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Abstract. On a closed 4-dimensional Riemannian manifold, we give a lower bound for
the square of the first eigenvalue of the Yamabe operator in terms of the total Branson’s
Q-curvature. As a consequence, if the manifold is spin, we relate the first eigenvalue of the
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n ≥ 5, we compare the three basic conformally covariant operators: the Branson–Paneitz,
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To the memory of Tom Branson

Tom has deeply influenced my life. With him, I learned to push the limits of what
would concretely mean to have a clear and deep thinking, to take a huge distance
from things and events so that the essence could be touched.

Oussama Hijazi

1 Introduction

The scalar curvature function behaves nicely under a conformal change of the metric. The
Yamabe operator relates the scalar curvatures associated with two metrics in the same confor-
mal class. From the conformal point of view dimension 2 is special and the scalar curvature
corresponds to (twice) the Gauss curvature. The problem of conformally deforming the scalar
curvature into a constant is known as the Yamabe problem, it has been intensively studied in
the seventies and solved in the beginning eighties.

On a spin compact manifold it is an important fact, through the Schrödinger–Lichnerowicz
formula, that the scalar curvature is closely related to the eigenvalues of the Dirac operator and
its sign influences the topology of the manifold.

The conformal behavior of the scalar curvature and that of the Dirac operator allowed to
establish lower bounds for the square of the eigenvalues of the Dirac operator in terms of scalar
conformal invariants, the Yamabe invariant in dimension at least 3 and the total scalar curvature
in dimension 2 (see [12, 13, 4]).

Given this inequality for surfaces, one might ask whether such integral inequalities could be
true in any dimension. It is shown in [1] that this could not be true with the total scalar curva-
ture. However one could expect such integral lower bounds associated with other curvatures.
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The Branson Q-curvature is a scalar function which shares with the scalar curvature inter-
esting conformal behavior. The operator which relates the Q-curvatures associated with two
conformally related metrics is the Branson–Paneitz operator, a 4-th order differential operator.
Another curvature function which is of special interest from the conformal aspect is the σk-
curvature, which is the k-th symmetric function associated with the eigenvalues of the Schouten
tensor (the tensor which measures the defect of the conformal invariance of the Riemann tensor).

Taking into account the analogy between the scalar curvature and the Q-curvature, some
natural questions could be asked: what would be the role of the Q-curvature in Spin Geom-
etry and is there any relation between the spectra of the three natural conformally covariant
differential operators : Dirac, Yamabe and Branson–Paneitz?

In this paper, a first answer is given for n-dimensional closed Riemannian manifolds. For
n = 4, we establish a new lower bound for the square of the first eigenvalue of the Yamabe
operator in terms of the total Branson’s Q-curvature (see Theorem 2). For n ≥ 5, we show that,
up to a constant, the square of the first eigenvalue of the Yamabe operator is at least equal to
that of the Paneitz–Branson operator (see Theorem 3).

In case the manifold is spin, we make use of what is called the Hijazi inequality to relate the
first eigenvalue of the Dirac operator to the total Branson’s Q-curvature, if n = 4, and to the
first eigenvalue of the Paneitz–Branson operator, if n ≥ 5.

The key classical argument in Spin Geometry (see [12]) is to consider on a Riemannian
manifold a special metric in the conformal class associated with an appropriate choice of the
conformal factor, namely an eigenfunction associated with the first eigenvalue of the Yamabe
operator.

For completeness, we sketch the proof of relevant classical results in Conformal Spin Geometry
and we end by introducing the notion of σk-curvature and give the proof, on a 4-dimensional
closed spin manifold, of a relation between the eigenvalues of the Dirac operator and the total
σ2-curvature established by G. Wang [23]. By the Chern–Gauss–Bonnet formula, it follows that
the total σ2-curvature is precisely a multiple of the total Branson’s Q-curvature, hence another
indirect proof of Corollary 1 may be obtained.

2 Natural geometric operators
in conformal Riemannian geometry

Consider a compact Riemannian manifold (Mn, g) and let [g] = {gu := e2ug / u ∈ C∞(M)}
be the conformal class of the metric g. A class of differential operators of particular interest
in Riemannian Geometry is that of conformally covariant operators. If A := Ag is a formally
self-adjoint geometric differential operator acting on functions (or on sections of vector bundles)
over (Mn, g) and Au := Agu then A is said to be conformally covariant of bidegree (a, b) ∈ R2 if
and only if

Au(·) = e−buA(eau·).

We now give some relevant examples of such operators.

2.1 The Yamabe operator

In dimension n = 2, the Laplacian ∆ := δd acting on smooth functions is a conformally covariant
differential operator of bidegree (0, 2) since it satisfies ∆u = e−2u∆. It is interesting to note
that we have the Gauss curvature equation:

∆u+K = Kue
2u, (1)
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where Ku is the Gauss curvature of (M2, gu). Using this formula, we can easily conclude that:∫
M
Kdv =

∫
M
Kudvu,

is a conformal invariant of the surface M equipped with the conformal class of g. In fact, it is
a topological invariant due to the Gauss–Bonnet formula:

2πχ(M2) =
∫

M
Kdv, (2)

where χ(M2) is the Euler–Poincaré characteristic class of M .
In dimension n ≥ 3, the Yamabe operator (or the conformal Laplacian):

L := 4
n− 1
n− 2

∆ +R,

where R is the scalar curvature of (Mn, g), is conformally covariant of bidegree (n−2
2 , n+2

2 ).
Indeed, we have the following relation:

Luf = e−
n+2

2
uL(e

n−2
2

uf),

for all f ∈ C∞(M). It is important to note that this operator relates the scalar curvatures of
the manifold M associated with two metrics in the same conformal class. Indeed, we have:

Lu = Ru u
n+2
n−2

for gu = u
4

n−2 ∈ [g], where u is a smooth positive function.

2.2 The Branson–Paneitz operator

In dimension n ≥ 3, the Branson–Paneitz operator, defined by

P := ∆2 + δ(αnR Id + βnRic)d+
n− 4

2
Q

is a self-ajdoint elliptic fourth-order conformally covariant differential operator of bidegree
(n−4

2 , n+4
2 ), i.e.,

Puf = e−
n+4

2
u P (e

n−4
2

uf),

for all f ∈ C∞(M). Here αn = (n−2)2+4
2(n−1)(n−2) , βn = − 4

n−2 , Ric is the Ricci tensor and Q is the
Branson Q-curvature of (Mn, g) defined by:

Q =
n

8(n− 1)2
R2 − 2|S|2 +

1
2(n− 1)

∆R, (3)

where:

Sij =
1

n− 2
Aij =

1
n− 2

(
Ricij −

1
2(n− 1)

Rgij

)
.

is the Schouten tensor. The Q-curvature together with the Branson–Paneitz operator share
a similar conformal behavior as that of the scalar curvature and the Yamabe operator. Indeed,
if n ≥ 5 and gu = u

4
n−4 we have:

Pu =
n− 4

2
Qu u

n+4
n−4 , (4)
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where Qu is the Q-curvature of (Mn, gu). On a 4-dimensional manifold, the Branson–Paneitz
operator P and the Q-curvature are analogues of the Laplacian and the Gauss curvature on
2-dimensional manifolds. In fact, we have the following Q-curvature equation:

Pu+Q = Qu e
4u

for gu = e2ug ∈ [g] (compare with (1)). Again, using this equation, we can easily deduce that:∫
M
Qdv =

∫
M
Qu dvu

is a conformal invariant. Another way to obtain the conformal covariance of the total Q-
curvature functional comes from the Chern–Gauss–Bonnet formula for 4-dimensional manifolds:

16π2χ(M4) =
∫

M

(
1
2
|W |2 +

1
12
R2 − |E|2

)
dv, (5)

where E := Ric−(1/n)Rg is the Einstein tensor of (M4, g). Thus using (3) for n = 4, we obtain:

16π2χ(M4) =
1
2

∫
M
|W |2dv + 2

∫
M
Qdv. (6)

Since the expression |W |2dv is a pointwise conformal invariant, we conclude that the total Q-
curvature is a conformal invariant.

3 Spin geometry, the Dirac operator
and classical eigenvalue estimates

For convenience we briefly recall some standard facts about Riemannian Spin Geometry (see [16]
or [9]) and establish with some details the fact that, as the Yamabe and Branson–Paneitz
operators, the Dirac operator D acting on smooth sections of the spinor bundle is a conformal
covariant operator of bidegree (n−1

2 , n+1
2 ). We then give a proof of classical conformal eigenvalue

lower bounds on the spectrum of the Dirac operator.
We consider a closed compact Riemannian manifold (Mn, g) equipped with a spin structure,

which is a topological restriction corresponding to an orientability condition of order two. Thanks
to this structure, one can construct a complex vector bundle ΣgM := ΣM (the bundle of complex
spinors) of rank 2[n/2] over M . A smooth section ψ ∈ Γ(ΣM) of this vector bundle is called
a spinor field. Note that this vector bundle depends on the Riemannian metric. The spinor
bundle ΣM is endowed with

1) Clifford multiplication, that is an action of the tangent bundle on spinor fields:

TM ⊗ ΣM −→ ΣM
X ⊗ ψ 7−→ X · ψ,

2) the natural spinorial Levi-Civita connection ∇ acting on smooth spinor fields correspon-
ding to the Levi-Civita connection (also denoted by ∇) and satisfying:

∇X(Y · ϕ) = (∇XY ) · ϕ+ Y · ∇Xϕ,

3) a natural Hermitian scalar product 〈 , 〉 such that:

〈X · ψ,X · ϕ〉 = g(X,X)〈ψ,ϕ〉

and compatible with the spin connection, that is:

X〈ϕ,ψ〉 = 〈∇Xϕ,ψ〉+ 〈ϕ,∇Xψ〉,



Branson’s Q-curvature in Riemannian and Spin Geometry 5

for all X,Y ∈ Γ(TM) and ψ,ϕ ∈ Γ(ΣM). We can finally define a differential operator acting
on smooth spinor fields, the Dirac operator, locally given by:

D : Γ(ΣM) −→ Γ(ΣM)

ψ 7−→ Dψ =
n∑

i=1
ei · ∇eiψ,

where {e1, . . . , en} is a local g-orthonormal frame. This first order differential operator is elliptic
and formally self adjoint.

3.1 Conformal covariance of the Dirac operator

We now focus on the conformal behavior of spinors on a Riemannian spin manifolds. We explain
with some details the conformal covariance of the Dirac operator and give an application of this
property. For more details, we refer to [15, 12] or [5]. So consider a smooth function u on
the manifold M , and let gu = e2ug be a conformal change of the metric. Then we have an
obvious identification between the two SOn-principal bundles of g and gu-orthonormal oriented
frames denoted respectively by SOM and SOuM . We can thus identify the corresponding Spinn-
principal bundles SpinM and SpinuM , leading to a bundle isometry

ΣM −→ ΣuM
ϕ 7−→ ϕu.

We can also relate the corresponding Levi-Civita connections, Clifford multiplications and Her-
mitian scalar products. Indeed, denoting by ∇u, ·u and 〈 , 〉u the associated data which act on
sections of the bundle ΣuM , we can easily show that:

∇u
Xψu =

(
∇Xψ −

1
2
X · du · ψ − 1

2
X(u)ψ

)
u

,

Xu ·u ψu = (X · ψ)u,

〈ψu, ϕu〉u = 〈ψ,ϕ〉,

for all ψ,ϕ ∈ Γ(ΣM), X ∈ Γ(TM) and where Xu := e−uX denotes the vector field over
(Mn, gu) under the identification explained above. Using these identifications, one can deduce
the relation between the Dirac operators D and Du acting respectively on sections of ΣM and
ΣuM , that is:

Duψu =
(
e−

n+1
2

uD(e
n−1

2
uψ)

)
u
. (7)

This formula clearly shows that the Dirac operator is a conformally covariant differential opera-
tor of bidegree (n−1

2 , n+1
2 ).

3.2 Eigenvalues of the Dirac operator

A powerfull tool in the study of the Dirac operator is the Schrödinger–Lichnerowicz formula
which relates the square of the Dirac operator with the spinorial Laplacian. More precisely, we
have:

D2 = ∇∗∇+
1
4
R,

where ∇∗ is the L2-formal adjoint of ∇. An integration by parts using this formula leads to the
following integral identity:∫

M
|Dψ|2dv =

∫
M
|∇ψ|2dv +

1
4

∫
M
R|ψ|2dv (8)
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for all ψ ∈ Γ(ΣM). Combining this fundamental identity with the Atiyah–Singer Index Theo-
rem [2] implies topological obstructions to the existence of metrics with positive scalar curvature
(see [19]). This vanishing result can be seen as a non-optimal estimate on the spectrum of the
Dirac operator. In fact, if the scalar curvature is positive and if ψ is an eigenspinor associated
with the first eigenvalue λ1(D) of the Dirac operator, then by (8) one gets:

λ2
1(D) >

1
4

inf
M

(R).

Optimal eigenvalues estimate could be obtained by introducing the twistor operator T , which is
the projection of ∇ on the kernel of the Clifford multiplication. It is locally given by:

TXψ = ∇Xψ +
1
n
X ·Dψ

for all ψ ∈ Γ(ΣM) and X ∈ Γ(TM). Thus using the relation:

|∇ψ|2 = |Tψ|2 +
1
n
|Dψ|2, (9)

T. Friedrich [7] proved that the first eigenvalue λ1(D) of the Dirac operator satisfies:

λ1(D)2 ≥ n

4(n− 1)
inf
M

(R)

with equality if and only if the eigenspinor associated with the first eigenvalue is a Killing spinor,
that is for all X ∈ Γ(TM):

∇Xψ = −λ1(D)
n

X · ψ. (10)

3.3 Conformal lower bounds for the eigenvalues of the Dirac operator

We now prove the following result due to the first author:

Theorem 1 ([12, 13]). Let (Mn, g) be a closed compact Riemannian spin manifold of dimension
n ≥ 2. Then the first eigenvalue of the Dirac operator satisfies:

λ1(D)2 ≥ n

4(n− 1)
sup

u
inf
M

(
Rue

2u
)
. (11)

Moreover, equality is achieved if and only if the eigenspinor associated with the eigenvalue λ1(D)
is a Killing spinor. In particular, the manifold (Mn, g) is Einstein.

Proof. Consider an eigenspinor ψ ∈ Γ(ΣM) of the Dirac operator associated with the eigen-
value λ. Now if we let ϕ = e−

n−1
2

uψ ∈ Γ(ΣM) then the relation (7) gives Duϕu = λe−uϕu.
Thus combining formulae (8) and (9), we have:

n− 1
n

∫
M
|Duϕu|2dvu =

∫
M
|T uϕu|2dvu +

1
4

∫
M
Ru|ϕu|2dvu,

which leads to:
n− 1
n

λ2

∫
M
e−2u|ϕu|2dvu ≥

1
4

∫
M
Ru|ϕu|2dvu ≥

1
4
inf
M

(Rue
2u)

∫
M
e−2u|ϕu|2dvu

for all u ∈ C∞(M). Inequality (11) follows directly. Suppose now that equality is achieved
in (11), then we have:

T u
Xu
ϕu = ∇u

Xu
ϕu +

(
λ1(D)/n

)
e−uXu ·u ϕu = 0,

for all X ∈ Γ(TM). However, one can compute that in this case, the function u has to be
constant (see [14] for example) and thus ψ ∈ Γ(ΣM) is a Killing spinor (that is it satisfies
equation (10)). �
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We will now derive two results from the interpretation of the right-hand side of inequality (11).
As we will see, these estimates will lead to some natural geometric invariants.

3.3.1 The 2-dimensional case

We focus here on the case of compact closed surfaces and show that

λ1(D)2 ≥ 2π χ(M2)
Area(M2, g)

.

This has first been observed by Bär (see [4]). For n = 2, inequality (11) reads:

λ1(D)2 ≥ 1
2

sup
u

inf
M

(
Rue

2u
)
.

First note that for all u ∈ C∞(M):

inf
M

(
Rue

2u
)
≤ 1

Area(M2, g)

∫
M
Rudvu =

1
Area(M2, g)

∫
M
Rdv =

4π χ(M2)
Area(M2, g)

,

where we have used the fact that Ru = 2Ku and the Gauss–Bonnet formula (2). On the other
hand, one can easily show the existence of a unique (up to an additive constant) smooth function
u0 ∈ C∞(M) such that:

∆u0 =
1

Area(M2, g)

∫
M
Kdv −K,

which proves the relation:

1
2

sup
u

inf
M

(
Rue

2u
)

=
1
2
Ru0e

2u0 =
2π χ(M2)

Area(M2, g)
.

3.3.2 The case n ≥ 3

Here we will show that the right-hand side of inequality (11) is given by the first eigenvalue λ1(L)
of the conformal Laplacian L (see Section 2.1), that is we get:

λ1(D)2 ≥ n

4(n− 1)
λ1(L). (12)

First note that since n ≥ 3, one can consider the conformal change of metrics defined by
gh = h

4
n−2 g with h a smooth positive function on M and thus we have:

Rue
2u = Rhh

4
n−2 = h−1Lh.

Now we choose the conformal weight h = h1 as being an eigenfunction of the conformal Laplacian
associated with the first eigenvalue λ1(L). Such a function can be assumed to be positive and
normalized (with unit L2-norm) and satisfies:

λ1(L) = 4
n− 1
n− 2

∫
M
h1∆h1dv +

∫
M
Rh2

1dv.

On the other hand, for any f smooth and positive function on M , we can write h1 = fF with F
a smooth positive function on M . Using this expression in the preceding integral equality with
an integration by parts leads to:

λ1(L) =
∫

M

(
4
n− 1
n− 2

f−1∆f +R

)
h2

1dv + 4
n− 1
n− 2

∫
M
f2|∇F |2dv,
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then

λ1(L) ≥ inf
M

(
4
n− 1
n− 2

f−1∆f +R

)
= inf

M

(
f−1Lf

)
for all f smooth and positive. It is clear that the above inequality is achieved if and only if the
function f is an eigenfunction of L associated with its first eigenvalue. Using this inequality,
we can compare the spectrum of the Dirac operator with a conformal invariant of the manifold
(Mn, g), the Yamabe invariant Y (Mn, [g]). This invariant appears naturally in the context of
the Yamabe problem (see [17] for example) and plays a fundamental role in its solution. It is
defined by:

Y (Mn, [g]) = inf
f∈H2

1\{0}

∫
M

(
4n−1

n−2 |∇f |
2 +Rf2

)
dv( ∫

M |f |
2n

n−2dv
)n−2

2

,

where H2
1 denotes the space of L2-integrable functions as well as their first derivatives. Indeed,

using the variational characterization of λ1(L) given by the Rayleigh quotient:

λ1(L) = inf
f∈H2

1\{0}

∫
M

(
4n−1

n−2 |∇f |
2 +Rf2

)
dv∫

M f2dv
,

and applying the Hölder inequality leads to λ1(L)Vol(Mn, g)
2
n ≥ Y (Mn, [g]). Combining this

estimate with Inequality (12) shows that:

λ1(D)2Vol(Mn, g)
2
n ≥ n

4(n− 1)
Y (Mn, [g]).

4 First eigenvalues of conformally covariant
differential operators

In this section, we show that in dimension 4 the total Q-curvature bounds from below the square
of the Yamabe invariant. Using the conformal covariance of the Yamabe and the Branson–
Paneitz operators together with a special choice of the conformal factor, we get a relation between
their first eigenvalues. This combined with the inequality (12) relate the Dirac, Yamabe and
Branson–Paneitz operators through appropriate powers of their first eigenvalues. We show:

Theorem 2. Let (M4, g) be a closed compact 4-dimensional Riemannian manifold. Then, the
first eigenvalue of the Yamabe operator satisfies

λ1(L)2 ≥ 24
Vol(M4, g)

∫
M
Qdv. (13)

Moreover, equality occurs if and only if g is an Einstein metric.

Proof. Recall that if n = 4, the Q-curvature is defined by:

6Q = R2 − 3|Ric|2 + ∆R

and then one can easily check that:

24Q = R2 − 12|E|2 + 4∆R,
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where E := Ric− (R/4)g is the Einstein tensor of (M4, g). Now for gu = e2ug, we can write:

24
∫

M
Qudvu =

∫
M
R2

udvu − 12
∫

M
|Eu|2udvu ≤

∫
M
R2

udvu (14)

since |Eu|2u ≥ 0. We now choose an adapted conformal weight, namely an eigenfunction of the
Yamabe operator associated with its first eigenvalue that is a smooth positive function h1 such
that:

Lh1 = λ1(L) h1.

Consider the conformal change of metrics gh1 = h2
1g ∈ [g] and inequality (14) written for the

metric gh1 reads:

24
∫

M
Qh1dvh1 ≤

∫
M
R2

h1
dvh1 = λ1(L)2Vol(M4, g)

where we used the fact that:

Rh1 = h−3
1 Lh1 = λ1(L)h−2

1

and dvh1 = h4
1dv. Finally since n = 4, we use the conformal invariance of the left-hand side of

the preceding inequality (see Section 2.2) to get inequality (13). �

If we now apply inequality (12), we obtain:

Corollary 1. Under the assumptions of Theorem 2, if M is spin and λ1(L) > 0, then:

λ1(D)4 ≥ 1
9
λ1(L)2 ≥ 8

3

∫
M Qdv

Vol(M4, g)
.

Equality in both inequalities is characterized by the existence of a Killing spinor, in particular,
the manifold is the round sphere.

We now consider the general case:

Theorem 3. Let (Mn, g) be a closed compact Riemannian manifold with n ≥ 5. If the first
eigenvalue λ1(P ) of the Branson–Paneitz operator is positive, then we have:

λ2
1(L) ≥ 16n(n− 1)2

(n2 − 4)(n− 4)
λ1(P ). (15)

Moreover equality occurs if and only if g is an Einstein metric.

Proof. First note that the Q-curvature, defined in (3), can be written as:

Q =
n2 − 4

8n(n− 1)2
R2 − 2

(n− 2)2
|E|2 +

1
2(n− 1)

∆R,

where E := Ric− R
n g is the Einstein tensor of (Mn, g). We now consider the metric gu = u

4
n−4 g

where u is a smooth positive function. Stokes formula gives:∫
M
Qu dvu =

∫
M

(
n2 − 4

8n(n− 1)2
R2

u −
2

(n− 2)2
|Eu|2u +

1
2(n− 1)

∆uRu

)
dvu

=
∫

M

(
n2 − 4

8n(n− 1)2
R2

u −
2

(n− 2)2
|Eu|2u

)
dvu ≤

n2 − 4
8n(n− 1)2

∫
M
R2

u dvu.
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On the other hand, with the help of the relation (4) and since dvu = u
2n

n−4dv, one can check
that:

n− 4
2

∫
M
Qu dvu =

∫
M
uPu dv,

which gives:∫
M
uPu dv ≤ (n2 − 4)(n− 4)

16n(n− 1)2

∫
M
R2

u dvu (16)

for all u smooth and positive on M . We will now see that a suitable choice of the conformal
weight will lead to the desired inequality. We choose h1 ∈ C∞(M) a smooth eigenfunction of the
conformal Laplacian associated with its first eigenvalue, that is Lh1 = λ1(L)h1. It is a standard

fact that h1 can be chosen to be positive on M . Let gu1 = u1

4
n−4 g ∈ [g] where u1 := h

n−4
n−2

1 is
a smooth positive function on M . Applying (16) in the metric gu1 leads to:∫

M
u1Pu1 dv ≤

(n2 − 4)(n− 4)
16n(n− 1)2

∫
M
R2

u1
dvu1 .

The choice of u1 allows to compute that the scalar curvature of the manifold (Mn, gu1) is
given by:

Ru1 = h
−n+2

n−2

1 L(h1) = λ1(L)h
− 4

n−2

1 (17)

and thus (16) reads:∫
M
u1Pu1 dv ≤

(n2 − 4)(n− 4)
16n(n− 1)2

λ1(L)2
∫

M
h

2n−4
n−2

1 dv =
(n2 − 4)(n− 4)

16n(n− 1)2
λ1(L)2

∫
M
u2

1 dv.

Inequality (15) follows directly from the variational characterization of λ1(P ). If equality is
achieved, then it is clear that the manifold (Mn, gu1) is Einstein. However, with the help of (17)
we easily conclude that u1 has to be constant and thus (Mn, g) is also an Einstein manifold. �

Inequality (12) and Theorem 3 then give:

Corollary 2. Under the assumptions of Theorem 3, if M is spin and λ1(L) > 0, then:

λ1(D)4 ≥ n2

16(n− 1)2
λ2

1(L) ≥ n3

(n2 − 4)(n− 4)
λ1(P ).

Equality in both inequalities is characterized by the existence of a Killing spinor, in particular
the manifold is Einstein.

5 Relation with the σ2-scalar curvatures

For completeness, we recall the notion of σk-scalar curvatures introduced by Viaclovsky [22]
which is essential for Wang’s result (see Theorem 6). We first briefly recall standard properties
of these curvatures and then we will recall some key facts for the proof of inequality (20). For
a complete introduction to the subject, the reader may consult [22, 11].

On a closed compact Riemannian n-dimensional manifold (Mn, g), the Riemann curvature
tensor can be decomposed as:

Riem = W + S � g
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where � denotes the Kulkarni–Nomizu product, W the Weyl tensor and S the Schouten tensor.
To define the σk-scalar curvature, we need to introduce the k-th elementary functions associated
with a symmetric n× n matrix A. Namely, if A is such a matrix, we let:

σk(A) = σk(Λ),

where Λ := (λ1, . . . , λn) denotes the set of eigenvalues of A and σk is the classical k-th elementary
function given by:

σk(λ1, . . . , λn) :=
∑

1≤i1<···<ik≤n

λi1λi2 · · ·λik .

Following Viaclovsky [22], the σk-scalar curvature is then defined by:

σk(g) := σk(g−1S)

g−1S is the (1 − 1)-tensor locally defined by: (g−1S)j
i = gjkSki. One can explicitly compute

σk(g) in terms of curvature invariants. Indeed, for k = 1, we get that:

σ1(g) = Tr(S) =
1

2(n− 1)
R. (18)

For k = 2, one has:

σ2(g) :=
∑

1≤i<j≤n

λiλj =
1
2
(
Tr(S)2 − |S|2

)
. (19)

We also define the Garding’s cone by:

Γ+
k = {Λ = (λ1, . . . , λn) ∈ Rn /∀j ≤ k, σj(Λ) > 0}

and we say that a Riemannian metric g belongs to Γ+
k if and only if σk(gx) ∈ Γ+

k for all x ∈M . In
his thesis, Jeff Viaclovsky studies the following σk-Yamabe problem: can one find a Riemannian
metric gu in the conformal class of g such that its σk-scalar curvature is constant? The classical
Yamabe problem is a famous problem in Riemannian Geometry which consists of finding a metric
in the conformal class of g with constant scalar curvature R. This problem has been solved by
Yamabe [25], Trüdinger [21], Aubin [3] and finally Schoen [20] in the middle of the eighties (see
also [17] for a complete review and a unified approach). Using (18), one can note that finding
a metric gu ∈ [g] with σ1(gu) constant is equivalent to solve the Yamabe problem. As shown
in [22], the σk-Yamabe problem is closely related to the behavior of the functional:

Fk : gu 7→
∫

M
σk(gu) dvu

on the space of metrics in the conformal class of g with unit volume. Indeed, among other things
he proves the following result:

Theorem 4 ([22]). If k 6= n/2 and (Mn, [g]) is a locally conformally flat manifold, a metric
gu ∈ [g] with unit volume is a critical point of the functional Fk on the space of metrics conformal
to g and with unit volume if and only if σk(gu) = µk, for some constant µk.

The assumptions in the preceding statement exclude the case k = n/2 which is precisely
of main interest in our context. Consider first a four dimensional closed compact Riemannian
manifold (M4, g) (and thus k = 2), then the σ2-Yamabe problem on 4-manifolds consists in
finding a smooth function u2 such that σ2(gu2) is constant.
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This highly non-linear problem has been studied and solved by S.-Y. Chang, M. Gursky and
P. Yang in [6] (see also [11]) using various subtle methods in geometric analysis. One of the
main difficulties comes from the conformal invariance of the total σ2-curvature on 4-dimensional
manifolds. Indeed, a simple calculation using (19) gives:

8σ2(g) =
1
12
R2 − |E|2

and with the help of the Chern–Gauss–Bonnet formula (5) we get:

16π2χ(M4) =
1
2

∫
M
|W |2dv + 8

∫
M
σ2(g)dv.

One can then apply formulae (6) to obtain:

4
∫

M
σ2(g)dv =

∫
M
Qdv,

and thus the conformal invariance follows directly. In [6], to solve the σ2-Yamabe problem, the
authors first prove a nice result which is the key point in the solution of this problem. More
precisely, they prove:

Theorem 5 ([6]). Let (M4, g) be a compact 4-dimensional manifold and denote by λ1(L) the
first eigenvalue of the Yamabe operator. Assume that λ1(L) > 0, and

∫
M σ2(g)dv > 0, then there

exists a metric g ∈ [g] such that g ∈ Γ+
2 .

This theorem shows that one can conformally deform the σ2-scalar curvature into a positive
function f on M . Then to obtain solutions of the σ2-Yamabe problem, one deforms this function
into a constant using the continuity method together with a degree-theoretic argument.

An analogous problem on even-dimensional locally conformally flat manifolds (Mn, g) with
k = n/2 has also been studied (see [10] or [18] for example). One of the difficulties in this setting
also comes from the conformal invariance of the functional Fn/2. Indeed as shown in [22], one
can observe using the Chern–Gauss–Bonnet formula that on locally conformally flat manifolds:

χ(Mn) = cn

∫
M
σn/2(g)dv,

which gives the conformal invariance of Fn/2.
Here we give a result of Wang [23] in which the spectrum of the Dirac operator is compared

to the σ2-scalar curvature. We have:

Theorem 6 ([23]). Let (M4, g) be a closed Riemannian spin manifold with λ1(L) > 0 and∫
M σ2(g)dv > 0. Then the first eigenvalue of the Dirac operator satisfies

λ1(D)4 ≥ 32
3

∫
M σ2(g)dv

Vol(M4, g)
=

8
3

∫
M Qdv

Vol(M4, g)
. (20)

Equality holds if and only if (M4, g) is isometric to the round sphere (S4, gst).

Proof. His proof is based on the Hijazi inequality (11) and on the results of Chang, Gursky
and Yang [6] and [22]. Indeed, taking the square of Inequality (11) and using (18), one gets:

λ1(D)4 ≥ n2

16(n− 1)2
sup

u
inf
M

(
R2

ue
4u

)
=
n2

4
sup

u
inf
M

(
σ1(gu)2e4u

)
.



Branson’s Q-curvature in Riemannian and Spin Geometry 13

On the other hand, we can check that for n even, we have:

σ1(gu)2 ≥ 2n
n− 1

σ2(gu),

so we finally get:

λ1(D)4 ≥ n3

2(n− 1)
sup

u
inf
M

(
σ2(gu)e4u

)
.

For n = 4, the above inequality reads:

λ1(D)4 ≥ 32
3

sup
u

inf
M

(
σ2(gu)e4u

)
.

It remains to compare the right-hand side of the preceding estimate as in Section 3.3.1. First
note that:

inf
M

(
σ2(gu)e4u

)
≤ 1

Vol(M4, g)

∫
M
σ2(gu)e4udv =

1
Vol(M4, g)

∫
M
σ2(gu)dvu

and by the conformal invariance of the σ2-scalar curvature in dimension four, we get:

inf
M

(
σ2(gu)e4u

)
≤ 1

Vol(M4, g)

∫
M
σ2(g)dv

for all u ∈ C∞(M). On the other hand, under the hypothesis of Theorem 5, there exists a smooth
function u2 such that (see [24]):

σ2(gu2)e
4u2 = µ2.

Thus, we write:

µ2 =
1

Vol(M4, g)

∫
M
σ2(gu2)e

4u2dv =
1

Vol(M4, g)

∫
M
σ2(g)dv

which gives the result. Suppose now that equality is attained, then equality is also achieved
in (11) which is a well-known result of Friedrich [8]. �
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