Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 4 (2008), 058, 52 pages      arXiv:0804.1559      https://doi.org/10.3842/SIGMA.2008.058
Contribution to the Special Issue “Élie Cartan and Differential Geometry”

Contact Geometry of Hyperbolic Equations of Generic Type

Dennis The
McGill University, 805 Sherbrooke Street West, Montreal, QC, H3A 2K6, Canada

Received April 10, 2008, in final form August 11, 2008; Published online August 19, 2008

Abstract
We study the contact geometry of scalar second order hyperbolic equations in the plane of generic type. Following a derivation of parametrized contact-invariants to distinguish Monge-Ampère (class 6-6), Goursat (class 6-7) and generic (class 7-7) hyperbolic equations, we use Cartan's equivalence method to study the generic case. An intriguing feature of this class of equations is that every generic hyperbolic equation admits at most a nine-dimensional contact symmetry algebra. The nine-dimensional bound is sharp: normal forms for the contact-equivalence classes of these maximally symmetric generic hyperbolic equations are derived and explicit symmetry algebras are presented. Moreover, these maximally symmetric equations are Darboux integrable. An enumeration of several submaximally symmetric (eight and seven-dimensional) generic hyperbolic structures is also given.

Key words: contact geometry; partial differential equations; hyperbolic; generic; nonlinear.

pdf (557 kb)   ps (352 kb)   tex (53 kb)

References

  1. Anderson I.M., Kamran N., Olver P.J., Internal, external, and generalized symmetries, Adv. Math. 100 (1993), 53-100.
  2. Biesecker M., Geometric studies in hyperbolic systems in the plane, Ph.D. Thesis, Utah State University, 2003.
  3. Bryant R.L., Chern S.S., Gardner R.B., Goldschmidt H.L., Griffiths, P.A., Exterior differential systems, Mathematical Sciences Research Institute Publications, Vol. 18, Springer-Verlag, New York, 1991.
  4. Bryant R., Griffiths P., Hsu L., Hyperbolic exterior differential systems and their conservation laws. I, Selecta Math. (N.S.) 1 (1995), 21-112.
  5. Bryant R., Griffiths P., Hsu L., Hyperbolic exterior differential systems and their conservation laws. II, Selecta Math. (N.S.) 1 (1995), 265-323.
  6. Cartan E., Les problèmes d'équivalence, Oeuvres complètes, Vol. 2, Gauthier-Villars, Paris, 1955, 1311-1334.
  7. Courant R., Hilbert D., Methods of mathematical physics, Vol. II: Partial differential equations, Interscience Publishers, New York - London, 1962.
  8. Eendebak P.T., Contact structures of partial differential equations, Ph.D. Thesis, Utrecht University, 2006.
  9. Gardner R.B., A differential geometric generalization of characteristics, Comm. Pure Appl. Math. 22 (1969), 597-626.
  10. Gardner R.B., The method of equivalence and its applications, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 58, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989.
  11. Gardner R.B., Kamran N., Characteristics and the geometry of hyperbolic equations in the plane, J. Differential Equations 104 (1993), 60-116.
  12. Goursat E., Leçons sur l'intégration des équations aux dérivées partielles du second ordre à deux variables indépendantes, Tome II, Paris, Librairie Scientifique: A. Hermann, 1898.
  13. Jurás M., Geometric aspects of second-order scalar hyperbolic partial differential equations in the plane, Ph.D. Thesis, Utah State University, 1997.
  14. Kushner A., Lychagin V., Rubtsov V., Contact geometry and nonlinear differential equations, Cambridge University Press, 2007.
  15. Kruglikov B., Classification of Monge-Ampère equations with two variables, in Geometry and Topology of Caustics - CAUSTICS '98 (Warsaw), Banach Center Publ., Vol. 50, Polish Acad. Sci., Warsaw, 1999, 179-194.
  16. Lepage T., Sur certaines formes différentielles associées aux équations du type de Monge-Ampère provenant du "Calcul des Variations", Bulletin Acad. Bruxelles 15 (1929), 829-848.
  17. Lychagin V.V., Contact geometry and second-order nonlinear differential equations, Russian Math. Surveys 34 (1979), 137-165.
  18. Marvan M., Vinogradov A.M., Yumaguzhin V.A., Differential invariants of generic hyperbolic Monge-Ampère equations, Cent. Eur. J. Math. 5 (2007), 105-133, nlin.SI/0604038.
  19. Morimoto T., La géométrie des équations de Monge-Ampère, C. R. Acad. Sci. Paris, Sér. A-B 289 (1979), A25-A28.
  20. Mubarakzjanov G.M., The classification of the real structure of five-dimensional Lie algebras, Izv. Vyss. Ucebn. Zaved. Matematika (1963), no. 3 (34), 99-106.
  21. Mubarakzjanov G.M., Classification of solvable Lie algebras of sixth order with a non-nilpotent basis element, Izv. Vyss. Ucebn. Zaved. Matematika (1963), no. 4 (35), 104-116.
  22. Olver P.J., Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995.
  23. Petrescu S., Sur les invariants des équations de Goursat, Ann. Sci. Univ. Jassy I 24 (1938), 232-256.
  24. Stormark O., Lie's structural approach to PDE systems, Encyclopedia of Mathematics and its Applications, Vol. 80, Cambridge University Press, Cambridge, 2000.
  25. Vranceanu G., La géométrisation des équations aux dérivées partielles du second ordre, J. Math. Pures Appl. 6 (1937), 361-374.
  26. Vranceanu G., Sur les invariants des équations aux dérivées partielles du second ordre, Bull. Math. Soc. Roumaine Sci. 42 (1940), 91-105.

Previous article   Next article   Contents of Volume 4 (2008)