The latter case
correspond, e.g., to the Jacobi elliptic functions sn(z; k), cn(z; k), dn(z; k) [1].

8 Explicit biorthogonality relation

In this section we obtain explicit biorthogonality property of the obtained Laurent biorthogonal
polynomials.

To do this we need to find explicit realization of the moments cn given by formula (6.3). We
note that

cn = f(wn),

where f(z) is the elliptic function of the second kind (7.1) (in our case κ = 1/σ(β) but the
constant κ does not play any role in formulas for the polynomials Pn(z) and their recurrence
coefficients bn, dn).

Assume first that the parameter γ is chosen to provide the periodicity of the function f(z)
with period 2ω1j, j = 1, 2, . . . . Then we have the Fourier expansion (7.6) from which one obtains

cn =
∞∑

s=−∞
As exp

(
iπswn

jω1

)
=

∞∑
s=−∞

Asz
n
s , (8.1)

where

zs = exp
(
iπsw

jω1

)
, s = 0,±1,±2, . . . (8.2)

is an infinite set of points belonging to the unit circle |zs| = 1. Due to condition (6.1) we have
that all these points are distinct zs 6= zt if t 6= s and hence they are dense on the unit circle.



18 S. Tsujimoto and A. Zhedanov

From (8.1) it follows that the moments cn are expressible in terms of the Lebesgue integral

cn =
1
2π

∫ 2π

0
eiθndµ(θ)

over the unit circle |z| = 1, where µ(θ) is a (complex) function of bounded variation on the
interval [0, 2π] consisting only from discrete jumps As localized in the points θs given by (8.2).

Thus we found explicit realization of the moments cn and hence we immediately obtain
biorthogonality relation for our Laurent biorthogonal polynomials

∞∑
s=−∞

AsPn(zs)Qm(1/zs) = hnδnm, (8.3)

where Qn(z) are biorthogonal partners (2.2) with respect to polynomials Pn(z). The Fourier
coefficients As play the role of discrete weights in this biorthogonality relation. Hence we have
obtained

Proposition 2. In the periodic case f(z+2ω1j) = f(z) the elliptic polynomials (6.5) Pn(z) are
biorthogonal (8.3) on the unit circle |z| = 1 with respect to a dense point measure with weights As

given by expression (7.9).

Note that the biorthogonal partners Qn(z) in our case can be found explicitly in terms of
the elliptic hypergeometric function. Indeed, from (2.2) we see that the polynomials Qn(z) are
Laurent biorthogonal polynomials corresponding to the “reflected” moments c̃n = c−n. From
explicit expression (6.3) it follows that the moments c−n are obtained from the moments cn
by reflection of the parameters α → −α, β → −β, γ → −γ, whereas the parameter w remains
unchanged (under such procedure we obtain the moments −c−n but any constant common factor
in front of moments leads to the same polynomials Qn(z)). Hence we can obtain expression
for the polynomials Qn(z) from the expression (6.5) for polynomials Pn(z) by reflection of
parameters α, β, γ:

Qn(z) = B̃n 3E2

(
−n, 1− α̂, (α̂− 1)n+ β̂ + 1

1− n− α̂, (α̂− 1)n+ β̂
; zeγw

)
,

where the coefficient B̃n is obtained from corresponding coefficient Bn (6.6) by the same
reflection of the parameters α, β, γ.

Thus both polynomials Pn(z) and their biorthogonal partners Qn(z) have similar expressions
in terms of elliptic hypergeometric function.

So far, we assumed that the function f(z) is periodic with the period 2ω1j. This assumption
means that the parameter γ should satisfy condition (7.3). Parameters α and β are assumed
to be arbitrary (with the only condition (7.4)). What happens if the function f(z) is not
periodic, i.e. if the parameter γ is arbitrary? It appears that this general case can be easily
reduced to the already considered. Indeed, assume that we change the parameter γ, i.e. assume
that the parameters α and β remain the same but γ̃ = γ + χ, where χ is an arbitrary complex
parameter. Then it is easily seen from explicit expression (6.5) that the new Laurent biorthogonal
polynomials P̃n(z) are obtained by simple rescaling of the argument:

P̃n(z) = qnPn(z/q),

where q = ewχ. This corresponds to transformation of the moments c̃n = εqncn as seen directly
from (6.3) (the common constant ε = eαw is inessential and can be put equal to 1).
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Assume that we choose the parameter χ such that the new function

f̃(z) = κ
σ(z + α+ β)
σ(z + α)

eγ̃z

will be periodic with the period 2ω1j. This means that the parameter χ should be chosen from
condition (see (7.3))

ω1(γ + χ) + η1β = iπm/j, (8.4)

where m is co-prime with j.
Then the new polynomials P̃n(z) will be biorthogonal on the unit circle according to above

obtained proposition:

∞∑
s=−∞

AsP̃n(zs)Q̃m(1/zs) = hnδnm, (8.5)

where the spectral points zs on the unit circle are given by (8.2) and the weights As by (7.9).
Note that the normalization coefficients hn remain unchanged under the rescaling transform as
seen from (2.9), i.e. h̃n = hn.

Taking into account that Q̃n(z) = q−nQn(z) (see (2.11)) we obtain from (8.5) the biorthogonal
relation

∞∑
s=−∞

AsPn(zs/q)Qm(q/zs) = hnδnm. (8.6)

Relation (8.6) means that for generic values of γ polynomials Pn(z) and Qn(z) are biorthogonal
on the non-unit circle |z| = 1/|q| with respect to the same dense point measure.

It is interesting to note that for every integer j = 1, 2, . . . (i.e. for every period T = 2ω1j)
we can construct corresponding circle providing biorthogonality relation (8.6). Thus there exist
infinitely many orthogonality circles for different values of the integer parameter j.

For the radius r of the circle of biorthogonality we have from (8.4) (recall that we assume
parameter w to be real)

r = 1/|q| =
∣∣e η1βw

ω1

∣∣ |ewγ | .

9 Positivity of the measure and polynomials orthogonal
on the unit circle

Return to the case when the function f(z) is periodic with the period 2ω1j and consider an
important special case when all the Fourier coefficients of the function f(z) are nonnegative
An ≥ 0. In this case all spectral points zs belong to the unit circle |zs| = 1 and the measure on
the unit circle is a positive nondecreasing function.

We have 0 < h < 1. Thus for n→ −∞ we have

An = 2πiR0e
−iπα0n

ω1 h−2nν .

It is seen that for positivity of An one should have 2πiR0 = κ0, where κ0 is a positive parameter,
and for the real part of α we have the condition

α0 = 2J0ω1, J0 = 0,±1,±2, . . . . (9.1)
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Now for for n→∞ we have

An = −κ0e
iπβ
ω1 h2(1−ν)k.

In this case we should have necessarily

Re(β) = (2J1 + 1)ω1, J1 = 0,±1,±2, . . . . (9.2)

It is easily seen that conditions (9.1) and (9.2) are also sufficient and so we have the

Proposition 3. The Fourier coefficients are positive (up to inessential common factor) if and
only if the real parts of parameters α, β satisfy conditions (9.1) and (9.2). In this case the
expression for the Fourier coefficients can be presented in the form

An = κ0
h−2νk

1 + κ1h−2k
, n = m+ jk, k = 0,±1,±2, . . . , 0 < ν < 1, (9.3)

and An = 0 if n 6= m mod (j), where κ1 = e
π Im(β)

ω1 is a positive parameter (as usual by Im(β) we
denote the imaginary part of β).

In this case we have positive dense point measure on the unit circle. It is well known that
when the measure dσ is positive on the unit circle then biorthogonal polynomials become the
orthogonal polynomials on the unit circle [29, 11, 24]. In this case the moments cn satisfy the
restriction

c−n = c̄n

and moreover all the Toeplitz determinants are positive

∆n > 0, n = 1, 2, . . . .

The property c−n = c̄n can be verified directly from the definition (6.3) if the parameters α, β
satisfy conditions:

α = 2J1ω1 − 2νω3, β = (2J1 + 1)ω1 + iβ1 (9.4)

(here β1 is an arbitrary real parameter).
In this special case the obtained polynomials satisfy the Szegő recurrence relation (4.3). The

reflection parameters an are calculated as an = −Pn+1(0) and using already found explicit
formula (6.5) for polynomials Pn(z) we have an = −Bn+1, where Bn is given by (6.6) (with α, β
satisfying restrictions (9.4)). From general theory it follows that in this case the reflection
parameters should satisfy the restriction |an| < 1. This property is not obvious from explicit
expression for an in terms of elliptic Pochhammer symbols.

If, in addition to positivity of An, we demand that the discrete measure should be symmetric
with respect to the real axis we then obtain the condition A−n = An for all n = 0, 1, 2, . . . . It
is easily verified from explicit expression (9.3) that this is possible only for j = 1 and j = 2. In
the first case, when j = 1 the period T = 2ω1 and necessarily ν = 1/2 and κ1 = 1, so that

An =
κ0

hn + h−n
. (9.5)

But the Fourier coefficients with expression (9.5) correspond to the Jacobi elliptic function
dn(z; k) [30]. In this case the moments are cn = dn(wn; k) and indeed satisfy the property
c−n = cn; the reflection parameters are very simple: an = dn(w(n + 1); k) for the even n and
an = −cn(w(n+ 1); k) for the odd n.
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In the second case, i.e. when j = 2 we have the period T = 4ω1 and necessarily ν = 1/2 and
κ1 = h−1, so that

A2n+1 =
κ0

h−n−1/2 + hn+1/2
.

These Fourier coefficients correspond to the Jacobi elliptic function cn(z; k) [30]. Again the
moments cn = cn(wn; k) satisfy the desired property c−n = cn and we have the polynomials
orthogonal on the unit circle with simple reflection parameters: an = cn(w(n + 1); k) for the
even n and an = −dn(w(n+ 1); k) for the odd n.

These two explicit cases of OPUC with dense point measure were first considered in [33].
Now we see that there exists much wider class of explicit elliptic OPUC with positive dense
measure on the unit circle. This class of OPUC contains essentially 3 arbitrary continuous
parameters: w, Im(α) = −α1, Im(β). We thus have two additional parameters with respect to
the only parameter w in [33]. Note however, that if one demands that OPUC were real (i.e. they
have real reflection parameters an and moments cn) then nothing more general than “cn-” and
“dn-”polynomials considered in [33] appear.

10 “Classical” property of LBP

Assume that Pn(z) are arbitrary Laurent polynomials satisfying 3-term RR

Pn+1(z) + dnPn(z) = z(Pn(z) + bnPn−1(z))

with some recurrence coefficients bn, dn.
For any sequence µn, n = 0, 1, 2, . . . of complex numbers such that µ0 = 0 we define the

linear operator D which acts on the space of polynomials in the argument z by the rule

Dzn = µnz
n−1.

Then it is clear that the operator D sends any polynomial of degree n to a polynomial of degree
n − 1 and moreover D{1} = 0. In this sense the operator D can be called as a generalized
derivative operator. If µn = n then D = ∂z coincides with the ordinary derivative operator with
respect to the variable z.

We say that LBP Pn(z) are D-classical if

DPn(z) = µnP̃n−1(z), (10.1)

where P̃n(z) is another set of LBP satisfying the recurrence relation

P̃n+1(z) + d̃nP̃n(z) = z(P̃n(z) + b̃nP̃n−1(z))

with some coefficients d̃n, b̃n and initial conditions P̃0 = 1, P̃1 = z − d̃0.
In [32] we considered the case of the ordinary classical LBP (i.e. with respect to the opera-

tor ∂z) and derived necessary and sufficient conditions for existence of such polynomials. It
appears that there exists many different types of such classical LBP. The simplest ones are the
LBP constructed by Hendriksen and van Rossum [12]. The latter have explicit expression in
terms of the Gauss hypergeometric function.

Now return to our elliptic LBP Pn(z) = Pn(z;α, β, γ, w) (we indicate dependence on param-
eters α, β, γ, w for convenience) and consider the operator D with µn defined as

µn =
σ(wn)

σ(wn+ α)
. (10.2)
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Then from explicit representation (6.5) it is elementary to verify that the operator D transforms
these Laurent biorthogonal polynomials to the same family but with the sole parameter β
changed:

DPn(z;α, β, γ, w) = µnPn−1(z;α, β − α, γ, w)

which means that our elliptic polynomials Pn(z;α, β, γ, w) are indeed “classical” polynomials
with respect to the operator D.

In particular, the choice α = −ω3, β = ω1 corresponds to the OPUC dn-polynomials [33].
Under action of the operator D we obtain polynomials with α = −ω3, β = ω1 + ω3 = −ω2.
These polynomials correspond to the OPUC cn-polynomials [33]. Vice versa, action of the opera-
tor D on the cn-polynomials return them to dn-polynomials. In this case the coefficient µn is
proportional to the Jacobi sn-function: µn = const · sn(wn; k) [33].

One can repeat action of the operator D. This leads to a chain of corresponding transforma-
tions of polynomials Pn(z):

DmPn(z;α, β, γ, w) = µnµn−1 · · ·µn−m+1Pn−m(z;α, β −mα, γ,w).

One can consider the “µ-exponential” function Eµ(x) which is a formal solution of the opera-
tor equation

DEµ(x) = Eµ(x). (10.3)

Clearly we have a solution of the operator equation (10.3) in terms of the formal series

Eµ(x) =
∞∑

s=0

xs

µ1µ2 · · ·µs
.

In case of the elliptic µn (10.2) we have

Eµ(x) =
∞∑

s=0

[α+ 1]s
[s]!

xs. (10.4)

Function (10.4) is closely related with so-called “theta analogue” of the exponential function
proposed by Spiridonov in [26]2.

Obviously for an arbitrary complex parameter γ we have

DEµ(γx) = γEµ(γx).

We can also introduce “even” and “odd” µ-exponential functions which are µ-analogs of the
hyperbolic “cosh” and “sinh” functions

Cµ(x) =
∞∑

s=0

x2s

µ1µ2 · · ·µ2s
, Sµ(x) =

∞∑
s=0

x2s+1

µ1µ2 · · ·µ2s+1
.

We have obvious relations

Cµ(x) = (Eµ(x) + Eµ(−x))/2, Sµ(x) = (Eµ(x)− Eµ(−x))/2.

These functions both have the same property

D2Cµ(γx) = γ2Cµ(x), D2Sµ(γx) = γ2Sµ(x)

2The authors are indebted to V. Spiridonov for drawing their attention to this result.
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with an arbitrary parameter γ, and hence for arbitrary parameters β0, β1 the function f(x) =
β0Cµ(γx) + β1Sµ(γx) is a formal solution of the operator equation

D2f(x) = γ2f(x).

Note the obvious “intertwining” property of these functions:

DCµ(γx) = γSµ(γx), DSµ(γx) = γCµ(γx).

We can use these properties in order to construct formal generating functions for the cn and
dn-circle polynomials.

Indeed, let P (C)
n (z) and P

(D)
n be cn and dn-circle polynomials corresponding to the choices

α = −ω3, β = −ω2 and α = −ω3, β = ω1 respectively. As shown in [33] these polynomials
satisfy intertwining properties

DP (C)
n (z) = µnP

(D)
n−1(z), DP (D)

n (z) = µnP
(C)
n−1(z)

and hence

D2P (C)
n (z) = µnµn−1P

(C)
n−2(z), D2P (D)

n (z) = µnµn−1P
(D)
n−2(z),

where one can choose µn = sn(wn)/sn(w).
Construct the generating functions for the polynomials P (C)

n (z) and P
(D)
n (z) as the formal

series

F (C)(z; t) =
∞∑

n=0

tnP
(C)
n (z)

µ1µ2 · · ·µn
, F (D)(z; t) =

∞∑
n=0

tnP
(D)
n (z)

µ1µ2 · · ·µn
. (10.5)

We have obviously

DzF
(C)(z; t) = tF (D)(z; t), DzF

(D)(z; t) = tF (C)(z; t),

where notation Dz means that the operator D acts only on the variable z. As a consequence

D2
zF

(C)(z; t) = t2F (C)(z; t), D2
zF

(D)(z; t) = t2F (D)(z; t).

This property means that both functions F (C)(z; t) and F (D)(z; t) can be expressed in terms of
“even” and “odd” µ-exponential functions with respect to the variable z:

F (C)(z; t) = ξ0(t)Cµ(zt) + ξ1(t)Sµ(zt), (10.6)

F (D)(z; t) = η0(t)Cµ(zt) + η1(t)Sµ(zt) (10.7)

with some functions ξi(t), ηi(t), i = 1, 2. For these functions we have relations η0(t) = ξ1(t),
η1(t) = ξ0(t) which follow easily from intertwining relations. Remaining functions ξ0(t), ξ1(t)
can be found as follows. Put z = 0. Then from definition (10.5) we have

F (C)(0; t) =
∞∑

n=0

tnB
(C)
n

µ1µ2 · · ·µn
, F (D)(0; t) =

∞∑
n=0

tnB
(D)
n

µ1µ2 · · ·µn
,

where B(C)
n , B(D)

n are corresponding normalization coefficients (6.6). On the other hand from
(10.6) and (10.7) we have

F (C)(0; t) = ξ0(t), F (D)(0; t) = ξ1(t)

because Cµ(0) = 1, Sµ(0) = 0.
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We thus have explicit expressions for the functions ξ0(t), ξ1(t) in terms of formal series

ξ0(t) =
∞∑

n=0

tnB
(C)
n

µ1µ2 · · ·µn
, ξ1(t) =

∞∑
n=0

tnB
(D)
n

µ1µ2 · · ·µn
.

As shown in [33] the coefficients B(C)
n and B(D)

n are expressible in terms of the Jacobi elliptic
functions as follows:

B(C)
n = −a(C)

n−1 =
{
−cn(wn), n even,
dn(wn), n odd

and

B(D)
n = −a(D)

n−1 =
{
−dn(wn), n even,
cn(wn), n odd,

where a(C)
n and a(D)

n are corresponding reflection parameters.
We can thus present expressions for ξ0(t) and ξ1(t) in a more explicit form:

ξ0(t) =
∞∑

s=0

cn(2ws)t2ssn2s(w)
sn(w)sn(2w) · · · sn(2ws)

−
∞∑

s=0

dn(w(2s+ 1))t2s+1sn2s+1(w)
sn(w)sn(2w) · · · sn(w(2s+ 1))

,

ξ1(t) =
∞∑

s=0

dn(2ws)t2ssn2s(w)
sn(w)sn(2w) · · · sn(2ws)

−
∞∑

s=0

cn(w(2s+ 1))t2s+1sn2s+1(w)
sn(w)sn(2w) · · · sn(w(2s+ 1))

.

Hence we were able to find explicitly the generating functions for the OPUC P
(C)
n (z) and P (D)

n (z)
in terms of µ-exponential functions (10.6), (10.7). The problem of convergence of these functions
needs a separate investigation.

11 Rational limit of the elliptic functions
and corresponding Laurent biorthogonal polynomials

In this section we consider the rational limit of the elliptic functions, when both periods 2ω1, 2ω2

tend to infinity. In this case for the Weierstrass functions we have simple formulas [1]

σ(z) = z, ζ(z) = 1/z, ℘(z) = 1/z2.

Hence for the moments cn (6.3) we have (one can put w = 1 and γ = 0 without loss of generality)

cn =
n+ β + α

β(n+ α)
. (11.1)

In this case the elliptic Frobenius determinant ∆n becomes the well-known rational Cauchy
determinant [18] and for corresponding Laurent biorthogonal polynomials (6.2) we have (α1 =
α+ 1)

Pn(z) = Bn 3F2

(
−n, α1,−α1n− β + 1
α1 − n,−α1n− β

; z
)

(11.2)

with

Bn =
(−α)n

(α+ 1)n

αn+ β + n

αn+ β
,
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where 3F2(z) is the ordinary hypergeometric function [17] and (a)n = a(a + 1) · · · (a + n − 1)
is the Pochhammer symbol (shifted factorial). These polynomials satisfy the 3-term recurrence
relation (2.6) with

dn =
(α− n)(β + α1(n+ 1))(β + αn)
(α1 + n)(β + α1n)(β + α(n+ 1))

(11.3)

and

bn = − n2(β + α1(n+ 1))(β + α(n− 1))
(β + α1n)(β + αn)(α+ n+ 1)(α+ n)

. (11.4)

Note that as in the elliptic case we should require that

α 6= 0,±1,±2, . . .

because otherwise the normalization coefficients hn become singular at some n > 0 which means
a degeneration.

As in the elliptic case the recurrence coefficients (11.3) and (11.4) provide an explicit so-
lution of the two-point QD-algorithm (3.4) with t = α, h = 1. Similarly, one can construct
corresponding solutions of the ordinary QD-algorithm (3.8).

The biorthogonal partners have the expression

Qn(z) = Bn 3F2

(
−n, 1− α, (α− 1)n+ β + 1

1− α− n, (α− 1)n+ β
; z
)
.

In order to find the orthogonality measure for these polynomials we first note that the
moments (11.1) can be rewritten in the form

cn = β−1 +
1

n+ α
= β−1 + c(0)

n , (11.5)

where the moments

c(0)
n = 1/(n+ α) = lim

β→∞
cn

correspond to a special case of the “classical” Laurent biorthogonal polynomials considered by
Hendriksen and Van Rossum [12]. The moments c(0)n correspond to the recurrence coefficients

dn =
α− n

α+ n+ 1
, bn = − n2

(α+ n)(α+ n+ 1)
. (11.6)

The polynomials Pn(z) are expressed in terms of the Gauss hypergeometric function [12]

Pn(z) =
(−α)n

(α+ 1)n
2F1

(
−n, α+ 1,
α+ 1− n

; z
)
. (11.7)

Formulas (11.7) and (11.6) are easily obtained from (11.3), (11.4) and (11.2) in the limit β →∞.
The biorthogonality property for polynomials (11.7) was found in [12]∫

C
Pn(z)Qm(1/z)zα−1dz = hnδnm,

where the contour C is the unit circle and integrating path starts from z = 1+, where zα−1 = 1
and stops at z = 1−, where zα−1 = e2πiα.
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The moments (11.5) differ from the moments c(0)n only by the constant term β−1. This means
that corresponding orthogonality measure on the unit circle has an additional concentrated mass
at z = 1. Thus the biorthogonality relation for polynomials (11.2) looks as∫

C
Pn(z)Qm(1/z)w(z)dz = hnδnm,

where the weight function is

w(z) =
zα−1

e2πiα − 1
+ β−1δ(z − 1).

Note that inserting the concentrated mass at point z = 1 can be performed by the Geronimus
transform of the classical Hendriksen–van Rossum polynomials (see [32] for details).

The “classical” property (10.1) holds for the polynomials (11.2) with

µn =
n

n+ α
.

In more details

DPn(z;α, β) = µnPn−1(z;α, β − α),

where Pn(z;α, β) stands for LBP (11.2) with explicit dependence on the parameters α, β. Note
the operator D in this case does not coincide with the ordinary derivative operator ∂z. Hence
the polynomials (11.2) provide one of the simplest nontrivial examples of the “classical” LBP
with respect to a nonclassical “derivative” operator D.

Consider also a special case when both α and β are purely imaginary parameters:

α = is1, β = is2, s1s2 > 0.

Then we can put (obviously the moments cn are defined up to a unnecessary common constant
factor) by the expression

cn =
n+ i(s1 + s2)

n+ is1

from which the condition c̄n = c−n follows which means that the corresponding polynomials Pn(z)
satisfy the Szegő recurrence relation (4.3) and one can expect that these polynomials are ortho-
gonal on the unit circle with respect to a positive measure. According to the general theory this
occurs if and only if the reflection parameters an = −Pn+1(0) satisfy the restriction |an| < 1 for
all n.

from (11.2) we see that an−1 = −Bn. Then

|an−1|2 = BnB̄n.

After simple calculations we get

|an−1|2 =
s21

n2 + s21

(s1n+ s2)2 + n2

(s1n+ s2)2
=

1 + ξ2n
1 + η2

n

,

where

ηn = n/s1, ξn = n/(ns1 + s2).
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It is easily seen that the condition |an| < 1 is equivalent to the condition s1s2 > 0. In this case
we can present the orthogonality property in the form∫ 2π

θ=0
Pn(eiθ)P̄m(e−iθ)ρ(θ)dθ = hnδnm,

where

ρ(θ) =
s2

1− e−2πs1
e−s1θ + δ(θ).

Using correspondence (3.5) consider the ordinary orthogonal polynomials W (j)
n (z) = P

(j+n)
n (z),

where by P (j)
n (z) we mean polynomials (11.2) obtained under the substitution α→ α+ j.

We have

W (j)
n (z) = Bn 3F2

(
−n, α+ n+ j + 1, 1− β − n(α+ j + n+ 1)

α+ j + 1,−β − n(α+ j + n+ 1)
; z
)
, (11.8)

with

Bn =
(−α− j − n)n

(α+ j + n+ 1)n

(α+ n+ j + 1)n+ β

(α+ n+ j)n+ β
.

These polynomials are orthogonal with respect to the moment sequence

τ (j)
n = β−1 +

1
n+ α+ j + 1

.

In order to get corresponding orthogonality measure we first consider the limit β →∞. In this
limit we have the polynomials

W (j)
n (z) = Bn 2F1

(
−n, α+ n+ j + 1

α+ j + 1
; z
)

with

Bn =
(−α− j − n)n

(α+ j + n+ 1)n
.

These polynomials coincide with a special class of Jacobi polynomials which are orthogonal on
the interval [0, 1] with the weight function w(x) = xα+j :∫ 1

0
xα+jW (j)

n (x)W (j)
m (x)dx = qnδnm.

Indeed, for the moments we have∫ 1

0
xα+jxndx =

1
α+ j + n+ 1

= lim
β→∞

τ (j)
n .

Hence, the polynomialsW (j)
n with nonzero β correspond to adding a concentrated massM = β−1

at the endpoint x = 1 of orthogonality interval for the Jacobi polynomials. I.e. the weight
function for the polynomials W (j)

n (x) with finite values of β has the expression

w(x) = xα+j + β−1δ(x− 1).
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Such polynomials are called the Krall–Jacobi polynomials (see, e.g., [19]). These polyno-
mials have a remarkable property: they are eigenfunctions of a fourth-order differential opera-
tor [19, 20].

Hence we can expect that our Laurent biorthogonal polynomials will satisfy corresponding
fourth-order differential equation too. We first consider a more elementary case β = ∞. Then
the Jacobi polynomials W (j)

n (x) satisfy the differential equation [17]

x(1− x)
d2W

(j)
n (x)
dx2

+
1
2
(α+ j + (α+ j + 2)(1− 2x))

dW
(j)
n (x)
dx

+ n(n+ α+ j + 1)W (j)
n (x) = 0. (11.9)

In order to return to the Laurent biorthogonal polynomials we need to shift the parameter
j → j − n. Then equation (11.9) becomes

z(1− z)
d2P

(j)
n (z)
dz2

+
1
2
(α+ j − n+ (α+ j − n+ 2)(1− 2z))

dP
(j)
n (z)
dz

+ n(α+ j + 1)P (j)
n (z) = 0.

We can rewrite this equation in the form of generalized eigenvalue problem

AP (j)
n (z) = λnBP

(j)
n (z) (11.10)

for two differential operators

A = z(1− z)∂2
z + (α+ j + 1− (α+ j + 2)z)∂z, B = (1− z)∂z − α− j − 1,

where λn = n is the generalized eigenvalue.
Consider now general case of finite values of the parameter β. The orthogonal polyno-

mials (11.8) satisfy the differential equation of the 4th order [19, 20]

LW (j)
n (x) = λnW

(j)
n (x), (11.11)

where the differential operator L is

L = (x(1− x))2∂4
x + x(1− x)(ξ1x+ ξ0)∂3

x + (1− x)(η1x+ η0)∂2
x + (ζ1x+ ζ0)∂x

with the coefficients

ξ1 = −2(α+ j + 4), ξ0 = 2(α+ j + 2),
η1 = −(α+ j + 2)(α+ j + 7)− 2β, η0 = (α+ j + 1)(α+ j + 2),
ζ1 = 2(α+ j + 2)(α+ β + j + 1), ζ0 = −2(α+ j + 1)(α+ β + j + 2).

The eigenvalue is

λn = n(n− 1)(n− 2)(n− 3)− ξ1n(n− 1)(n− 2)− η1n(n− 1) + ζ1n

= n(n+ α+ j + 1)(n2 + n(α+ j + 1) + 2β).

If we now substitute j → j − n into above formulas, we return to the Laurent biorthogonal
polynomials P (j)

n (z) which satisfy a differential equation of the 4th degree which can be presented
in the form(

n2L2 + nL1 + L0

)
P (j)

n (z) = 0, (11.12)



Frobenius Determinant and Biorthogonal Polynomials 29

where L0 is a differential operator of the 4th order, L1 of the 3-rd order and L2 of the second
order. The operators L0, L1, L2 do not depend on the parameter n. We thus see that the
Laurent biorthogonal polynomials P (j)

n (z) given by (11.2), satisfy the quadratic operator pen-
cil equation (11.12) (with respect to the “eigenvalue” parameter n). When β = ∞ we have
generalized eigenvalue problem (11.10) which is equivalent to a linear operator pencil.

Hence the Laurent biorthogonal polynomials (11.12) can be considered as biorthogonal ana-
logs of the Krall–Jacobi orthogonal polynomials. They possess many useful properties of the
Krall–Jacobi polynomials including the 4th order differential equation they satisfy. The main
difference, however, is that in the biorthogonal case we have quadratic operator pencil equa-
tion (11.12) instead of usual eigenvalue problem (11.11).

We thus see that many nontrivial properties of the elliptic Laurent biorthogonal polyno-
mials are manifested already in the rational limit. Loosely speaking, one can say that elliptic
biorthogonal polynomials (6.5) are elliptic analogs of the Krall–Jacobi polynomials.
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[9] Frobenius G., Über die elliptischen Functionen zweiter Art, J. Reine Angew. Math. 93 (1882), 53–68
(reprinted in Ferdinand Georg Frobenius Gesammelte Abhandlungen, Vol. 2, Editor J.-P. Serre, Springer,
Berlin, 1968, 81–96).

[10] Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and its Appli-
cations, Vol. 96, Cambridge University Press, Cambridge, 2004.

[11] Geronimus Ya.L., Polynomials orthogonal on a circle and their applications, Amer. Math. Soc. Translation
1954 (1954), no. 104.

[12] Hendriksen E., van Rossum H., Orthogonal Laurent polynomials, Nederl. Akad. Wetensch. Indag. Math. 48
(1986), 17–36.

[13] Henrici P., Applied and computational complex analysis, John Wiley & Sons, New York, 1974.

[14] Ismail M.E.H., Masson D.R., Generalized orthogonality and continued fractions, J. Approx. Theory 83
(1995), 1–40, math.CA/9407213.

http://arxiv.org/abs/0802.3432
http://arxiv.org/abs/math.CA/9407213


30 S. Tsujimoto and A. Zhedanov

[15] Jones W.B., Thron W.J., Survey of continued fraction methods of solving moment problems, in Analytic
Theory of Continued Fractions (Loen, 1981), Lecture Notes in Mathematics, Vol. 932, Springer, Berlin –
New York, 1982, 4–37.

[16] Kharchev S., Mironov A., Zhedanov A., Faces of relativistic Toda chain, Internat. J. Modern Phys. A 12
(1997), 2675–2724, hep-th/9606144.

[17] Koekoek R., Swarttouw R.F., The Askey scheme of hypergeometric orthogonal polynomials and its q-
analogue, Report 94-05, Faculty of Technical Mathematics and Informatics, Delft University of Technology,
1994, math.CA/9602214.

[18] Krattenthaler C., Advanced determinant calculus, Sém. Lothar. Combin. (1999), Art. B42q, 67 pages,
math.CO/9902004.

[19] Littlejohn L.L., The Krall polynomials: a new class of orthogonal polynomials, Quaestiones Math. 5 (1982),
255–265.

[20] Littlejohn L.L., On the classification of differential equations having orthogonal polynomial solutions, Ann.
Mat. Pura Appl. (4) 138 (1984), 35–53.

[21] Magnus A.P., Special nonuniform lattice (snul) orthogonal polynomials on discrete dense sets of points,
J. Comp. Appl. Math. 65 (1995), 253–265.

[22] Pastro P.I., Orthogonal polynomials and some q-beta integrals of Ramanujan, J. Math. Anal. Appl. 112
(1985), 517–540.

[23] Ruijsenaars S.N.M., Relativistic Toda systems, Comm. Math. Phys. 133 (1990), 217–247.

[24] Simon B., Orthogonal polynomials on the unit circle, American Mathematical Society Colloquium Publica-
tions, Vol. 51, American Mathematical Society, Providence, R.I., 2005.

[25] Spiridonov V.P., Zhedanov A.A., To the theory of biorthogonal rational functions, RIMS Kokyuroku (2003),
no. 1302, 172–192.

[26] Spiridonov V.P., An elliptic incarnation of the Bailey chain, Int. Math. Res. Not. 2002 (2002), no. 37,
1945–1977.

[27] Spiridonov V.P., Essays on the theory of elliptic hypergeometric functions, Russ. Math. Surv. 63 (2008),
405–472, arXiv:0805.3135.

[28] Suris Yu.B., A discrete-time relativistic Toda lattice, J. Phys. A: Math. Gen. 29 (1996), 451–465,
solv-int/9510007.
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