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Abstract. The structure theory for the quadratic algebra generated by first and second
order constants of the motion for 2D second order superintegrable systems with nondegene-
rate (3-parameter) and or 2-parameter potentials is well understood, but the results for the
strictly 1-parameter case have been incomplete. Here we work out this structure theory
and prove that the quadratic algebra generated by first and second order constants of the
motion for systems with 4 second order constants of the motion must close at order three
with the functional relationship between the 4 generators of order four. We also show that
every 1-parameter superintegrable system is Stäckel equivalent to a system on a constant
curvature space.
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1 Introduction

A classical second order superintegrable systemH =
∑

ij gijpipj+V (x) on an n-dimensional local
Riemannian manifold is one that admits 2n− 1 functionally independent symmetries Lk(x · p),
k = 1, . . . , 2n − 1 with L1 = H, that are at most second order polynomials in the momenta pi.
(Further, at least one Lh = σaij

h (x)pipj + Wh(x) with h > 1 must be exactly second order.)
That is, {H,Lk} = 0 where

{f, g} =
n∑

j=1

(∂xjf∂pjg − ∂pjf∂xjg)

is the Poisson bracket for functions f(x,p), g(x,p), Here 2n − 1 is the maximum possible
number of such symmetries, For the case n = 2 The structure of the Poisson algebra generated
by the symmetries has been the subject of great current interest. For potentials depending
non-trivially on 2 or 3 parameters, see [1], for a precise definition, it has been shown that the
algebra is finite-dimensional and closes at order six in the momenta. All such algebras have
been classified, as have been all spaces and potentials that give rise to them [2, 3]. Similarly all
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degenerate 1-parameter potential systems are known via case-by case classification as well as
the associated Poisson algebras, [4]. The number of true 1-parameter, not just a restriction of
a 3-parameter potential, systems is 15 (6 in complex flat space, 3 on the complex 2-sphere and
one for each of the 4 Darboux spaces). Under the Stäckel transform that maps superintegrable
systems into equivalent systems on other manifolds, these divide into 6 equivalence classes.
However information about the structures of the corresponding algebras are known only by
a case by case listing and the mechanisms by which they close have never been worked out.
Some results for 1-parameter potentials were reported in [1] but although the results are correct
the 1-parameter proofs are incomplete. Here we work out the structure theory and prove that
the quadratic algebra generated by first and second order constants of the motion for systems
with 4 second order constants of the motion must close at order three and must contain a Killing
vector. Furthermore we show that there must be a polynomial relation among the symmetries
at order four. It is important to develop methods for understanding these structures that can
be extended to structures for n > 2 where the analysis becomes more complicated, and this
approach should point the way.

We treat only classical superintegrable systems here, though the corresponding (virtually
identical) results for the quantum systems follow easily [5]. In both the classical and quantum
cases the symmetry algebras and their representations have independent interest [6, 7, 8, 9,
10, 11, 12, 13, 14, 15]. Also, there are deep connections with special functions and orthogonal
polynomials, in particular Wilson polynomials [16, 17].

As an example, consider the classical Hamiltonian on the two sphere

H = J 2
1 + J 2

2 + J 2
3 +

a3

s2
3

,

where the Ji are defined by J3=s1ps2−s2ps1 and cyclic permutation of indices, and s2
1+s2

2+s2
3=1.

If we seek all first and second order constants of the motion for this classical Hamiltonian, we
find three possibilities in addition to H itself viz.

A1 = J 2
1 +

a3

2s2
3

(
1 + s2

2 − s2
1

)
, A2 = J1J2 −

a3s1s2

s2
3

, X = J3.

The set of 4 symmetries X 2, H, A1 and A2 is linearly independent, but functionally dependent
via the fourth order identity

A1

(
H−A1 −X 2

)
−A2

2 −
a3

2
(
X 2 +H

)
+

a2
3

4
= 0,

They satisfies the Poisson algebra relations

{X ,A1} = −2A2, {X ,A2} = −H+ X 2 + 2A1, {A1,A2} = −X (2A1 + a3),

so the algebra closes at order three. We will show that this structure is typical for all 1-parameter
potentials that are not just restrictions of 3-parameter potentials, that is there is always a Killing
vector (a first order constant of the motion), the algebra always closes at order three, and there
is always a fourth order relation between the 4 generators.

The situation changes drastically for the two sphere Hamiltonian with nondegenerate poten-
tial

V =
a1

s2
1

+
a2

s2
2

+
a3

s2
3

,

where s2
1 + s2

2 + s2
3 = 1. The classical system has a basis of symmetries

L1 = J 2
1 + a2

s2
3

s2
2

+ a3
s2
2

s2
3

, L2 = J 2
2 + a3

s2
1

s2
3

+ a1
s2
3

s2
1

, L3 = J 2
3 + a1

s2
2

s2
1

+ a2
s2
1

s2
2

,
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where H = L1 +L2 +L3 + a1 + a2 + a3 and the Ji are defined by J3 = s1ps2 − s2ps1 and cyclic
permutation of indices. The classical structure relations are

{L1,R} = 8L1(H+ a1 + a2 + a3)− 8L2
1 − 16L1L2

− 16a2L2 + 16a3(H+ a1 + a2 + a3 − L1 − L2),

{L2,R} = −8L2(H+ a1 + a2 + a3) + 8L2
2 + 16L1L2

+ 16a1L1 − 16a3(H+ a1 + a2 + a3 − L1 − L2),

with {L1,L2} = R and

R2 − 16L1L2(H+ a1 + a2 + a3) + 16L2
1L2 + 16L1L2

2 + 16a1L2
1 + 16a2L2

2

+ 16a3(H+ a1 + a2 + a3)2 − 32a3(H+ a1 + a2 + a3)(L1 + L2) + 16a3L2
1

+ 32a3L1L2 + 16a3L2
2 − 64a1a2a3 = 0.

Now there is no longer a first order symmetry but 3 second order symmetries. The algebra
generated by these symmetries and their commutators now closes at order 6, [18]. The com-
mutator R cannot be expressible as a polynomial in the generators, but R2 and commutators
of R with a generator can be so expressed. This 3-parameter system is called nondegenerate.
Note that our 1-parameter potential is a restriction of the nondegenerate potential, but that the
structure of the symmetry algebra has changed drastically.

On the other hand, the system with the 1-parameter potential

V =
a

s2
1

+
a

s2
2

+
a

s2
3

,

i.e., the restriction of the nondegenerate potential to the case a = a1 = a2 = a3 has a symmetry
algebra that is exactly the restriction of the algebra for the nondegenerate case. Further, any
2-parameter potentials obtained by restricting the nondegenerate potential can be shown not to
introduce symmetries in addition to those obtained by obvious restriction from the symmetry
algebra for the nondegenerate case. We will show that these examples are typical for 2D second
order superintegrable systems and will clarify the possible structures for the symmetry algebras
in the degenerate cases.

2 Background

Before proceeding to the study of superintegrable systems with potential, we review some basic
facts about second order symmetries of the underlying 2D complex Riemannian spaces. It is
always possible to find a local coordinate system (x, y) ≡ (x1, x2) defined in a neighborhood of
(0, 0) on the manifold such that the metric takes the form

ds2 = λ(x, y)(dx2 + dy2) = λ dz dz, z = x + iy, z = x− iy,

and the Hamiltonian is H = (p2
1 + p2

2)/λ + V (x, y) = H0 + V , where V is the potential function.
We can consider a second order symmetry (constant of the motion) as a quadratic form L =

2∑
i,j=1

aij(x, y)pipj +W (x, y), aij = aji, that is in involution with the Hamiltonian H: {H,L} = 0.

A second order Killing tensor L0 =
2∑

i,j=1
aij(x, y)pipj is a symmetry of the free Hamiltonian H0:

{H0,L0} = 0. The Killing tensor conditions are

aii
i = −λ1

λ
ai1 − λ2

λ
ai2, i = 1, 2;

2aij
i + aii

j = −λ1

λ
aj1 − λ2

λ
aj2, i, j = 1, 2, i 6= j. (1)
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From these conditions we easily obtain the requirements

2a12
1 = −

(
a11 − a22

)
2
, 2a12

2 =
(
a11 − a22

)
1
.

From the integrability conditions for these last equations we see that

∆a12 = 0, ∆
(
a11 − a22

)
= 0, ∆ = ∂2

x + ∂2
y .

In order for a form L = L0 + W to be a symmetry of the system H = H0 + V it is necessary
and sufficient that L0 be a Killing tensor and that W satisfy the equation

{H0,W}+ {V,L0} = 0.

The conditions for this are

Wi =
2∑

j=1

aijVj , i = 1, 2,

where Wi = ∂xiW , Vj = ∂xjV . Necessary and sufficient that these last two equations can be
solved is the Bertrand–Darboux condition

(V22 − V11)a12 + V12

(
a11 − a22

)
=

[(
λa12

)
1
−
(
λa11

)
2

λ

]
V1 +

[(
λa22

)
1
−
(
λa12

)
2

λ

]
V2. (2)

For a second order superintegrable system we demand that there is a Hamiltonian and 2
other second order symmetries: H, L1, L2 such that the Killing tensor parts of the 3 symmetries
are functionally independent quadratic forms. By a change of basis if necessary, we can always
assume that L1 is in Liouville form, so that the coordinates x, y associated with H, L1 are
separable. Thus, we can choose our orthogonal coordinates x, y = x1, x2 such that the quadratic
form in L1 satisfies a12 ≡ 0, a22− a11 = 1. In this system we have λ12 = 0. A second symmetry
is defined by the Hamiltonian itself: a11 = a22 = 1/λ, a12 = 0, which clearly always satisfies
equations (1). Due to functional independence, for the third symmetry L2 we must have a12 6= 0
and it is on this third symmetry that we will focus our attention in the following. Now the
integrability conditions can be rewritten as

λ12 = 0, Λ ≡ λ22 − λ11 − 3λ1A1 + 3λ2A2 −
(
A11 + A2

1 −A22 −A2
2

)
λ = 0, (3)

where A = ln a12, the subscripts denote differentiation and A satisfies A11 +A22 +A2
1 +A2

2 = 0.
Equivalently,

λ12 = 0, a12
11 + a12

22 = 0, a12(λ11 − λ22) + 3λ1a
12
1 − 3λ2a

12
2 +

(
a12

11 − a12
22

)
λ = 0. (4)

In this second form a fundamental duality becomes evident [19, 1] (with a typo in the second
reference): If λ(x, y), a12(x, y) satisfy (4) then

λ̃(x, y) = a12

(
x + iy√

2
,
−ix− y√

2

)
, ã12(x, y) = λ

(
x + iy√

2
,
−ix− y√

2

)
also satisfy these conditions. Thus, the roles of metric and symmetry can be interchanged, and
a second interchange returns the system to its original state.

Another key equation is the integrability condition derived from consideration of Λ12 = 0:

5L(1)λ1 − 5L(2)λ2 +
(
L

(1)
1 − L

(2)
2 + 3A1L

(1) − 3A2L
(2)
)
λ = 0, (5)



2D Superintegrable Systems with 1-Parameter Potentials 5

where L(1) = A112−A12A1, L(2) = A122−A12A2. We will derive this in detail in Section 5. The
dual version of condition (5) is the integrability condition.

5K(1)a12
1 − 5K(2)a12

2 +
(
K

(1)
1 −K

(2)
2 + 3ρ1K

(1) − 3ρ2K
(2)
)
a12 = 0, (6)

where ρ = ln λ and K(1) = ρ222 − 2ρ11ρ2 − ρ22ρ2 + ρ2
1ρ2, K(2) = −ρ111 + 2ρ22ρ1 + ρ11ρ1 − ρ2

2ρ1.
Note that K(1) = K(2) = 0 is the condition that λ is a constant curvature space metric. Indeed,
this is exactly the necessary and sufficient condition that ∆(lnλ)/λ = c where c is a constant.

Koenigs [19] employed condition (6) to show that the only spaces admitting at least 6 li-
nearly independent constants of the motion were constant curvature spaces. Indeed in that case
there are 3 functionally independent symmetries a12(x, y), hence 3 equations (6). That is only
possible if the coefficients of a12

1 , a12
2 and a12 vanish identically. Hence K(1) = K(2) = 0 and

λ is a constant curvature metric. Koenigs did not make use of condition (3), but from our point
of view this condition is more fundamental.

Using our special coordinates and the Killing equations (1) we can write the Bertrand–
Darboux equations (2) in the form:

V12 = −
[
λ2

λ

]
V1 −

[
λ1

λ

]
V2, V22 − V11 =

[
2λ1

λ
+ 3A1

]
V1 −

[
2λ2

λ
+ 3A2

]
V2. (7)

In [1] we have shown that this system admits a nondegenerate i.e. 3-parameter (the maximum
possible) potential V (x, y) if and only if the potential is the general solution of the canonical
system

V12 = A12(x, y)V1 + B12(x, y)V2, V22 − V11 = A22(x, y)V1 + B22(x, y)V2, (8)

whose integrability conditions are satisfied identically. Thus this system will admit a 4-dimen-
sional solution space, with one dimension corresponding to the trivial addition of an arbitrary
constant. Each solution is uniquely determined at a point (x0, y0) by prescribing the values V ,
V1, V2, V11. In our special coordinates we have

A12 = −λ2

λ
, B12 = −λ1

λ
, A22 = 2

λ1

λ
+ 3A1, B22 = −2

λ2

λ
− 3A2. (9)

We will say little about 2-parameter potentials other than pointing out, as we already showed
in [1] that they are just restrictions of 3-parameter potentials. Their canonical equations take
the form

V12 = A12(x, y)V1 + B12(x, y)V2, V22 = A22(x, y)V1 + B22(x, y)V2,

V11 = A11(x, y)V1 + B11(x, y)V2.

By relabeling coordinates, if necessary, we can always assume that the canonical equations
for 1-parameter potentials take the form

V1 = B1(x, y)V2, V22 − V11 = B22(x, y)V2, V12 = A11B12(x, y)V2,

where the integrability conditions for these equations are satisfied identically. This system will
admit a 2-dimensional solution space, with one dimension corresponding to the trivial addition
of an arbitrary constant. Each solution is uniquely determined at a point (x0, y0) by prescribing
the values V , V2. In our special coordinates we have

B12 = −λ2

λ
B1 − λ1

λ
, B22 =

(
2
λ1

λ
+ 3A1

)
B1 − 2

λ2

λ
− 3A2. (10)
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3 The Stäckel transform

The importance of the Stäckel transform in superintegrability theory is based on the following
observation. Suppose we have a superintegrable system

H =
p2
1 + p2

2

λ(x, y)
+ V (x, y)

in local orthogonal coordinates, with k-parameter potential V (x, y), 0 ≤ k ≤ 3 and suppose
U(x, y) is a particular choice of this potential for fixed parameters, nonzero in an open set.
Then the transformed system

H̃ =
p2
1 + p2

2

λ̃(x, y)
+ Ṽ (x, y), λ̃ = λU, Ṽ =

V

U
,

is also superintegrable. Indeed, let S =
∑

aijpipj + W = S0 + W be a second order symmetry
of H and SU =

∑
aijpipj + WU = S0 + WU be the special case of this that is in involution with

(p2
1 + p2

2)/λ + U . Then it is straightforward to verify that

S̃ = S0 −
WU

U
H +

1
U
H (11)

is the corresponding symmetry of H̃. Since one can always add a constant to a potential, it
follows that 1/U defines an inverse Stäckel transform of H̃ to H. See [20, 21, 22] for many
examples of this transform. We say that two superintegrable systems are Stäckel equivalent if
one can be obtained from the other by a Stäckel transform. Note from (11) that the off-diagonal
elements a12 = a21 of a symmetry remain invariant under the Stäckel transform.

If V (x, y) is a nondegenerate potential, i.e. the general (4-dimensional) solution of canoni-
cal equations (8) and U(x, y) is a particular solution of these equations, then Ṽ (x, y) is also
a nondegenerate potential satisfying the canonical equations

Ṽ22 = Ṽ11 + Ã22Ṽ1 + B̃22Ṽ2, Ṽ12 = Ã12Ṽ1 + B̃12Ṽ2,

where

Ã12 = A12 − U2

U
, Ã22 = A22 + 2

U1

U
, B̃12 = B12 − U1

U
, B̃22 = B22 − 2

U2

U
.

Similarly, if V (x, y) is a 1-parameter potential satisfying canonical equations

V1 = B1(x, y)V2, V22 − V11 = B22(x, y)V2, V12 = B12(x, y)V2,

and U(x, y) is a particular nonzero instance of this potential then Ṽ (x, y) is also a 1-parameter
potential satisfying the canonical equations

Ṽ1 = B̃1(x, y)Ṽ2, Ṽ22 − Ṽ11 = B̃22(x, y)Ṽ2, Ṽ12 = B̃12(x, y)Ṽ2,

where

B̃12 = B12 − 2B1 U2

U
, B̃22 = B22 + 2

((
B1
)2 − 1

)U2

U
, B̃1 = B1.

Note that the function B1 remains invariant under a Stäckel transform.
Now we return to study of a general superintegrable system with k-parameter potential, and

viewed in our special coordinate system. Then λ is the metric and V is the general solution
of the Bertrand–Darboux equations (7). If the integrability conditions for these equations are
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satisfied identically, then the solution space is 4-dimensional. Otherwise the dimensionality
is less. The metric λ must satisfy the fundamental integrability conditions (3) that depend
only on a12, invariant under the Stäckel transform. Now if U is a particular solution of the
Bertrand–Darboux equations (7) then it defines a Stäckel transform to a new Riemannian space
with metric µ = λU . Since a12 is invariant under the transform the fundamental integrability
conditions for µ are that same as for λ:

µ12 = 0, µ22 − µ11 = 3µ1A1 − 3µ2A2 +
(
A11 + A2

1 −A22 −A2
2

)
µ. (12)

Note that these two equations appear identical. However they have different interpretations.
The fixed metric λ satisfies (3) and is a special solution of (12). Here µ designates a k + 1-
dimensional family of solutions, of which λ is a particular special case. It follows that A satisfies
the integrability conditions for this system. There is an isomorphism between the solutions U
of (7) and the solutions µ = λU of (3). The µ are precisely the metrics of all systems that can
be obtained from the space with metric λ via a Stäckel transform.

4 Review of known results

For the most symmetric case, the potential is nondegenerate so k = 3. Then the solution space
of (12) is 4-dimensional. In [2] we used this fact to derive all metrics and symmetries that
correspond to superintegrable systems with nondegenerate potential. The possible symmetries
A = ln a12 that can appear are precisely the solutions of the Liouville equation A12 = CeA

where C is a constant. If C = 0 then the system is equivalent via a Stäckel transform to
a superintegrable system in flat space. If C 6= 0 then the system is Stäckel equivalent to the
complex 2-sphere. As is easy to verify, these systems are precisely the solutions of the system
of equations

L(1) ≡ A112 −A12A1 = 0, L(2) ≡ A122 −A12A2 = 0.

An amazing fact is that these systems are exactly the same as those derived by Koenigs in his
classification of all 2D spaces admitting at least 3 functionally independent second order Killing
tensors.

A referee has called our attention to two recent and very interesting papers by Tsiga-
nov [23, 24]. He assumes that a superintegrable system admits an orthogonal separation of
variables in some coordinate system, so that there is a related Stäckel matrix. Under this as-
sumption one can construct the action angle variables as explicit integrals. Using these Tsiganov
shows a rough duality between superintegrability and functional addition theorems. which al-
lows one to find a generating function for constants of the motion, including those higher than
second order. The Euler addition theorem for elliptic functions leads to the construction of all of
the 2D superintegrable systems with nondegenerate potential! In this sense, these potentials are
implicit in the work of Euler. This is clearly a powerful method for constructing superintegrable
systems. It doesn’t appear to yield any proof of completeness of the results or any classification
of all possible spaces that admit superintegrability and in distinction to say [2] it requires the
assumption of separation of variables.

In [1] we showed that all 2-parameter potentials were restrictions of nondegenerate potentials.
Further, assuming the correctness of Koenigs’ results we carried out a case by case analysis over
many years to find all superintegrable systems with 1-parameter potentials. We found that
all of these were restrictions of nondegenerate potentials again. However, in some cases the
restricted potential admits a Killing vector, so that the structure of the associated quadratic
algebra changes. These results were not based on a theoretical structure analysis. Our attempt
at a structure analysis, contained in [1] was incomplete and there were gaps in the proof, though
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the results are correct. Thus there is reason to use our Stäckel transform approach to revisit
this issue for 1-parameter potentials.

Finally the 0-parameter case deserves some attention, although it was already treated by
Koenigs. If we consider a 0-parameter potential system as one in which it is not possible to
admit a nonconstant potential, then it follows from our results and those of Koenigs that no
such system exists. Koenigs’ proof used complex variable techniques, very different from the
methods used here.

5 3-parameter and 2-parameter potentials

Suppose we have a 2D second order superintegrable system with zero (or constant) potential,
i.e., 3 functionally independent second order Killing tensors. Under what conditions does there
exist a superintegrable system with nondegenerate potential V such that the potential-free parts
of the symmetries agree with the given Killing tensors? To answer this we choose the special
coordinates such that the integrability conditions for the zero potential case are:

λ12 = 0, Λ ≡ λ22 − λ11 − 3λ1A1 + 3λ2A2 −
(
A11 + A2

1 −A22 −A2
2

)
λ = 0,

∆ ≡ A11 + A22 + A2
1 + A2

2 = 0,

where A = ln a12. Necessary and sufficient conditions that this system admits a nondegenerate
potential V with canonical equations

V22 = V11 + A22V1 + B22V2, V12 = A12V1 + B12V2, (13)

where Aij , Bij are given by (9), are that the integrability conditions for equations (13) are
satisfied identically. These conditions are:

T (1) ≡ 2B12
2 −B22

1 − 2A12
x −A22

2 = 0, (14)

T (2) ≡ 2B12
2 A22 −A22B22

1 −A22A12
1 − 2A12B12

1 −A22
12 + A12

22 + 2A12A12
2

+ B12A22
2 −B22

2 A12 −B22A12
2 −A12

11 = 0,

T (3) ≡ −B12A22
1 + 2A12

2 B12 + B22B12
2 −B22B22

1 − 2B12B12
1 −A22B12

1

+ A12B22
1 + B12

22 −B22
12 −B12

11 = 0.

Substituting expressions (9) into (14) we find that T (1) = 0 identically. To understand the
remaining conditions we use Λ = 0, ∆ = 0 to simplify the equations. We solve for λ111 and λ222

from Λ1 = 0, Λ2 = 0, respectively, and substitute these expressions in T (3) and T (2), respectively.
Then we solve for λ11 − λ22 from Λ = 0 and substitute this result into T (3) and T (2). Then we
find

T (3) + ∆1 = 5L(2), T (2) −∆2 = −5L(1),

or

T (3) = 5L(2) mod ∆, T (2) = −5L(1) mod ∆,

where we say F = G mod ∆ if F −G is a functional linear combination of derivatives of ∆. Thus
the superintegrable system admits a nondegenerate potential V if and only if L(1) = L(2) = 0.
This last condition exactly characterizes the spaces classified by Koenigs: flat space, the 2-
sphere, the 4 Darboux spaces, and the family we call Koenigs spaces. Thus it is a consequence
of Koenigs’ classification is that all spaces admitting 3 second order Killing tensors automatically
admit a nondegenerate potential.
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In establishing the above result we have not made use of all of the information obtainable
from the symmetry integrability conditions (12). In the identity Λ12 = 0 the second derivative
terms in λ appear in the form A12(λ22 − λ11) + · · · = 0. If A12 = 0 then L(1) = L(2) = 0 and we
have one of the spaces found by Koenigs. Suppose A12 6= 0. Then we have a new integrability
condition

Ω ≡
(

Λ12

3A12

)
12

= 0.

Solving for µ22− µ11 from Λ = 0 and substituting into Ω = 0 we obtain, after a straightforward
computation, a condition of the form

S(1)µ1 + S(2)µ2 + Sµ = 0,

where

S(1) = 5L(1) mod ∆, S(2) = −5L(2) mod ∆,

S = L
(1)
1 − L

(2)
2 + 3A1L

(1) − 3A2L
(2) mod ∆.

Thus we have the integrability condition

5L(1)µ1 − 5L(2)µ2 +
(
L

(1)
1 − L

(2)
2 + 3A1L

(1) − 3A2L
(2)
)
µ = 0. (15)

When a nondegenerate potential exists then the space of solutions of (12) is 4-dimensional
and the values of µ, µ1, µ2, µ11 can be prescribed arbitrarily at any regular point. Thus
the integrability condition (15) can hold only if L(1) = L(2) = 0. This proves that the systems
admitting a nondegenerate potential coincides with the potential free systems found by Koenigs.
The same argument goes through for the case when a 2-parameter potential exists. Then the
space of solutions of (12) is 3-dimensional and the values of µ, µ1, µ2 can be prescribed arbitrarily
at any regular point, so the integrability condition (15) can hold only if L(1) = L(2) = 0. This
proves that any 2-parameter potential must be a restriction of a nondegenerate potential, a fact
proved by a different method in [1].

6 1-parameter potentials

The theory of 1-parameter potentials is more complicated than that for nondegenerate and
2-parameter potentials, due to the possible occurrence of systems with either 4 or 3 linearly
independent second order symmetries. Suppose V (x, y) is a 1-parameter potential satisfying
canonical equations

V1 = B1(x, y)V2, V22 − V11 = B22(x, y)V2, V12 = B12(x, y)V2.

The integrability conditions for these equations are

B12
(
1−

(
B1
)2)−B1

2 −B1B1
1 −B1B22 = 0,

B12
2 −B22

1 −B1
11 −B1

1B12 −B1B12
1 = 0. (16)

In special coordinates B22, B11 are given in terms of B1 by relations (10), so the first equa-
tion (16) becomes

3
(
A2 −B1A1

)
=

B1
2 + B1B1

1

B1
+
(

λ1

λ
−B1 λ2

λ

)(
1

B1
+ B1

)
, (17)
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unless B1 ≡ 0, in which case it becomes B12 = λ1 = 0. Note also the special case B1 ≡ ±i,
which implies A2 = A1B

1.
The second equation (16) becomes

λ(λ11 + λ22)B1 + λ1λ2

(
1 +

(
B1
)2)− (λ2

1 + λ2
2

)
B1 + λλ1B

1
1

+ λλ2

(
B1

2 − 2B1
1B1

)
+ λ2

(
B1

11 + B1
1A1 + 3B1A11 − 3A12

)
= 0. (18)

Substituting (17) into the expression (10) for B22 we find

B22 =

(
λ1
λ + λ2

λ B1
)((

B1
)2 − 1

)
−
(
B1

2 + B1B1
1

)
B1

. (19)

Now we write down the involutory system of equations that determine the second order
symmetries of a 1-parameter potential system

a11
1 = −λ1

λ
a11 − λ2

λ
a12,

a11
2 = −λ2

λ
a11 +

λ2

λ

(
a11 − a22

)
− λ1

λ
a12 − 2b,(

a11 − a22
)
1

=
2
3

(
−B22 + 2

λ1

λ
B1 − 2

λ2

λ

)
a12 + 2B1b,(

a11 − a22
)
2

= −2b,

a12
1 = b,

a12
2 =

1
3

(
−B22 + 2

λ1

λ
B1 − 2

λ2

λ

)
a12 + B1b,

b1 = −1
2
a11

2 − 1
2
∂x

(
λ1

λ
a12 +

λ2

λ
a22

)
,

b2 = −2B1b1 − 2B1
1b + ∂y

([
1
3
(2

λ1

λ
B1 − 2

λ2

λ
−B22

]
a12

)
. (20)

There is one additional condition, obtained by differentiating one of the Killing equations (1),
that we have not made use of in obtaining the involutory system:

0 = 2a12
22 + a22

12 +
(

λ1

λ
a11 +

λ2

λ
a12

)
2

. (21)

When the indicated differentiations and substitutions are carried out, the right hand side of each
of these equations can be expressed in terms of the variables a11, a11 − a22, a12, b = a12

1 alone,
although the expanded terms are lengthy. We think of B1, B22 as explicit given functions.

Note that though this system is in involution, the system without the added variable b = a12
1

is not. This demonstrates that a symmetry is uniquely determined by the values of a11, a22,
a12 and a12

1 at a regular point; the values of a11, a22, a12 may not suffice. By assumption,
the system has 3 functionally independent second order symmetries. However, the involutory
system indicates that there may, in fact, be 4 linearly independent second order symmetries,
but obeying a functional dependence relation.

Now we require that the system (20), (21) admit 4 linearly independent solutions. Then
at a regular point there exists a unique solution with any prescribed values of a11, a22, a12, b
and the integrability conditions for the system are satisfied identically in these variables. To
investigate the properties of this system we expand the condition (21) in terms of the basic
4 variables. The result takes the form D1(x, y)a12 +D2(x, y)b = 0, where the Dj do not depend
on the basic variables. Indeed,

D2 = 4B1B22 − 6
(
B1B1

1 + B1
2

)
− λ2B

1 + 9
λ1

λ
+

λ1

λ

(
B1
)2 − 9

λ2

λ

(
B1
)3

,
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with a similar but more complicated formula for D1. Since the variables can be prescribed
arbitrarily at a regular point (x, y), the only way for condition (21) to hold is for D1 = D2 = 0.
We solve for B1B1

1 +B1
2 from the equation D2 = 0 and substitute this result into (19) to obtain

an updated expression for B22 that is independent of A12:

B22(x, y) :=
1
2

(
−λ2B

1 + λ1

(
B1
)2 + 3λ2

(
B1
)3 − 3λ1

B1λ

)
.

(Here we are assuming B1 6= 0. This special case will be treated separately.) We substitute
this updated expression for B22 in all of the previous equations, and eliminate B1

2 from all
expressions, including (18). The condition D1 = 0 is now satisfied identically with the updated
expressions. The only remaining constraints are the integrability conditions for the symmetry
equations (20). These conditions are satisfied identically except for ∂1b2 = ∂2b1 which takes the
form E1(x, y)a12 + E2(x, y)b = 0, where the Ej do not depend on the basic variables. Thus
Ej(x, y) = 0 for the case where 4 linearly independent symmetries exist.

In the case where the space of symmetries is strictly 3-dimensional, the integrability conditions
will no longer be satisfied identically, since there is a linear condition satisfying by the variab-
les a11, −a22, a12, b Thus, for example the condition D1(x, y)a12 + D2(x, y)b = 0 should now be
considered as a constraint relating a12 and b.

These integrability equations for the 4-dimensional and 3-dimensional cases are rather compli-
cated and their geometric significance is not clear, so we will pass to a simpler, Stäckel transform
approach, while making use of the partial results we have obtained via the direct integrability
condition attack.

7 The Stäckel transform for 1 parameter potentials
with 4 linearly independent symmetries

To shed more light on this case we follow the approach of Section 5. That is, we choose special
coordinates and restrict our attention to the symmetries for which a12 6= 0, essentially a two-
dimensional vector space. Since B1 and a12 are invariant under Stäckel transformations and the
equations for the symmetries and the metric λ depend only on these variables, these equations
are identical for all metrics µ describing systems Stäckel equivalent to the original one. The
basic equations are the symmetry conditions

µ12 = 0, Λ ≡ µ22 − µ11 − 3µ1A1 + 3µ2A2 −
(
A11 + A2

1 −A22 −A2
2

)
µ = 0,

∆ ≡ A11 + A22 + A2
1 + A2

2 = 0,

where A = ln a12, and the integrability conditions for the 1-parameter potential V , where
V1 = B1V2. Writing B1 = B for short and using the partial results obtained in the preceding
section for simplification, we can write the first integrability condition (17) for the potential as

µ1 −Bµ2 + Dµ = 0, D = 3B
BA1 −A2

B2 + 1
+

B2 + BB1

B2 + 1
, (22)

and the second integrability condition (18) as

µ11µ
(
B3 + 3B

)
− 2µ22µB3 − µ2

1

(
B3 + 3B

)
+ µ2

2

(
3B3 + B5

)
+ µ1µ

(
B2B1 − 3B1

)
− 2µ2B2B11 = 0. (23)

These equations have a different interpretation than those of the last section. First of all they
hold for 2 distinct functions a12 whose ratio is nonconstant. Secondly, the space of solutions µ of
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this system is 2-dimensional. Thus at any regular point (x, y) there is a unique solution µ(x, y)
taking on prescribed values µ, µ2 at the point. Use of (22) and differentiation yields the linear
expressions

µ1 = Bµ2 −Dµ, µ11 = (B1 −DB)µ2 +
(
D2 −D1

)
µ, µ22 =

D2

B
µ +

D −B2

B
µ2, (24)

for µ1, µ11, µ22 in terms of µ and µ2.
There are additional integrability and compatibility conditions for the system (22), (22) that

constrain A and B. The only nontrivial integrability condition for the subsystem µ12 = 0,
µ1 −Bµ2 + Dµ = 0, is[(

D2

B

)
1

− DD2

B

]
µ +

[
D2 +

(
D −B

B

)
1

]
µ2 = 0.

Since this must hold for all solutions µ we have the 2 conditions(
D2

B

)
1

− DD2

B
= 0, D2 +

(
D −B2

B

)
1

= 0. (25)

The requirement that the subsystem be compatible with Λ = 0 is(
D2

B
−D2 + D1 + 3A1D − C

)
µ +

(
D −B2

B
+ DB −B1 − 3A1B + 3A2

)
µ2 = 0,

i.e.,

D2

B
−D2 + D1 + 3A1D − C = 0,

D −B2

B
+ DB −B1 − 3A1B + 3A2 = 0, (26)

where C = A11 + A2
1 −A22 −A2

2. We already knew the second of conditions (26) but, from the
analysis of the previous section, the requirement of a 4-dimensional space of symmetries yields
the identity B2 + BB1 = B(A2 −BA1), so D has the alternate expression

D = −2
B2 + BB1

B2 + 1
.

This is the full set of integrability conditions.
The key to understanding these systems is the first order condition (22). We will show that

this equation, together with other integrability conditions, implies that each system in the family
admits a Killing vector, which is also a first order symmetry of the system. To see this, consider
the condition that the form X = ξp1 + ηp2 be a Killing vector. This condition is simply that
the Poisson bracket of X and the free Hamiltonian H0 vanish, i.e.,{

ξp1 + ηp2,
p2
1 + p2

2

µ

}
= 0.

Thus the coefficients of p2
1, p2

2, p1p2 in the resulting expression must vanish:

2ξ1µ + ξµ1 + ηµ2 = 0, 2η2µ + ξµ1 + ηµ2 = 0, η1 + ξ2 = 0.

We find that

η1 = −ξ2, ξ1 = η2, where 2ξ1µ + ξµ1 + ηµ2 = 0.

In order that (22) be interpretable as the Killing vector requirement there must exist an integra-
ting factor Q such that Qµ1−QBµ2 + QDµ = 0 and Q = ξ, η = −QB, ξ1 = QD/2. Further we
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must require QD/2 = η2 = −Q2B −QB2 = ξ1 = Q1, and Q2 = ξ2 = −η1 = Q1B + QB1. Thus
we obtain the system

(lnQ)1 = D/2, (lnQ)2 = B1 + BD/2

whose integrability condition is

D2 = 2B11 + B1D + BD1, or
(
1 + B2

)
(B11 + B22)− 2B

(
B2

1 + B2
2

)
= 0. (27)

This condition is a consequence of (23) and the second integrability condition (25). Indeed,
using (24) to express µ11, µ1, µ22 in terms of µ2 and µ in (23) we find that the resulting
expression takes the form F (x, y)µ2 = 0, so F (x, y) = 0. Solving for B12 in each of F (x, y) = 0
and (25), and equating the results, we get exactly the desired condition (27).

We have shown that X = ξp1 + ηp2 = Qp1 −QBp2 is a Killing vector. Moreover X is a first
order symmetry, since

{X ,H} = {X ,H0}+ {X , V } = −Q(V1 −BV2) = 0.

Now we check the special cases B = 0,±i. The cases B = ±i are essentially the same.
Choosing B = −i, by interchanging x and y if necessary, we see that the second integrability
condition for the potential gives the condition ∆ ln(λ) = 0, i.e., the condition that λ is a flat space
metric. Solving this equation, and identifying solutions that are equivalent under Euclidean
transformations and dilations, we find three cases:

I : λ = 1, II : λ = ey, III : λ = x2 + y2.

For the first case a straightforward computation yields the Killing vector X = p2 − ip1 and the
potential V = α(y − ix). This is the superintegrable system [E4] in [4]. For case II the Killing
vector is X = e−(y+ix)/2(p2 − ip2) and the potential is V = αe−(y−ix) (corresponding to the
superintegrable system [E14] in [4]). For case III the Killing vector is p2− ip1 and the potential
is V = 1/(y − ix) (corresponding to the superintegrable system [E13] in [4]). In all these cases,
A12 = 0. If B = 0 then λ1 = 0 and the Killing vector is p1. Thus V = V (y) and all metrics µ
Stäckel equivalent to λ will satisfy µ1 = 0, so the fundamental equations are

µ1 = 0, Λ ≡ Λ ≡ µ22 + 3µ2A2 −
(
A11 + A2

1 −A22 −A2
2

)
µ = 0.

These equations must have a 2-dimensional vector space of solutions, so that µ and µ2 can be
prescribed arbitrarily at a regular point. Since Λ1 ≡ 3µ2A12 − C1µ = 0 where C = A11 + A2

1 −
A22 −A2

2, this implies A12 = C1 = 0. Thus the spaces are contained in our earlier classification.

Theorem 1. If a 2D superintegrable system with a 1-parameter potential admits 4 linearly
independent second order symmetries, then it also admits a Killing vector. One of the second
order symmetries is the square of the Killing vector.

Now we return to the generic case where B 6= 0,±i. We show that B(x, y) = B1 always
factors, so that V1 = X(x)Y (y)V2.

Lemma 1.

B12 =
B1B2

B
so (lnB)12 = 0 and B = X(x)Y (y).

Proof. We solve for B12 ≡ B1
12 from (23), i.e., from F (x, y) = 0. Then we solve for B11

from (27) and substitute this result into our expression for B12. We obtain B12 = B1B2/B. �
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Since X = Qp1−QBp2 is a Killing vector, X 2 is a second order symmetry with −a12 = Q2B.
Thus A = ln a12 = 2 lnQ + lnB where (lnQ)1 = D/2, (lnQ)2 = B1 + BD/2. From this it is
straightforward to compute the derivatives of A in terms of B and its derivatives. We have

A1 = −2
B2 + BB1

B2 + 1
+

B1

B
, A2 = 2B1 − 2

(B2 + BB1)B
B2 + 1

+
B2

B
,

A12 =
2B22 + B2B1 + B12

B2 + 1
+

4(B2 + BB1)BB2

(B2 + 1)2
+

B12B −B2B1

B2
,

with analogous expressions for A112 and A122. Next we substitute B = X(x)Y (y) into each
of these expressions, and in the identity (27), and then compute L(1) = A112 − A12A1 and
L(2) = A122 − A12A2 in terms of X(x), Y (y). Solving for X ′′(x) from the identity (27) and
substituting this expression into L(1), L(2), we find

L(1) = L(2) = 0.

Theorem 2. If 2D superintegrable system with a 1-parameter potential αV admits 4 linearly
independent second order symmetries then there exists a superintegrable system with nondege-
nerate potential Ṽ (α, β, γ) such that the restriction Ṽ (α, 0, 0) = αV and the restricted second
order symmetries of the nondegenerate system agree with a three-dimensional subspace of the
second order symmetries for the 1-parameter potential.

For future use we note that the two-dimensional space of nonzero symmetries a12 (excluding
the zero function) does not necessarily have the property that a12 satisfies the Liouville equation
∆(ln a12) = ca12. However, in the generic case B 6= 0,±i we have shown that there is a Killing
vector X = ξp1 + ηp2 and that the associated a12 = ξη from the symmetry X 2 is nonzero and
does satisfy the Liouville equation.

8 The Stäckel transform for 1-parameter potentials
with exactly three linearly independent symmetries

Again we follow the approach of Section 5 and restrict our attention to the symmetries for
which a12 6= 0, now a one-dimensional vector space. Since B1 and a12 are invariant under
Stäckel transformations and the equations for the symmetries and the metric λ depend only
on these variables, these equations are identical for all metrics µ describing systems Stäckel
equivalent to the original one. The basic equations are the symmetry conditions

µ12 = 0, Λ ≡ µ22 − µ11 − 3µ1A1 + 3µ2A2 −
(
A11 + A2

1 −A22 −A2
2

)
µ = 0,

∆ ≡ A11 + A22 + A2
1 + A2

2 = 0,

where A = ln a12, and the integrability conditions for the 1-parameter potential V = V (x, y):

V1 = B1(x, y)V2, V22 − V11 = B22(x, y)V2, V12 = B12(x, y)V2.

The integrability conditions for these equations are

B12
(
1−

(
B1
)2)−B1

2 −B1B1
1 −B1B22 = 0,

B12
2 −B22

1 −B1
11 −B1

1B12 −B1B12
1 = 0. (28)

In a special coordinate system B22, B11 are given in terms of B1 by relations (10), so the first
equation (28) becomes

µ1 −B1µ2 + Dµ = 0, D =
B1

2 + B1B1
1 − 3B1(A2 −B1A1)
1 + (B1)2

. (29)
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(The cases B1 ≡ 0,±i cannot occur because we have seen that they lead to 4 independent
symmetries.) The second equation becomes

µ(µ11 + µ22)B1 + µ1µ2

(
1 +

(
B1
)2)− (µ2

1 + µ2
2

)
B1 + µµ1B

1
1

+ µµ2

(
B1

2 − 2B1
1B1

)
+ µ2

(
B1

11 + B1
1A1 + 3B1A11 − 3A12

)
= 0.

Substituting (29) into the expression (10) for B22 we find

B22 =

(µ1

µ + µ2

µ B1
)((

B1
)2 − 1

)
−
(
B1

2 + B1B1
1

)
B1

.

and, as before,

B12 = −µ2

µ
B1 − µ1

µ
.

A key equation for this approach is the integrability condition (15) of Section 5, derived from
consideration of Λ12 = 0:

5L(1)µ1 − 5L(2)µ2 +
(
L

(1)
1 − L

(2)
2 + 3A1L

(1) − 3A2L
(2)
)
µ = 0. (30)

Recall that L(1) = A112−A12A1, L(2) = A122−A12A2. Here L(1) = L(2) = 0 is the condition that
the system admits a nondegenerate potential. We have already determined all such 1-parameter
systems: they are just the restrictions of nondegenerate potential systems to a single parameter.
Our interest is in finding systems that are not simply restrictions, if such systems exist. Thus
we require that the coefficients of µ1, µ2, µ in (30) are all nonvanishing. (Since (30) must admit
a 2-dimensional solution space, if any one coefficient vanishes then all vanish.) Setting B = B1

for short, we rewrite conditions (29) and (30) in the form

µ1 −Bµ2 +
B2 + BB1 − 3B(A2 −BA1)

B2 + 1
µ = 0,

µ1 −
L(2)

L(1)
µ2 +

L
(1)
1 − L

(2)
2 + 3A1L

(1) − 3A2L
(2)

5L(1)
µ = 0. (31)

Since there are solutions with arbitrarily chosen values of µ2, µ at a point, these equations must
be identical: µ1 −Bµ2 + Dµ = 0, where

B =
L(2)

L(1)
, (32)

B2 + BB1 − 3B(A2 −BA1)
B2 + 1

=
L

(1)
1 − L

(2)
2 + 3A1L

(1) − 3A2L
(2)

5L(1)
= D. (33)

Use of µ12 = 0 and differentiation yields the linear expressions

µ1 = Bµ2 −Dµ, µ11 = (B1 −DB)µ2 + (D2 −D1)µ, µ22 =
D2

B
µ +

D −B2

B
µ2,

for µ1, µ11, µ22 in terms of µ and µ2. Just as in the preceding section, there are additional
integrability and compatibility conditions for this system that constrain A and B. The only
nontrivial integrability condition for the subsystem µ12 = 0, µ1 −Bµ2 + Dµ = 0, is[(

D2

B

)
1

− DD2

B

]
µ +

[
D2 +

(
D −B2

B

)
1

]
µ2 = 0.
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Since this must hold for all solutions µ we have the 2 conditions(
D2

B

)
1

− DD2

B
= 0, D2 +

(
D −B2

B

)
1

= 0.

The requirement that the subsystem be compatible with Λ = 0 is(
D2

B
−D2 + D1 + 3A1D − C

)
µ +

(
D −B2

B
+ DB −B1 − 3A1B + 3A2

)
µ2 = 0,

i.e.,

D2

B
−D2 + D1 + 3A1D − C = 0,

D −B2

B
+ DB −B1 − 3A1B + 3A2 = 0,

where C = A11 + A2
1 −A22 −A2

2. Note that the second condition is already satisfied.
Since we no longer assume a 4-dimensional space of symmetries, we can no longer deduce

directly that D = −2(B2+B1B)/(1+B2). However we shall see that the assumption L(1)L(2) 6= 0
and identities (32), (33) imply this result.

Indeed we can substitute B = L(2)/L(1) into all identities and express them in terms of
A = ln A12 and its derivatives. The verification that

−2(B2 + B1B)/
(
1 + B2

)
=

L
(1)
1 − L

(2)
2 + 3A1L

(1) − 3A2L
(2)

5L(1)
= D (34)

is cumbersome, but straightforward. One uses the identities (33) and ∆ = 0 (and its derivatives)
to express A1222, A1112, A122, in terms of derivatives of A of lower order (or in some cases equal
order with the number of y derivatives ≤ the number of x derivatives) and substitutes into both
sides of the desired identity until equality is evident. Indeed the only fourth order derivatives
occurring in (34) are A1222 and A1112. We can solve for these derivatives in terms of strictly
lower order derivatives of A from the identities (33) and ∆12 = 0. Then we substitute these
expressions back into the left and right sides of (34) to obtain lower order expressions. Similarly
we can solve for A122 from ∆1 = 0 and A22 from ∆ = 0 and substitute back. After several
iterations the identity is verified.

Now we are in exactly the same situation as for the 4-dimensional symmetry case in the
previous section. Since D = −2(B2 + B1B)/(1 + B2) the system must admit a Killing vector
X = Qp1 − QBp2. The integrability condition for Q is D2 = 2B11 + B1D + BD1 which
follows from (31) and other identities listed above. Thus Lemma 1 is valid for this case, so
B = L(2)/L(1) = X(x)Y (y), i.e., B factors, and the proof of Theorem 2 is valid. Thus L(1) =
L(2) = 0, which is a contradiction. Thus the only 1-parameter superintegrable systems with
exactly three second order linearly independent symmetries are those for which L(1) = L(2) = 0.

Theorem 3. If 2D superintegrable system with a 1-parameter potential αV admits exactly 3 li-
nearly independent second order symmetries then there exists a superintegrable system with non-
degenerate potential Ṽ (α, β, γ) such that the restriction Ṽ (α, 0, 0) = αV and the restricted second
order symmetries of the nondegenerate system agree with a three-dimensional subspace of the
second order symmetries for the 1-parameter potential.

9 Structure of systems with 4 linearly independent
second order symmetries

We begin by proving a fundamental duality result for 2D systems with 4 linearly independent
second order symmetries and a 1-parameter potential. (In fact, however, it is not hard to show
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that every system with 4 independent second order symmetries must admit a Killing vector and
a 1-parameter potential.) We have worked out the fundamental structure equations for these
systems in Section 6. In the generic case they are

µ12 = 0, a12(µ11 − µ22) + 3µ1a
12
1 − 3µ2a

12
2 +

(
a12

11 − a12
22

)
µ = 0, a12

11 + a12
22 = 0, (35)

µ1 −Bµ2 + Dµ = 0, D = −2
B2 + BB1

B2 + 1
= −2

B(a12
2 −Ba12

1 )
a12(B2 + 1)

,

where V1 = BV2 and B satisfies the integrability conditions(
B2 + 1

)
(B11 + B22)− 2B

(
B2

1 + B2
2

)
= 0, BB12 = B1B2. (36)

Using one of the alternate expressions for D, we can write the first equation (35) in the more
obviously dual form(

B2 + 1
)
(µ1 −Bµ2)a12 + 2B

(
Ba12

1 − a12
2

)
µ = 0. (37)

(In the form (35), (36), (37) these equations apply not only to characterize the generic case
but also the special cases B = 0,−i.) The interpretation of these equations is that µ = λ 6= 0
is a metric of a superintegrable system corresponding to the potential function B provided λ
and B satisfy equations (35), (36), (37) for some 2-dimensional space of harmonic functions a12.
Then the solution space of all simultaneous solutions µ is also 2-dimensional and the solutions
give precisely the metrics of systems Stäckel equivalent to λ.

The duality result is the following:

Theorem 4. If µ(x, y), a12(x, y), B(x, y) satisfy (35), (36), (37) then

µ̃(x, y) = a12

(
x + iy√

2
,
−ix− y√

2

)
, ã12(x, y) = µ

(
x + iy√

2
,
−ix− y√

2

)
,

B̃(x, y) = i

B
(

x+iy√
2

, −ix−y√
2

)
− i

B
(

x+iy√
2

−ix−y√
2

)
+ i

 ,

also satisfy these conditions. Thus, the roles of metric and symmetry can be interchanged if
the potential function undergoes an appropriate Möbius transformation. A second interchange
returns the system to its original state.

Proof. This is a simple consequence of the chain rule and the relations

a12
1 = 1√

2
(µ̃1 − iµ̃2), a12

2 = 1√
2
(iµ̃1 − µ̃2),

µ1 = 1√
2

(
ã12

1 − iã12
2

)
, µ2 = 1√

2

(
iã12

1 − ã12
2

)
,

with analogous relations between B and B̃. Under the duality the first condition (36) obeyed
by B maps to the second condition (36) obeyed by B̃, and vice-versa. The theorem also applies
to the special cases where B = 0 or B = −i. Under the duality the special cases switch roles. �

Theorem 5. Every 1-parameter superintegrable 2D system with 4 linearly independent second
order symmetries is Stäckel equivalent to a superintegrable system on a constant curvature space.

Proof. We consider the generic case B 6= 0,−i first. Then every such 1-parameter superin-
tegrable 2D system with 4 linearly independent second order symmetries and metric µ = λ
corresponds to the system of equations (35), (36), (37) where the a12 range over a 2-dimensional
space and there is a 2-dimensional space of solutions µ, corresponding to the metrics of systems
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Stäckel equivalent to the µ = λ system. Moreover there is a Killing vector X = ξp1 + ηp2

such that a12
0 = ξη from the second order symmetry X 2 is nonzero and satisfies the Liouville

equation. It follows that the dual metric ξ = ã12
0 is of constant curvature. The dual system also

describes a Stäckel equivalence class of 1-parameter superintegrable 2D systems with 4 linearly
independent second order symmetries, so there must exist a corresponding Killing vector Y and
nonzero function b12

0 that is harmonic and satisfies the Liouville equation. Since the duality
maps all solutions µ of the original system one to one onto symmetries b12 of the dual system,
there must exist a unique solution µ = ν of the original system such that ν̃ = b12

0 . Since b12
0

satisfies the Liouville equation ν is the metric of a constant curvature space. This means that
the system with metric λ is Stäckel equivalent to the constant curvature system with metric ν.

Now we consider the special cases. If B = −i then all metrics µ are flat, so the statement
of the theorem again holds. If B = 0 then X = p1 so the associated a12

0 = 0. In this case, for
any nonzero harmonic a12 from the 2-dimensional space of symmetries of the original system we
have that ã12 is a metric for the dual system with potential function B̃ = −i. Now such metrics
are flat, and as we have shown in the proof of Theorem 1 there is then a Killing vector X such
that the symmetry b12

0 from X 2 is nonzero and satisfies the Liouville equation with c = 0. Since
the duality map is one to one and onto there must exist a metric ν in the original system such
that ν̃ = b12

0 . This means that ν is a flat space metric. �

We continue to require that the space of second order symmetries is of dimension 4 and now
investigate the space of third order constants of the motion for this system:

K =
2∑

k,j,i=1

akji(x1, x2)pkpjpi + b`(x1, x2)p`,

which must satisfy {H,K} = 0. Here akji is symmetric in the indices k, j, i.

Theorem 6. For a 2D superintegrable system with 1-parameter potential and a 4-dimensional
space of second order constants of the motion, the dimension of the space of strictly 3rd order
constants of the motion is at most 4.

Proof. We give the essence of the proof, leaving out some of the details. The conditions on K
are

2aiii
i = −3((lnλ)ia

iii + (lnλ)ja
jii), i 6= j,

3ajii
i + aiii

j = 3− ((lnλ)ia
iij + (lnλ)ja

ijj), i 6= j,

2(a122
1 + a112

2 ) = −(lnλ)1a122 − (lnλ)1a111 − (lnλ)2a222 − (lnλ)2a112,

b1
2 + b2

1 = 3
2∑

s=1

λas21Vs, bj
j =

3
2

2∑
s=1

asjjVs −
1
2

2∑
s=1

(lnλ)sb
s, j = 1, 2, (38)

and

2∑
s=1

bsVs = 0. (39)

The akji is just a third order Killing tensor. The b` must depend on the parameter in the
potential V linearly, so we have

b`(x1, x2) =
2∑

j=1

f j(x1, x2)Vj(x1, x2).
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Using the standard notation V1 = B1V2, V12 = B12V2, V 11 = B11V2, V 22 = B22V2 with B1 = B,
we find from (39) that Bf1 ≡ f , f2 = −Bf

Further

b1
1 = f1V2 + fV12, b1

2 = f2V2 + fV22,

b2
1 = −(Bf)1V2 −BfV12, b2

2 = −(Bf)2V2 −BfV22.

Thus

b1
1 =

(
f1 + fB12

)
V2, b1

2 =
(
f2 + f22

)
V2,

b1
1 = −

(
Bf1 +

(
B1 + BB12

)
f
)
V2, b2

2 = −
(
Bf2 +

(
B2 + BB22

)
f
)
V2,

Now we assume B 6= 0 and (1 + 2λ)(1 − 2λ + 4λ2) 6= 0. (The last inequality can always
be achieved by a rescaling of the coordinates x1, x2, if necessary. We will treat the special
case B ≡ 0 separately.) Substituting these results into the defining equations (38) and solving
for f1, f2 and a122, we obtain

f1 =
3
2
Ba111 +

3
2
a112 + · · · , (40)

f2 =
3Bλ

1 + 2λ
a112 − 3λ

1 + 2λ
a222 + · · · , (41)

a122 =
2Bλ

1 + 2λ
a112 − 1

B(1 + 2λ)
a222 + · · · , (42)

where the omitted terms are linear in f . Substituting these results into the remaining 5 condi-
tions, we can recast them in the form

a111
1 = · · · , (43)

a111
2 = −3s + · · · , (44)

a222
1 = − 6

1− 2λ + 4λ2
s + · · · , (45)

a222
2 = · · · , (46)

a112
1 = s, (47)

a112
2 = − 1 + 2λ

B(1− 2λ + 4λ2)
s + · · · , (48)

where the omitted terms are linear in f , a111, a222, a112. (Here we have introduced a new
variable s = a112

1 .) The system (40)–(48) is not in involution because we have not expressed
the derivatives s1, s2 in terms of f , a111, a222, a122, s. Differentiating (44) with respect to x1,
using the fact that (a111

2 )1 = (a111
1 )2, and differentiating (43) with respect to x2, we can solve

for s1. Similarly, differentiating (45) with respect to x2, using the fact that (a222
1 )2 = (a222

2 )1,
and differentiating (46) with respect to x1, we can solve for s2. Thus we obtain

s1 = · · · , (49)
s2 = −3s + · · · , (50)

where the omitted terms are linear in f , a111, a222, a112. We conclude that the full system
with 5 functions s, f , a111, a222, a112 is in involution. Since the space of Killing vectors is
one-dimensional we can always add a multiple αX to any 3rd order symmetry (where α is the
parameter in the potential) and obtain another 3rd order symmetry. Thus, by adding such
a multiple, we can prescribe f = 0, s, a111, a222, a112 at a regular point and there is at most one
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strictly 3rd order symmetry taking on these values at this point. Hence the space of 3rd order
symmetries is at most 4-dimensional.

In the special case B = 0 we find b1 = fV2, b2 = λ1 = 0, so a222 = 0. A similar argument
to the preceding shows that the system with 5 functions s, f , a111, a112, a122 is in involution.
Again the space of strictly 3rd order symmetries is at most 4-dimensional. �

Theorem 6 gives important information about the structure of the Poisson algebra generated
by the first and second order symmetries of this superintegrable system As we know, a basis
for the second order symmetries can be taken in the form L0 = H, L1, L2, X 2, where X is
the Killing vector. Clearly the set of 4 third order symmetries L0X , L1X , L2X , X 3 is linearly
independent. Hence it must be a basis.

Corollary 1. For a 2D superintegrable system with 1-parameter potential and a 4-dimensional
space of second order constants of the motion, the dimension of the space of 3rd order constants
of the motion is exactly 4.

From this result we see that the algebra generated by L0, L1, L2, X is closed under the
Poisson bracket operation. Indeed the Poisson brackets {X ,Lj} are second order symmetries,
so we have

{X ,Lj} = aj0L0 + aj1L1 + aj2L2 + aj3X 2,

where the ajk are constants. The Poisson brackets {Li,Lj} are third order symmetries, so by
Corollary 1 they can be expanded in the form

{Li,Lj} = bij,0L0X + bij,1L1X + bij,2L2X + bij,3X 3.

Additional commutators and relations between the constants follow easily from the Jacobi iden-
tity.

This is not the full story for these Poisson algebras, because the four linearly independent
generators L0, L1, L2, X 2 must be functionally dependent. We need to understand the form of
this dependence. The key to this is the space of 4th order symmetries.

Next we investigate the space of fourth order constants of the motion. Here a constant of the
motion

F =
2∑

`,k,j,i=1

a`kji(x, y, z)p`pkpjpi +
2∑

m,q=1

bmq(x, y, z)pmpq + W (x, y, z),

must satisfy {H,F} = 0. Again a`kji, bmq are symmetric in all indices.
The conditions are

aiiii
i = −2

2∑
s=1

asiii(lnλ)s, (51)

4ajiii
i + aiiii

j = −6
2∑

s=1

asiij(lnλ)s, i 6= j, (52)

3ajjii
i + 2aiiij

j = −
2∑

s=1

asiii(lnλ)s − 3
2∑

s=1

asijj(lnλ)s, i 6= j, (53)

2bij
i + bii

j = 6λ

2∑
s=1

asjiiVs −
2∑

s=1

bsj(lnλ)s, i 6= j, (54)

bii
i = 2λ

3∑
s=1

asiiiVs −
2∑

s=1

bsj(lnλ)s,
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and

Wi = λ
2∑

s=1

bsiVs. (55)

Note that the a`kji is a fourth order Killing tensor. We require the potential V to be superinte-
grable 1-parameter, and that the highest order terms, the a`kji in the constant of the motion,
be independent of the parameter in V . The bmq must depend linearly and W quadratically on
this parameter. We ignore the arbitrary additive constant in W .

We set

bjk = f jkV2, f jk = fkj .

Then, listing only the first derivative terms in the f jk explicitly, conditions (54) become

2f12
1 + f11

2 = · · · , (56)

2f12
2 + f22

1 = · · · , (57)

f11
1 = · · · , (58)

f22
2 = · · · . (59)

From the integrability condition ∂x2W1 = ∂x1W2 for equations (55) we obtain the condition

Bλ2f
11
1 + λ2f

12
1 −Bλ1f

12
2 − λ1f

22
2 = · · · (60)

which does not involve the variables aijk`. From conditions (51)–(53) we obtain

a1111
1 = · · · , (61)

a2222
2 = · · · , (62)

4a1112
1 + a1111

2 = · · · , (63)

4a1222
2 + a2222

1 = · · · , (64)

3a1122
1 + 2a1112

2 = · · · , (65)

3a1122
2 + 2a1222

1 = · · · , (66)

where we list only the first derivative terms in the aijk` explicitly.

Theorem 7. For a 2D superintegrable system with 1-parameter potential and a 4-dimensional
space of second order constants of the motion, the dimension of the space of strictly 4th order
constants of the motion is at most 9.

Proof. We give the basic ideas, leaving out some of the details. The proof is by parameter
counting. There are 8 variables,

f11, f12, f22, a1111, a1112, a1122, a1222, a2222.

The number of possible first derivatives of these variables is 16, and they are subject to the
11 conditions (56)–(66). The number of possible second derivatives of the variables is 24, and
they are subject to the 22 conditions, obtained by differentiating the original conditions with
respect to x and to y, Similarly, the number of possible third derivatives of the variables is 32,
and they are subject to the 33 conditions, obtained by taking all second derivatives of the
original conditions. At this point the system is in involution, since all third derivatives of the
variables can be expressed in terms of lower order derivatives. The total number of variables is
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8+16+24+32 = 80 and the number of conditions is 11+22+33 = 66, so there are 14 parameters
remaining. However, there is one more third order condition than third derivatives, so we can use
the 33 conditions to eliminate all of the third derivative terms and obtain a condition involving
at most second derivatives. Explicitly, this relation is

∂11(60) + λ2

(
−B∂12 +

1
2
∂22

)
(58) + λ1

(
∂12 −

B

2
∂11

)
(59)

− λ2

2
∂12(56) +

Bλ1

2
∂12(57) = 0,

where we have indicated the identities to be differentiated by their equation numbers. The
resulting condition is

6Bλλ2

(
−Ba1111

12 +
1
2
a1111

22

)
+ 56λλ1

(
−B

2
a2222

11 + a2222
12

)
+ 3Bλ(−λ2 + Bλ1)a1122

12

+ λλ2

(
−Ba1112

12 + a1112
22

)
+ λλ1

(
− a1222

11 + Ba1222
12

)
= · · · , (67)

where we have listed explicitly only the second derivative terms in the a-variables, not the f -
variables. It is straightforward to verify that the second order part of condition (67) is nonzero
and that it is not obtainable by taking linear combinations of first derivatives of conditions
(61)–(66). Thus it is an independent second order condition. Differentiating this condition with
respect to x we get a third order condition with leading terms

6Bλλ2

(
−Ba1111

112 +
1
2
a1111

122

)
+ 56λλ1

(
−B

2
a2222

111 + a2222
112

)
+ 3Bλ(−λ2 + Bλ1)a1122

112

+ λλ2

(
−Ba1112

112 + a1112
122

)
+ λλ1

(
− a1222

111 + Ba1222
112

)
= · · · ,

which is not obtainable by taking linear combinations of second derivatives of conditions (61)–
(66). Thus the maximum number of parameters for this system is reduced to 13. However we
can add α2 times any linear combination of a basis of four 2nd order symmetries to a 4th order
symmetry (where α is the parameter for the potential V ). Thus the maximum dimension for
the space of strictly 4th order symmetries is 9. �

As we pointed out earlier, the basis of 4 second order symmetries L0, L1, L2, L3 = X 2

must be functionally dependent. This dependence must occur at the fourth order. Indeed we
can form 10 products {LjLk : j ≤ k}, from these symmetries, all strictly fourth order. Since
the maximum dimension of the space of fourth order symmetries is ≤ 9 it follows that the set
{LjLk} is linearly dependent. There can only be one such linear dependency relation, and we
call it the Casimir. This relation, and the second order and third order structure relations given
previously, completely determine the structure of the Poisson algebra.

10 Discussion and outlook

We have filled in a gap in the literature by clarifying the structures of the quadratic algebras
corresponding to 2D second order superintegrable systems with 1-parameter potentials. For such
a system the number of linearly independent second order symmetries is either 3 or 4. If it is 3
the system is simply a restriction from a nondegenerate potential system. It is 4 if and only if
it admits a first order symmetry. For 4 second order symmetries the quadratic algebra is closed
at orders three and four from dimensional considerations: The number of terms obtainable from
the basis first and second order symmetries exceeds the maximal dimension of the space of third
order and of fourth order symmetries. Every such system is Stäckel equivalent to a system on
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a constant curvature space. In 3D and higher dimensions the relation between systems corre-
sponding to degenerate and nondegenerate potentials is much more complicated [25, 26, 27] but
the tools developed here should be applicable. (Indeed in 3D the potentials can depend on up to
4 parameters, neglecting the additive constant. Nondegenerate (4-parameter) potentials always
have 6 linearly independent second order constants of the motion although the number of func-
tionally independent constants is 5. The functional relation between the constants is of order 8 in
the momenta, Not all 3-parameter potentials are restrictions of nondegenerate potentials. Some
such systems admit a closed symmetry algebra with some generators of order 4 [26]. There
are up to 8 second constants of the motion for 2-parameter potentials.) It is also important to
extend the structure analysis to superintegrable systems of order greater than two.

Finally the 0-parameter (free space) case deserves more attention, even though it was treated
by Koenigs [19]. If we consider a true 0-parameter potential system as one in which it is not
possible to admit a nonconstant potential, then it follows from our results and those of Koenigs
that no such system exists. Koenigs’ proof used complex variable techniques, very different
from the methods used here. Further the last stages of his argument where he shows that no
superintegrable systems exist other than those he has found are somewhat murky. Koenigs does
not consider potentials or the Stäckel transform, and as we have shown, these are very important
in the theory. Thus there are good reasons for a new approach to uncovering the structure of
these systems.
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