Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 3 (2007), 065, 11 pages      arXiv:0705.0468      https://doi.org/10.3842/SIGMA.2007.065
Contribution to the Vadim Kuznetsov Memorial Issue

The Rahman Polynomials Are Bispectral

F. Alberto Grünbaum
Department of Mathematics, University of California, Berkeley, CA 94720, USA

Received February 01, 2007, in final form April 22, 2007; Published online May 03, 2007

Abstract
In a very recent paper, M. Rahman introduced a remarkable family of polynomials in two variables as the eigenfunctions of the transition matrix for a nontrivial Markov chain due to M. Hoare and M. Rahman. I indicate here that these polynomials are bispectral. This should be just one of the many remarkable properties enjoyed by these polynomials. For several challenges, including finding a general proof of some of the facts displayed here the reader should look at the last section of this paper.

Key words: bispectral property; multivariable polynomials; rings of commuting difference operators.

pdf (208 kb)   ps (176 kb)   tex (32 kb)

References

  1. Andrews G., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, 1999.
  2. Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985), no. 319.
  3. Castro M., Grünbaum F.A., The algebra of matrix valued differential operators associated to a given family of matrix valued orthogonal polynomials: five instructive examples, Int. Math. Res. Not. 2006 (2006). Article ID 47602, 33 pages.
  4. Cooper R., Hoare M., Rahman M., Stochastic processes and special functions: on the probabilistic origin of some positive kernels associated with classical orthogonal polynomials, J. Math. Anal. Appl. 61 (1977), 262-291.
  5. Duistermaat J.J., Grünbaum F.A., Differential equations in the spectral parameter, Comm. Math. Phys. 103 (1986), 177-240.
  6. Duran A.J., Grünbaum F.A., Orthogonal matrix polynomials satisfying second order differential equations, Int. Math. Res. Not. 2004 (2004), no. 10, 461-484.
  7. Duran A., van Assche W., Orthogonal matrix polynomials and higher order recurrence relations, Linear Algebra Appl. 219 (1995), 261-280, math.CA/9310220.
  8. Dunkl C., Xu Y., Orthogonal polynomials of several variables, Cambridge University Press, 2001.
  9. Ehrenfest P., Eherenfest T., Über zwei bekannte Einwände gegen das Boltzmannsche H-Theorem, Physikalische Zeitschrift 8 (1907), 311-314.
  10. Feller W., An introduction to probability theory and its applications, Vol. 1, 3rd ed., Wiley, 1967.
  11. Grünbaum F.A., Matrix valued Jacobi polynomials, Bull. Sci. Math. 127 (2003), 207-214.
  12. Grünbaum F.A., Random walks and orthogonal polynomials: some challenges, math.PR/0703375.
  13. Grünbaum F.A., The bispectral problem: an overview, in Special Functions 2000: Current Perspective and Future Directions, Eds. J. Bustoz et al., 2001, 129-140.
  14. Grünbaum F.A., Some bispectral musings, in The Bispectral Problem (Montreal, 1997), CRM Proc. Lecture Notes, Vol. 14, Amer. Math. Soc., Providence, RI, 1998, 11-30.
  15. Grünbaum F.A., Pacharoni I., Tirao J.A., Matrix valued spherical functions associated to the complex projective plane, J. Funct. Anal. 188 (2002), 350-441, math.RT/0108042.
  16. Grünbaum F.A., Pacharoni I., Tirao J.A., Matrix valued orthogonal polynomials of the Jacobi type, Indag. Mathem. 14 (2003), 353-366.
  17. Grünbaum F.A., Pacharoni I., Tirao J.A., Matrix valued orthogonal polynomials of the Jacobi type: the role of group representation theory, Ann. Inst. Fourier (Grenoble) 55 (2005), 2051-2068.
  18. Harnard J., Kasman A. (Editors), The bispectral problem (Montreal, 1997), CRM Proc. Lecture Notes, Vol. 14, Amer. Math. Soc., Providence, RI, 1998.
  19. Hoare M., Rahman M., Distributive processes in discrete systems, Phys. A 97 (1979), 1-41.
  20. Hoare M., Rahman M., Cumultive Bernoulli trials and Krawtchouk processes, Stochastic Process. Appl. 16 (1983), 113-139.
  21. Hoare M., Rahman M., Cumultive hypergeometric processes: a statistical role for the nFn-1 functions, J. Math. Anal. Appl. 135 (1988), 615-626.
  22. Hoare M.R., Rahman M., A probabilistic origin for a new class of bivariate polynomials, SIGMA 4 (2008), 089, 18 pages, arXiv:0812.3879.
  23. Ismail M.E.H., Classical and quantum orthogonal polynomials in one variable, Cambridge University Press, 2005.
  24. Ismail M.E.H., Masson D.R., Letessier J., Valent G., Birth and death processes and orthogonal polynomials, in Orthogonal Polynomials, Editor P. Nevai, NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, Vol. 294, Kluwer Acad. Publishers, Dordrecht, 1990, 229-255.
  25. Kac M., Random wak and the theory of Brownian motion, Amer. Math. Monthly 54 (1947), 369-391.
  26. Karlin S., McGregor J., The classification of birth and death processes, Trans. Amer. Math. Soc. 86 (1957), 366-400.
  27. Karlin S., McGregor J., The Hahn polynomials, formulas and an applications, Scripta Math. 26 (1961), 33-46.
  28. Koornwinder T., Two variable analogues of the classical orthogonal polynomials, in Theory and Applic. of Special Functions, Editor R. Askey, Academic Press, 1975, 435-495.
  29. Krein M.G., Fundamental aspects of the representation theory of Hermitian operators with deficiency index (m,m), AMS Translations, Series 2, Vol. 97, Providence, Rhode Island, 1971, 75-143.
  30. Krein M.G., Infinite J-matrices and a matrix moment problem, Dokl. Akad. Nauk SSSR 69 (1949), no. 2, 125-128.
  31. Macdonald I., Affine Hecke algebras and orthogonal polynomials, Cambridge University Press, 2003.
  32. Schrödinger E., Kohlrausch F., Das Ehrenfestche Model der H-Kurve, Phys. Zeit. 8 (1907), 311-314.
  33. Sinap A., van Assche W., Orthogonal matrix polynomials and applications, J. Comput. Appl. Math. 66 (1996), 27-52.
  34. Tirao J., The matrix valued hypergeometric equation, Proc. Natl. Acad. Sci. USA 100 (2003), no. 14, 8138-8141.

Previous article   Next article   Contents of Volume 3 (2007)