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Abstract. In this paper, we show the inclusion and the density of the Schwartz space
in Besov—Dunkl spaces and we prove an interpolation formula for these spaces by the real
method. We give another characterization for these spaces by convolution. Finally, we estab-
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Besov—Dunkl space.
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1 Introduction

We consider the differential-difference operators Tj, 1 < i < d, on R%, associated with a positive
root system R4 and a non negative multiplicity function k, introduced by C.F. Dunkl in [9] and
called Dunkl operators (see next section). These operators can be regarded as a generalization of
partial derivatives and lead to generalizations of various analytic structure, like the exponential
function, the Fourier transform, the translation operators and the convolution (see [8, 10, 11,
16, 17, 18, 19, 22]). The Dunkl kernel Ej has been introduced by C.F. Dunkl in [10]. This
kernel is used to define the Dunkl transform Fj. K. Trimeche has introduced in [23] the Dunkl
translation operators 7, * € R%, on the space of infinitely differentiable functions on R%. At
the moment an explicit formula for the Dunkl translation operator of function 7, (f) is unknown
in general. However, such formula is known when f is a radial function and the LP-boundedness
of 7, for radial functions is established. As a result, we have the Dunkl convolution .

There are many ways to define the Besov spaces (see [6, 15, 21]) and the Besov spaces for
the Dunkl operators (see [1, 2, 3, 4, 14]). Let 8 > 0, 1 < p,q < +00, the Besov—Dunkl space
denoted by Bngqk in this paper, is the subspace of functions f € Li (RY) satisfying

1
. q .
Ulsngs = ( S@7es o Slpalt)" <00 if <400
JEZ

*This paper is a contribution to the Special Issue on Dunkl Operators and Related Topics. The full collection
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and

1l gpoe = $u§2jﬁH‘Pj s fllpss < 400 if g = 400,
AT

where (;);ez is a sequence of functions in S(R4)™4 such that
(i) supp Fi(p;) C Aj = {z e RY; 2971 < ||z|| < 29+1} for j € Z;

(@) sup [k < +00;
€2

j
(iii) > Fr(pj)(x) =1, for € RN\{0}.
JEZ
S(RY)r2d being the subspace of functions in the Schwartz space S(R?) which are radial.
Put A= {¢¢ SR supp Fr(¢) C {x € R 1 < ||z]| < 2}}. Given ¢ € A, we denote
by C;ﬁ f’k the subspace of functions f € Li(Rd) satisfying

+o00 4 ‘
(/ (HMMM> dt)q<+oo if ¢ < too
0 t8 t

and
ap WOler
te(0,+00) 13
where ¢y(2) = ——L¢(%), for all t € (0, +00) and z € R
t (v+5)

In this paper we show for 3 > 0 the inclusion of the Schwartz space in [)’ngéC forl <p,q < +o0
and the density when 1 < p,q < +00. We prove an interpolation formula for the Besov-Dunkl
spaces by the real method. We compare these spaces with CZ?, ’f’k which extend to the Dunkl
operators on R? some results obtained in [4, 5, 21]. Finally we establish further results of
integrability of Fi(f) when f is in a suitable Besov—Dunkl space BD% for 1 < p < 2 and
1 < ¢ < 400. Using the characterization of the Besov spaces by differences analogous results
of integrability have been obtained in the case ¢ = 1 by Giang and Méricz in [13] for a classical
Fourier transform on R and for ¢ = 1, +00 by Betancor and Rodriguez-Mesa in [7] for the
Hankel transform on (0,4o00) in Lipschitz—Hankel spaces. Later Abdelkefi and Sifi in [1, 2]
have established similar results of integrability for the Dunkl transform on R and in radial case
on RY. The argument used in [1, 2] to establish such integrability is the LP-boundedness of the
Dunkl translation operators, making it difficult to extend the results on R%. We take a different
approach based on the the characterization of the Besov spaces by convolution to establish our
results on higher dimension.

The contents of this paper are as follows. In Section 2 we collect some basic definitions and
results about harmonic analysis associated with Dunkl operators. In Section 3 we show the
inclusion and the density of the Schwartz space in BDg,’,f , we prove an interpolation formula
for the Besov—Dunkl spaces by the real method and we compare these spaces with CK qﬁk In
Section 4 we establish our results concerning integrability of the Dunkl transform of function in
the Besov—Dunkl spaces.

Along this paper we denote by (-,-) the usual Euclidean inner product in R? as well as its
extension to C?x C?, we write for # € R?, ||z|| = \/(x, z) and we represent by c a suitable positive
constant which is not necessarily the same in each occurrence. Furthermore we denote by

e £(R%) the space of infinitely differentiable functions on R%;

e S(R?) the Schwartz space of functions in £(RY) which are rapidly decreasing as well as
their derivatives;

e D(RY) the subspace of £(R%) of compactly supported functions.
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2 Preliminaries

Let W be a finite reflection group on R¢, associated with a root system R and R the positive
subsystem of R (see [8, 10, 11, 12, 18, 19]). We denote by k a nonnegative multiplicity function
defined on R with the property that k£ is W-invariant. We associate with k the index

y=9(R)= Y k) >0,

§ERy

and the weight function wj defined by

w(x) = [] (& 2)*O, zeR?
§ERY

Further we introduce the Mehta-type constant c; by

o = (/Rd e '“”22wk(x)dx) o

For every 1 < p < +oo we denote by LP(R?) the space LP(RY, wy(z)dx), LY (R4 the
subspace of those f € L¥(R?) that are radial and we use || - ||, x as a shorthand for || - || L (Rd)-

By using the homogeneity of wy it is shown in [18] that for f € Li(R?)™d there exists
a function F on [0, 4+00) such that f(z) = F(||z|), for all z € R?. The function F is integrable
with respect to the measure 72779~ 1dr on [0, +00) and we have

-1
C

wk($)d0($) = E )

oo PG )

where S9! is the unit sphere on R? with the normalized surface measure do and

iy f(@)w(z)dr = /O+OO (/Sdl wk(ry)da(y))F(T)rd_ldr

-1
C

- 275 -1 (

+00
y / F(T)r27+d_1dr. (1)
v+3)Jo

Introduced by C.F. Dunkl in [9] the Dunkl operators Tj, 1 < j < d, on R? associated with
the reflection group W and the multiplicity function k are the first-order differential- difference
operators given by

i) = L)+ 3 k(a)ay LD IO@) oy ege

Oz ey (ar, )

where a; = (o, €j), (e1,e2,...,eq) being the canonical basis of R,
The Dunkl kernel E;, on R? x R? has been introduced by C.F. Dunkl in [10]. For y € R? the
function x — Ej(z,y) can be viewed as the solution on R? of the following initial problem

Tiu(z,y) = yjule,y),  1<j<d,
u(0,y) = 1.

This kernel has a unique holomorphic extension to C* x C¢. M. Résler has proved in [17] the
following integral representation for the Dunkl kernel

Ey(xz,2) = /d e dpk (y), z e RY, z e
R



4 C. Abdelkefi, J.-Ph. Anker, F. Sassi and M. Sifi

where 1% is a probability measure on R¢ with support in the closed ball B(0,||z||) of center 0
and radius ||z||.

We have for all A € C and z,2' € C? Ey(z,2') = En(¢, 2), Ex(\z,2') = Ex(2,)\2') and for
z,y € RY |Ep(z,iy)| <1 (see [10, 17, 18, 19, 22]).

The Dunkl transform Fj, which was introduced by C.F. Dunkl in [11] (see also [8]) is defined
for f € D(RY) by

D) = o [ Fw)Bulie.puiti)dy, o e R

According to [8, 11, 18] we have the following results:

i) The Dunkl transform of a function f € Lj. (RY) has the following basic property
1 Fk(FMlloo e < NFIl1k- (2)

ii) The Schwartz space S(R?) is invariant under the Dunkl transform F, .
iii) When both f and Fi(f) are in Li(R?), we have the inversion formula

f(z) = » Fi(f) W) Ex(iz, y)wr(y)dy,  z€R™

iv) (Plancherel’s theorem) The Dunkl transform on S(RY) extends uniquely to an isometric
isomorphism on L2(R9).
By (2), Plancherel’s theorem and the Marcinkiewicz interpolation theorem (see [20]) we get

for f € LP(RY) with 1 < p < 2 and p’ such that 1% + 1% =1,

1Fk (Pl < ellf

pk- (3>

The Dunkl transform of a function in Lk(Rd)rad is also radial and could be expressed via the
Hankel transform (see [18, Proposition 2.4]).

K. Trimeche has introduced in [23] the Dunkl translation operators 7., z € R, on £(R?).
For f € S(R?) and z,y € R? we have

Fi(re () ) = Ex(iz, y) Fr(f)(y)

and

()W) =cr | Fu(f)(&)Ex(iz, §) Ex(iy, §)wk(§)dE. (4)

R4
Notice that for all z,y € R? 7,.(f)(y) = 7,(f)(z), and for fixed x € R?
7, is a continuous linear mapping from &(RY) into £(RY). (5)

As an operator on L (RY), 7, is bounded. A priori it is not at all clear whether the translation
operator can be defined for LP-functions with p different from 2. However, according to [19,

Theorem 3.7] the operator 7, can be extended to LY(R?)™d 1 < p < 2 and for f € L} (R%)rad
we have

172 () lpe < W Fllp 5-



Besov-Type Spaces on R? and Integrability for the Dunkl Transform 5

The Dunkl convolution product #j, of two functions f and g in L7 (R?) (see [19, 23]) is given by
(F 9@ = [ mDne@udy, @R

The Dunkl convolution product is commutative and for f, g € D(RY) we have

Fi(f *1 9) = Fu(f)Fr(9)- (6)

It was shown in [19, Theorem 4.1] that when g is a bounded function in L}(R?)"d, then

(Fwa)@ = [ Fmlo)(-nuldy, =R

initially defined on the intersection of Li(R?) and L%(R?) extends to all LF(R?), 1 < p < +oo
as a bounded operator. In particular,

1F % gllpk < 1[fllp.kllgll5- (7)

d
The Dunkl Laplacian Ay, is defined by Ay := > T?. From [16] we have for each A > 0
i=1
M — Ay, maps S(RY) onto itself and
Fi((M = Ap) (@) = (A + ||z Fu(f)(z),  for xR (8)

3 Interpolation and characterization
for the Besov—Dunkl spaces

In this section we establish the inclusion and the density of S(R?) in BDg,’f and we prove an
interpolation formula for the Besov—Dunkl spaces by the real method. Finally we compare the
spaces BDg;,f with CI?, qﬁk Before, we start with some useful results.

We shall denote by ® the set of all sequences of functions (¢;)jez in S (R4 satisfying

(1) supp Fr(pj) C Aj ={x € R4 2071 < ||z|| < 27F1} for j € Z;

() sup f[pjlle < +oo;

Je

(i) szk(goj)(x) =1, for z € RN\ {0}.
JE

Proposition 1. Let 8 >0 and 1 < p,q < 400, then BDg;; is independent of the choice of the
sequence in P.

Proof. Fix (¢;)jez, (¢j)jez in ® and f € l’)’l)gjéC for ¢ < 400. Using the properties (7) for

(¢j)jez and (i) and (ii7) for (vj);cz, we have for j € Z ¢; = ¢j *1 (¥j—1 +1j +¥j41). Then by
the property (ii) for (¢;);cz, (7) and Hélder’s inequality for j € Z we obtain

j+1

1F . &5l1% . < 3970 Y Hls #a FIT

s=j—1

Thus summing over j with weights 2757 we get

D (@765 51 Fllps) < €3 (27 f

JEZ JEZ

‘pJf)q'

Hence by symmetry we get the result of our proposition. When ¢ = +0o0 we make the usual
modification. |
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Remark 1. Let § > 0,1 < p,q < 400, we denote by BD}%C the subspace of functions f € Li(Rd)
satisfying

1

4 a
(Z(Wﬂ\\%‘ ik pr,k)q> <H4oo if g <+oo

jEN
and

sup 280 %k fllpr < +oo  if g =400,
je

where () en is a sequence of functions in S(R?)"d such that

i) supp Fr(po) C {z € R%; ||z| < 2} and supp Fi(p;) C Aj = {x € R%; 2071 < ||z|| < 29+1}
for j € N\{0};

i1) sup ||@jll1r < +00;
JEN

iii) %fk(goj)(x) =1, for z € RN\ {0}.

As the Besov—Dunkl spaces these spaces are also independent of the choice of the sequence
(¢5)jen satisfying the previous properties.

Proposition 2. For 8 >0 and 1 < p,q < 400 we have
23 ﬁ7k — ﬁ?k
BDy;; = BDyy-

Proof. Since both spaces Bngf and BDI’?”,? are in L (R?) and are independent of the specific
selection of sequence of functions, then according to [5, Lemma 6.1.7, Theorem 6.3.2] we can
take a function ¢ € S(R%)"™ such that

e supp F(¢) C {z € R% § < ||z <2}
o Fi(¢p)(x) > 0 for % < |lz|| < 2;
o X Fildo-s)(x) =1, z € RN\{0}.

JEZ

If we consider the sequences (j)jez and (p;)jen in S(RY)™d defined respectively for BD‘E”?
and BD}%C by ¢; = ¢9—; Vj € Z and ¢ = 'EZZ Go-i, P = ¢9—;i Vj € N*, we can assert that
BDiE — Bl T .
Remark 2. By Proposition 2 and [21, Proposition 2] we have the following embeddings.

1. Let 1 < ¢ < g2 < +o0 and 3 > 0. Then

BDg’ql - BDgQQ if 1<p<—+oo.

2. Let 1 < q1,q92 < 400, 8> 0and € > 0. Then

BDIIR c BDOY  if 1<p < +oo.

Proposition 3. For 8 >0 and 1 < p,q < 400 we have
d 8.,k
S(R?) C BD, .

If1 < p,q < +oo, then S(RY) is dense in BDg’f.
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Proof. In order to prove the inclusion, we may restrict ourself to ¢ = +oc. This follows from the
fact that BDI’?OO C BDgylék for > >0and 1 < p,q < +oo (see Remark 2, 2). Let f € S(R?)
and (¢;)jen a sequence of functions in S (R4 satisfying the properties of Remark 1, there
exists a sufficiently large natural number L such that

sup 27l s fllp < sup27(L+ 12]*) (05 5 1) ot
JjEN

Since p; € S(RY)™4, then for € R? F, ;) (x) = Fi(p;)(—x) = Fi(p;)(x), so using (8) and
the property i) of (¢;)jen (see Remark 1) we obtain

sup 27%1@; 5, fllpn < sup 20 Fil( = Ap) " (Fie(e)) Fi H())lloo

JeN* JeN
< sup (1 — A0 (Felen) F (1)
JEN®
< sup Cj Qjﬁ sup ‘(I - Ak)L(fk(Spj)fk_l(f))(x)‘v
JEN* IGAJ‘

where ¢; = [ A wg(z)dz. Hence there exists a sufficiently large natural number M such that
Cj2jf3 ‘

WSI,VjEN* and we get

sup 2 lj #1, fllpe < sup sup (14 1202 (7 = A (File) F D @)
Jje JEN* z€A;

Since (I — Ag)¥ is linear and continuous from S(R?) into itself, we deduce that

sup 27°||p; s fllpk < ¢ sup sup [Fi(y)(@)] sup [(1+ [J2|)MF () ()],
JEN* JEN* zcRd rE€R4

which gives by the property ii) of (¢;);en

(L + )M F () ()] < +oo.

sup 277 ;5 fllp < ¢ sup [l
JEN® JeN zeR?
By Proposition 2 we conclude that S(R%) ¢ BDYF.
Let us now prove the density of S(R?) in BDg ’q for p,q < 4o0o0. Assume f € BDg g and
(¢j)jez € @, then we put for N € N\{0}, fy = Z ©s %5 f. It’s clear that fy € BDhY. We

s=—N
have

q

N
> 25w (fn = P, =D 275 ( > %) 5 %K f — 5 xx f

JEZ JEZ s=—N p.k
Using the properties (i) and (ii7) for (¢;);cz we get
1f = fN”BDﬁk <c Z 2jﬂq”¢j *k f”;qg,k-
ljI=N
Since f € BD;E,’(? , then we deduce that
m = nllgpp s = 0. (9)

Next we take a function 6 € D(R?) such that 6(0) = 1. For n € N\{0} we put 0, (z) = 0(n"'x),
r € RL From (5) we have for N € N\{0} fy € E(R?), then fy, € S(R?). Again from
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N
the properties (i) and (7ii) for (¢j)jez we can assert that fy = > ;% fy41 which gives
j=—N

N
InOn = Y @j*i fn416n. Using the properties (i), (ii), (iii) for (¢;)jez and (7) we obtain

j=—N
N+l
[ fn — fN9anBD5,5 <e Y P fypa — Fnabnll? .
' j=—N-1

The dominated convergence theorem implies that

[ fny1 — fns1bnllpr — 0 as n — +oo.

Hence we deduce that

73 = Iballgpps =0 a5 n— +oo, (10

Combining (9) and (10) we conclude that S(R?) is dense in BDg’(f . This completes the proof of
Proposition 3. u

ForO0< 60 <1, By,01>0,1<p,q0,q1 <+ooand 1 < g < +00, the real interpolation Besov—
Dunkl space denoted by (BDgf’q’f ,BDQIq’f )o,q is the subspace of functions f € BDg?q’f + BDgldlk
satisfying

1
+oo adt\a .
(/ (feicp,k(taf;ﬂo,%;ﬂlath)) t) < +oo if ¢ < +oo,
0

and

sup t_er,k(tanBanmﬁla%) < 400 if q = +OO)
te(0,+00)

with ) is the Peetre K-functional given by

]Cp,k(t7 f7 /607 q0; ﬁla (_II) = inf { ”fOHB'ngz’: + tHfl ||B'D£,1q’1k }7
where the infinimum is taken over all representations of f of the form

f=fo+ f1, fo € BDSk f1 € BDPUk,

P90’ P,

Theorem 1. Let 0 < 0 < 1 and 1 < p,q,q0,q1 < +00. For By, 01 > 0, Bop # P1 and B =
(1 —=6)Bo + 051 we have

(Bpﬁmk’ BDPLE

— 187k
.90 * 2 p,q1 )97(1 - BDp,q'

Proof. We start with the proof of the inclusion (BDS%F, BDgﬁ;f)aq C BDSF. We may assume
that By > B1. Let ¢ < +oo, for f = fo + f1 with fo € BDE%Y and f; € BDPY we get by
Proposition 2

+o0 +o00
q
qulﬁnw 5 f“gk < CZ 2—9ql(ﬁ0—61)(2l,@o”w sk follpk + 2l(ﬁo—ﬂ1)2lﬁ1”gpl K f1||p,k)

=0 =0

+o0o
q
<Y g-talto—s) (HfOHBDEO&: + zl(ﬁo—ﬁl)y\fl\\gpglof) .
=0 7 |
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Then we deduce that

+00 +o0 q
qulﬁnw x5 f“Zk < CZ 2—0ql(ﬁo—ﬁ1)(;c (2l (Bo—P1) f Bo, 00; B1, ))
=0 =0

+oo q dt
< C/ (fglcp,k(t,f;ﬁo,oo;ﬁl,oo)> - <t
0

which proves the result. When ¢ = 400, we make the usual modification.
For 1 < s < qp,q1 Remark 2 gives

(BDo:k

ps

BDILR)e . C (BDI:F BDIVEY, , € (BDEoE, BDILE

k
p,q0 "’ pq1) ( p,007 )7qCBD5,q'

Then in order to complete the proof of the theorem we have to show only that

Bngk (Bpgoé ’Bpg,lék)@,q for 1<s<gq.

Suppose that Gy > 31 again. Let ¢ < 400, we have

+oo B 0 dt 1 too
/ (t alcp,k(tythOyS;ﬁlas)) ? :/ +/ =1+ I.
0 0 1

Since 8 > (1, by Remark 2 we get
Koot f; Bos 53 51, 8) < etl| fll gppr v < etll fll gpgps
hence we deduce

I < el

l 400
To estimate I5 take fo = > ¢j*, fand fi = ). ¢;* f. Using the properties of the sequence
j=0 j=l+1
(p4)jen we obtain

I+1
1 follgpor <X 2™ s n flpa and  [filly e < cZWISH% s I3
Jj=0 7=l

Hence we can write

+oo
Iy <)y 27ttt (Kp,k(Ql(ﬂO_ﬁl)7 £ Bo, 53 b1, 8))q

1=0
+o0 1+1 1/s +oo 1/s ]
< czzfaql(ﬁo*&) <22jﬂos”¢j . f”;s;,k) +21([30ﬁ1)<22jﬁ13”@j s f“;,k)
1=0 Jj=0 J=l
+1 a/s
<622qlﬂ 223 lﬁ03|’%*kf||pk+22j Do k£l pk
1=0 j=0 J=l

For s = ¢ it is easy to see that Iy < CHfHB'Dﬁ -

For s < g we take u > s such that 2 —1—7—1 and 1 < a1 < 8 < ap < By, then by Holder’s
inequality we have

+1 q/u s l+1 ‘
I < CZqu(ﬁ Bo) <Z2 Bo—ao0)j > (Zgaojqn%. g f”g’k)
j=0
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+o00 +oo ' q/u y+oo 4
et (e ) (Sl )

j:l
I+1
< CZ 9al(B8—ao) Z 2040]!1”(7% L f” + CZQQl (B—a1) 22041]‘1”90 ko f”pk
j=l
A foo J
< CZ 2903\ 5y, f”g,k Z 9dl(B—a0) | Cz2auq||90j " f“Z,k Z 9al(B—a1)
J=0 I=j—1 j=0 1=0
<c 4 .
< el o
Finally we deduce
Foo q dt
7K, 1 (L, [ Bo, s ,5) — <c|fI4 .
| (Kt fi0si81.90) " < el
Here when ¢ = +00 we make the usual modification. Our theorem is proved. |

Theorem 2. Let >0 and 1 < p,q < 4+oc. Then for all ¢ € A, we have
B,k ¢,8,k
BDyy CCpy™

Proof. For ¢ € Aand 1 < u < 2, we get supp Fi(da-5,) C Aj, Vj € Z. Then we can write
Fi(ba-iu) = Fi(bo-iu)(Fr(wj—1) + Fr(wj) + Fr(pj+1)), which gives dy—j,, = do—jy *k (pj—1 +
@+ ¢j+1), Vi € Z.

Let f € Bl)g’(f for 1 < ¢ < 400, we can assert that

/+oo <Hf *k ¢th,k)q dt < 2/2 <’f *k ¢2—jqu,k>q du
0 t8 t — =h (2=7u)P u
Using Holder’s inequality for j € Z we get
j+1
1 5 dasull® e < BI85 oy 5 £ 4,

s=j—1

hence we obtain

+o0o q dt B
/O <Hf*kt§6tllp,k> < cllo|? kZ/ <!so *k pr, ) ?u

< ¢S 2P gy 54 fllpi)? < +oc.
SEZ

Here when ¢ = +00, we make the usual modification. This completes the proof. |

Theorem 3. Let >0 and 1 < p,q < +oo, then for ¢ € A such that > Fi(dg-i,)(x) =1, for
JEZ
all1 <u <2 and z € R% we have

0.0k _ DOk
Cp»q - BDP#I :
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Proof. By Theorem 2 we have only to show that Cﬁ’qﬁ’k - BDg’(f . Let ¢ € A such that
3 Fildg—iy)(w) =1, for z € R? and 1 < u < 2. Then we can assert that
=/

Files) = Fi(@i) (Fr(d-i-14) + Fi(D2-iu) + Fr(da-it14)),
this implies that ¢; = ¢ * (Pg—j—1,, + Go—iy + Po—it1y), Vj € Z.
Let f € Cﬁ ’qﬁ’k for 1 < ¢ < 400, using Holder’s inequality for j € Z and the property ii) of
the sequence of functions (¢;) ez we get

J+1 J+1
o =k FIL e < lpsllD 37 D0 F %k dosullly < € D0 I 5k dasulll
s=j—1 s=j—1

Integrating with respect to u over (1,2) we obtain

j+1 q
; 1 1t Gl
@y flpa) <0 3 [ (Ubllen)td

s=j—1
Hence
' oo NS *k Dellpe \ T dt
S @l sl < [ (o) o
JEZ 0
When g = 400 we make the usual modification. Our result is proved. m

Remark 3. We observe that the spaces Cf,i ’f’k are independent of the specific selection of ¢ € A
satisfying the assumption of Theorem 3.

Remark 4. In the case d =1, W = Zs, a > —% and

e e R ]

we can characterize the Besov—Dunkl spaces by differences using the Dunkl translation operators.
Observe that

{¢€A:ka(¢2ju)(z) =1,V1i<u<2,Vzx ER} CH,

JEZ

z‘2a+1

where H = {¢ € Si(R): +O° d(z)dpe(z) = 0} with dpu(z) = mdm and Sy(R) the
space of even Schwartz functions on R. Then we can assert from Theorem 3 and [4, Theo-
rem 3.6] that for 1 < p < 400, 1 < ¢ < 400 and 0 < # < 1 we have

7k — ?
BDJ¥ = BD”% ¢ BDEY,,

where BDg:% is the subspace of functions f € LP(ju,) satisfying
1
+oo q d q
</ (w,,,a(:};)(x)> $>q <4oo if g< +too
0 x x

< 400 if ¢ =400,

and

with wpo(f)(z) = ||72(f) + 7=2(f) — 2f||p,a- For the space EDQ’% we replace wy o (f)(z) by

Wp.a()() = 72(f) = fllp.a-
Note that when f is an even function in LP(u,) we have 7,(f)(y) = 7—z(f)(—y) for z,y € R,
then we get

f € BDY « f € BDVY,
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4 Integrability of the Dunkl transform of function
in Besov—Dunkl space

In this section, we establish further results concerning integrability of the Dunkl transform of
function f on RY, when f is in a suitable Besov—Dunkl space.
In the following lemma we prove the Hardy—Littlewood inequality for the Dunkl transform.

Lemma 1. If f € LY(RY) for some 1 < p <2, then

L JalPo D0 BIE (@) P a)de < el 1] (1)

Proof. To see (11) we will make use of the Marcinkiewicz interpolation theorem (see [20]). For
fer? (RY) with 1 < p < 2 consider the operator

L)) = 220D F(f)(w), =R

For every f € L?(R?) we have from Plancherel’s theorem

1/2
L T Qde = ||F :Cil : 12
( [ e s 1Fe(Plo = e 1 e 1)
Moreover, according to (1) and (2) we get for A €]0, +00) and f € LL(R9)
/ _wi(z) o w(@)
ertc()@) [ 0D D)2 D 204D
+oo 2y+d—1
< C/ % r y dr < ¢ Hf‘l,k (13>
() 20+ D 104D A

Hence by (12) and (13) £ is an operator of strong-type (2,2) and weak-type (1,1) between the
spaces (RY, wy,(z)dz) and (RY, —2&)__ga).

d
Hx”4(’y+§)
Using Marcinkiewicz interpolation’s theorem we can assert that £ is an operator of strong-
type (p,p) for 1 < p < 2, between the spaces under consideration. We conclude that

pM — 2(v+2)(p—2) P p
D@ s /.t F() @) Pun(e)de < el fI5

thus we obtain the result. [ |

Now in order to prove the following two theorems we denote by A the subset of functions 10}
in A such that

Ge> 0 | Fl(@)@) zclel? i 1< o] <2. (14)
Let 8> 0and 1 < p,q < +oo. From Theorem 2 we have obviously for all ¢ € .Z,

BDIK c coPr. (15)
For 1 < p < 2 we take p’ such that %—i—l% = 1. We recall that Fi(f) € Lil (RY) for all f € LE(RY).

20+ 9)

Theorem 4. Let 1 <p <2. If f€ BD,,” , then

Fi(f) € Ly(RY).
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2+%) ~
Proof. Let f € BD,," " owith 1 < p < 2. For ¢ € A we can write from (6) and for
t € (0,400), Fr(f *k ¢t)( ) = Fr(f) (@) Fr(o)(z), a.e. 2 € RY From Lemma 1 we obtain

dy(p—
/ 5 () @) P Fr (@) (@) |2 |POF DD wy (2)dz < el f 1l

By (14) we get | Fi(¢¢)(z)| > c|[tz||? if 1 < |tx|| < 2, then we can assert that

1/p
12 ([ ) |fk(f>(x)‘p‘xHQ(’H‘g)(P—Q)-‘erwk(x)dJ}) < || f *k &tllp k- (16)
i<l=zl<%

Then by Hélder’s inequality, (1) and (16) we have

1
v

2
b p
[ el F ) @) un(a)do < T ( / P 20+ ) =2)+7] 7«2v+d—1dr>
;S”CCHS;

2 1
t
M Ptllpn 1
2(7"’7) t
t »

Integrating with respect to t over R, applying Fubini’s theorem and using (15), it yields

TN Hr Pellpk dt
< pk O
/ |Fre(f)(x)] wg(z)dx < c/0 vt S +o0
t »
This complete the proof of the theorem. |

Theorem 5. Let 6 >0 and 1 <p<2. If f e BDg’fo, then
d
i) forp#1and0< < W we have

2 d
(7+§)p <S<p,;
Bp+2(v+35)p—1)

Fi(f) € LZ(Rd) provided that

ii) for > (7+ 20%9) e have Fi(f) € LE(RY).

Proof. Let f € Bngoo with 1 <p<2and¢€ A.
d
i) Suppose that p# 1 and 0 < 8 < w. Using (3) and (6) we have for t € (0, +00)

17k (f ke @)llpr e = 1 Fk(f) Fr(@e)lpr ke < €llf sk Sellp

Then from (14) and (15) we obtain
/v
12 <ﬁ< <2 () (@) [|2)* wk(x)daf> < c|lf #k Pellps < et (17)
1o ali<2

d /
Let s € ]M,p’]. Since Fi(f) € L¥ (RY), we have only to show the case s # p/. For

Bp+2(v+2)(p-1)
t > 1 put Gy the set of  in R? such that tl/ < lz|| < By Holder’s inequality, (1) and (17)

we have

/ Bl (@)[* el () da
Gt

tl/s
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) </Gt ‘}-k(f)u)’p,kuwwk(x)dx) " </Gt Hx\?/zwk(x)dm)l_;'

1-%
/S P
< ctf? </t1/s P2 dT‘) < ot 209G ),
1

+1/s

Integrating with respect to t over (0,1) and applying Fubini’s theorem, it yields

1
/n RN @ e < [ < o,
z|>

Since Lil (B(0,1), wy(x)dz) C L;(B(0,1), wy(x)dx) we deduce that Fi(f) is in Lj(RY).

d
i1) Assume now [ > w. For p # 1 by proceeding in the same manner as in the proof of

i) with s = 1, we obtain the desired result.
For p = 1, using (3) and (6), we have for ¢ € (0, +00)

[Fk(f *k @) llooe = [1Fk()Fr(D0)lloo ke < Cllf *k Ptll1 -
Then from (14) and (15) we obtain

2 heFi ()l < el f *k Gellig < et (18)

where hy(z) = xi(z)||z||? with x; is the characteristic function of the set {z € R?: + < [|z|| < 2},
By Holder’s inequality, (1) and (18) we have

ﬁ FD@ el @)dr < [7F( ) e / el o ()
;S”mHS; R4

2
< Ctﬂ—Q /t T2’Y+d—2 dr < Ctﬂ—Q("/‘f’%)_l‘

t

Integrating with respect to t over (0,1) and applying Fubini’s theorem we obtain

1
[ @@ < [ 00 < o,
llz]|>1 0
Since L°(B(0,1), wy(z)dz) C Li(B(0,1), w(x)dr) we deduce that Fi(f) is in Li(R?). Our
theorem is proved. [ ]

Remark 5.

1. For 6 >0,1<p<2et1<gq<+00, using Remark 2, the results of Theorem 5 are true
for BDSF.

2(+4)

2. From Remark 2 we get BDg}fo CBD,,"

the result of Theorem 5, i7) with 1 < p < 2.

d
for g > w. Using Theorem 4 we recover

3. Let 6 >2(y+ g), by Theorem 5, i7) we can assert that
i) BD/i’fo is an example of space where we can apply the inversion formula;
i7) BDf”fo is contained in Li(R?%) N L$°(RY) and hence is a subspace of LZ(R?). By (4)

. B,k
we obtain for f € BDy",

W@ = [ FlDOBlie. OBul=in uie)ds,  a.y R
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