Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 3 (2007), 117, 28 pages      arXiv:0712.1107      https://doi.org/10.3842/SIGMA.2007.117
Contribution to the Proceedings of the Seventh International Conference Symmetry in Nonlinear Mathematical Physics

Self-Localized Quasi-Particle Excitation in Quantum Electrodynamics and Its Physical Interpretation

Ilya D. Feranchuk and Sergey I. Feranchuk
Department of Physics, Belarusian University, 4 Nezavisimosti Ave., 220030, Minsk, Belarus

Received October 21, 2007, in final form November 29, 2007; Published online December 07, 2007

Abstract
The self-localized quasi-particle excitation of the electron-positron field (EPF) is found for the first time in the framework of a standard form of the quantum electrodynamics. This state is interpreted as the ''physical'' electron (positron) and it allows one to solve the following problems: i) to express the ''primary'' charge e0 and the mass m0 of the ''bare'' electron in terms of the observed values of e and m of the ''physical'' electron without any infinite parameters and by essentially nonperturbative way; ii) to consider μ-meson as another self-localized EPF state and to estimate the ratio mμ/m; iii) to prove that the self-localized state is Lorentz-invariant and its energy spectrum corresponds to the relativistic free particle with the observed mass m; iv) to show that the expansion in a power of the observed charge e << 1 corresponds to the strong coupling expansion in a power of the ''primary'' charge e-10 ~ e when the interaction between the ``physical'' electron and the transverse electromagnetic field is considered by means of the perturbation theory and all terms of this series are free from the ultraviolet divergence.

Key words: renormalization; Dirac electron-positron vacuum; nonperturbative theory.

pdf (404 kb)   ps (275 kb)   tex (97 kb)

References

  1. Weinberg S., Unified theories of elementary particle interactions, Scientific American 231 (1974), 50-58.
  2. Akhiezer A.I., Beresteckii V.B., Quantum electrodynamics, Nauka, Moscow, 1969.
    Bogoliubov N.N., Shirkov D.V., Introduction to the theory of quantum fields, Nauka, Moscow, 1973.
  3. Scharf G., Finite quantum electrodynamics: the causal approach, John Wiley and Sons, Inc., USA, 2001.
    Scharf G., Quantum gauge theories: a true ghost story, Springer Verlag, Berlin - Heidelberg - New York, 1995.
  4. Dirac P.A.M., The principles of quantum mechanics, The Clarendon Press, Oxford, 1958.
  5. Feynman R.P., Nobel lecture, Science 153 (1966), 699-711.
  6. Lifshitz E.M., Pitaevskii L.P., Relativistic quantum theory. Part II, Nauka, Moscow, 1971.
  7. Janke W., Pelster A., Schmidt H.-J., Bachmann M. (Editors), Fluctuating paths and fields, Proceedings dedicated to Hagen Kleinert, World Scientific, Singapore, 2001.
  8. Dirac P.A.M., An extensible model of the electron, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 268 (1962), 57-67.
  9. Klevansky S.P., The Nambu-Jona-Lasinio model of quantum chromodynamics, Rev. Modern Phys. 64 (1992), 649-671.
    Gusynin V.P., Miransky V.A., Shovkovy I.A., Large N dynamics in QED in a magnetic field, Phys. Rev. D 67 (2003), 107703, 4 pages, hep-ph/0304059.
  10. Hong D.K., Rajeev S.G., Towards a bosonization of quantum electrodynamics, Phys. Rev. Lett. 21 (1990), 2475-2479.
  11. Miransky V.A., Dynamics of spontaneous chiral symmetry breaking and continuous limit in quantum electrodynamics, Nuovo Cimento A 90 (1985), 149-160.
  12. Alexandrou C., Rosenfelder R., Schreiber A.W., Nonperturbative mass renormalization in quenched QED from the worldline variational approach, Phys. Rev. D 62 (2000), 085009, 10 pages.
  13. Pekar S.I., Autolocalization of the electron in the dielectric inertially polarized media, J. Exp. Theor. Phys. 16 (1946), 335-340.
  14. Bogoliubov N.N., About one new form of the adiabatic perturbation theory in the problem of interaction between particle and quantum field, Uspekhi Mat. Nauk 2 (1950), 3-24.
    Tyablikov S.V., Adiabatic form of the perturbation theory in the problem of interaction between paricle and quantum field, J. Exp. Theor. Phys. 21 (1951), 377-388.
  15. Dodd R.K., Eilbeck J.C., Gibbon J.D., Moris H.C., Solitons and nonlinear wave equations, Academic Press, London, 1984.
  16. Fröhlich H., Electrons in lattice fields, Adv. Phys. 3 (1954), 325-361.
  17. Heitler W., The quantum theory of radiation, The Clarendon Press, Oxford, 1954.
  18. Landau L.D., Lifshitz E.M., Quantum mechanics, Nauka, Moscow, 1963.
  19. Gross E.P., Strong coupling polaron theory and translational invariance, Ann. Physics, 99 (1976), 1-29.
  20. Bagan E., Lavelle M., McMullan D., Charges from dressed matter: physics and renormalization, Ann. Physics, 282 (2000), 503-540, hep-ph/9909262.
  21. Yukalov V.I., Nonperturbative theory for anharmonic oscillator, Theoret. and Math. Phys. 28 (1976), 652-660.
    Caswell W.E., Accurate energy levels for the anharmonic oscillator and series for the double-well potential in perturbation theory, Ann. Physics 123 (1979), 153-182.
  22. Feranchuk I.D., Komarov L.I., The operator method of the approximate solution of the Schrödinger equation, Phys. Lett. A 88 (1982), 211-214.
  23. Feranchuk I.D., Komarov L.I., Nichipor I.V., Ulyanenkov A.P., Operator method in the problem of quantum anharmonic oscillator, Ann. Physics 238 (1995), 370-440.
  24. Feranchuk I.D., Komarov L.I., Ulyanenkov A.P., Two-level system in a one-mode quantum field: numerical solution on the basis of the operator method, J. Phys. A: Math. Gen. 29 (1996), 4035-4047.
  25. Feranchuk I.D., Komarov L.I., Ulyanenkov A.P., A new method for calculation of crystal susceptibilities for x-ray diffraction at arbitrary wavelength, Acta Crystallogr. Sect. A 58 (2002), 370-384.
  26. Fradkin E.S., Renormalization in quantum electrodynamics with self-consistent field, Proc. Fiz. Inst. of Soviet Academy of Science 29 (1965), 1-154.
    Fradkin E.S., Application of functional methods in quantum field theory and quantum statistics, Nuclear Phys. 76 (1966), 588-612.
  27. Bogoliubov N.N., Quasi-mean values in the problems of statistical mechanics. Selected Works, Vol. 3, Naukova Dumka, Kiev, 1971.
  28. Komarov L.I., Krylov E.V., Feranchuk I.D., Numerical solution of the nonlinear eigenvalue problem, Zh. Vychisl. Mat. Mat. Fiz. 18 (1978), 681-691.
  29. Feranchuk I.D., Feranchuk S.I., Self-consistent state in the strong-coupling QED, hep-th/0309072.
  30. Bawin M., Lavine J.D., On the existence of a critical charge for superheavy nucleus, Nuovo Cimento 15 (1973), 38-44.
  31. Feranchuk I.D., Finite electron charge and mass renormalization in quantum electrodynamics, math-ph/0605028.
  32. Shnir Ya.M., Monopol, Springer, Berlin, 2005.
  33. Brodsky S.J., Drell S.D., Anomalous magnetic moment and limits on fermion substructure, Phys. Rev. D 22 (1980), 2236-2242.
  34. Feynman R.P., Slow electrons in a polar crystal, Phys. Rev. 97 (1955), 660-665.
  35. Landau L.D., Pekar S.I., Effective mass of the polaron, J. Exp. Theor. Phys. 18 (1948), 419-423.
  36. Eides M.I., Grotch H., Shelyuto V.A., Theory of light hydrogenlike atoms, Phys. Rep. 342 (2001), 63-261, hep-ph/0002158.
  37. Bjorken J.D., Drell S.D., Relativistic quantum mechanics, McGraw-Hill Book Company, London, 1976.

Previous article   Next article   Contents of Volume 3 (2007)