Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 4 (2008), 001, 9 pages      arXiv:0710.4432      https://doi.org/10.3842/SIGMA.2008.001
Contribution to the Proceedings of the 3-rd Microconference Analytic and Algebraic Methods III

On the Role of the Normalization Factors κn and of the Pseudo-Metric PP in Crypto-Hermitian Quantum Models

Miloslav Znojil
Ústav jaderné fyziky AV CR, 250 68 Rez, Czech Republic

Received November 26, 2007; Published online January 02, 2008

Abstract
Among P-pseudo-Hermitian Hamiltonians H = P−1HP with real spectra, the ''weakly pseudo-Hermitian'' ones (i.e., those employing non-self-adjoint PP) form a remarkable subfamily. We list some reasons why it deserves a special attention. In particular we show that whenever PP, the current involutive operator of charge C gets complemented by a nonequivalent alternative involutive quasiparity operator Q. We show how, in this language, the standard quantum mechanics is restored via the two alternative inner products in the physical Hilbert space of states, with áψ1|PQ2ñ = áψ1|CP2ñ.

Key words: PT-symmetry; non-self-adjoint pseudo-metrics; PQ-crypto-Hermiticity; CP-crypto-Hermiticity.

pdf (229 kb)   ps (150 kb)   tex (14 kb)

References

  1. Bender C.M., Boettcher S., Real spectra in non-Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80 (1998), 5243-5246, physics/9712001.
  2. Mostafazadeh A., Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian, J. Math. Phys. 43 (2002), 205-214, math-ph/0107001.
    Mostafazadeh A., Pseudo-Hermiticity versus PT-symmetry II: A complete characterization of non-Hermitian Hamiltonians with a real spectrum, J. Math. Phys. 43 (2002), 2814-2816, math-ph/0110016.
    Mostafazadeh A., Pseudo-Hermiticity versus PT-symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries, J. Math. Phys. 43 (2002), 3944-3951, math-ph/0203005.
    Mostafazadeh A., Pseudo-Hermiticity for a class of nondiagonalizable hamiltonians, J. Math. Phys. 43 (2002), 6343-6352, math-ph/0207009, Erratum, J. Math. Phys. 44 (2003), 943.
  3. Solombrino L., Weak pseudo-Hermiticity and antilinear commutant, J. Math. Phys. 43 (2002), 5439-5447, quant-ph/0203101.
  4. Blasi A., Scolarici G., Solombrino L., Pseudo-Hermitian Hamiltonians, indefinite inner product spaces and their symmetries, J. Phys. A: Math. Gen. 37 (2004), 4335-4351, quant-ph/0310106.
  5. Dorey P., Dunning C., Tateo R., Spectral equivalences, Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics, J. Phys. A: Math. Gen. 34 (2001), 5679-5704, hep-th/0103051.
    Dorey P., Dunning C., Tateo R., Supersymmetry and the spontaneous breakdown of PT symmetry, J. Phys. A: Math. Gen. 34 (2001), L391-L400, hep-th/0104119.
    Znojil M., Tater M., Complex Calogero model with real energies, J. Phys. A: Math. Gen. 34 (2001), 1793-1803, quant-ph/0010087.
    Bender C.M., Brody D.C., Jones H.F., Complex extension of quantum mechanics, Phys. Rev. Lett. 89 (2002) 270401, 4 pages, quant-ph/0208076, Erratum, Phys. Rev. Lett. 92 (2004), 119902.
    Shin K.C., On the reality of the eigenvalues for a class of PT-symmetric oscillators, Comm. Math. Phys. 229 (2002), 543-564, math-ph/0201013.
    Mostafazadeh A., Batal A., Physical aspects of pseudo-Hermitian and PT-symmetric quantum mechanics, J. Phys. A: Math. Gen. 37 (2004), 11645-11680, quant-ph/0408132.
    Znojil M., Fragile PT-symmetry in a solvable model, J. Math. Phys. 45 (2004), 4418-4430, math-ph/0403033.
  6. Bender C.M., Making sense of non-Hermitian Hamiltonians, Rep. Progr. Phys. 70 (2007), 947-1018, hep-th/0703096.
  7. Kato T., Perturbation theory for linear operators, Springer, Berlin, 1995.
  8. Scholtz F.G., Geyer H.B., Hahne F.J.W., Quasi-Hermitian operators in quantum mechanics and the variational principle, Ann. Phys. (NY) 213 (1992), 74-101.
  9. Znojil M., Geyer H.B., Construction of a unique metric in quasi-Hermitian quantum mechanics: non-existence of the charge operator in a 2 × 2 matrix model, Phys. Lett. B 640 (2006), 52-56, quant-ph/0607104, Erratum, Phys. Lett. B 649 (2007), 494.
  10. Smilga A., Private communication.
  11. Feshbach H., Villars F., Elementary relativistic wave mechanics of spin 0 and spin 1/2 particles, Rev. Modern Phys. 30 (1958), 24-45.
  12. Znojil M., Relativistic supersymmetric quantum mechanics based on Klein-Gordon equation, J. Phys. A: Math. Gen. 37 (2004), 9557-9571, hep-th/0408232.
    Znojil M., Solvable relativistic quantum dots with vibrational spectra, Czech. J. Phys. 55 (2005), 1187-1192, quant-ph/0506017.
  13. Mostafazadeh A., Hilbert space structures on the solution space of Klein-Gordon type evolution equations, Classical Quantum Gravity 20 (2003), 155-172, math-ph/0209014.
  14. Znojil M., Coupled-channel version of PT-symmetric square well, J. Phys. A: Math. Gen. 39 (2006), 441-455, quant-ph/0511085.
  15. Günther U., Stefani F., Znojil M., MHD α2-dynamo, Squire equation and PT-symmetric interpolation between square well and harmonic oscillator, J. Math. Phys. 46 (2005), 063504, 22 pages, math-ph/0501069.
  16. Mostafazadeh A., Loran F., Propagation of electromagnetic waves in linear media and pseudo-Hermiticity, physics/0703080.
  17. Znojil M., PT-symmetric regularizations in supersymmetric quantum mechanics, J. Phys. A: Math. Gen. 37 (2004), 10209-10222, hep-th/0404145.
    Caliceti E., Cannata F., Znojil M., Ventura A., Construction of PT-asymmetric non-Hermitian Hamiltonians with CPT-symmetry, Phys. Lett. A 335 (2005), 26-30, math-ph/0406031.
    Bagchi B., Banerjee A., Caliceti E., Cannata F., Geyer H.B., Quesne C., Znojil M., CPT-conserving Hamiltonians and their nonlinear supersymmetrization using differential charge-operators C, Internat. J. Modern Phys. A 20 (2005), 7107-7128, hep-th/0412211.
  18. Znojil M., Strengthened PT-symmetry with PP, Phys. Lett. A 353 (2006), 463-468, quant-ph/0601048.
  19. Mostafazadeh A., Is weak pseudo-Hermiticity weaker than pseudo-Hermiticity?, J. Math. Phys. 47 (2006), 092101, 10 pages, quant-ph/0605110.
  20. Horn R.A., Johnson C.R., Matrix analysis, Cambridge University Press, Cambridge, 1999.
  21. Bagchi B., Quesne C., Pseudo-Hermiticity, weak pseudo-Hermiticity and eta-orthogonality, Phys. Lett. A 301 (2002), 173-176, quant-ph/0206055.
  22. Znojil M., Exactly solvable models with PT-symmetry and with an asymmetric coupling of channels, J. Phys. A: Math. Gen. 39 (2006), 4047-4061, quant-ph/0511194.
  23. Znojil M., Conservation of pseudo-norm in PT symmetric quantum mechanics, math-ph/0104012.
  24. Buslaev V., Grecchi V., Equivalence of unstable anharmonic oscillators and double well, J. Phys. A: Math. Gen. 26 (1993), 5541-5549.
  25. Znojil M., PT-symmetric harmonic oscillators, Phys. Lett. A 259 (1999), 220-223, quant-ph/9905020.
    Lévai G., Znojil M., Systematic search for PT symmetric potentials with real energy spectra, J. Phys. A: Math. Gen. 33 (2000), 7165-7180.
    Bagchi B., Quesne C., Znojil M., Generalized continuity equation and modified normalization in PT-symmetric quantum mechanics, Modern Phys. Lett. A 16 (2001), 2047-2057, quant-ph/0108096.

Next article   Contents of Volume 4 (2008)