Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 3 (2007), 053, 17 pages      math-ph/0703071      https://doi.org/10.3842/SIGMA.2007.053

Lie Symmetries and Criticality of Semilinear Differential Systems

Yuri Bozhkov a and Enzo Mitidieri b
a) Departamento de Matemática Aplicada, Instituto de Matemática, Estatistica e Computação Científica, Universidade Estadual de Campinas - UNICAMP, C.P. 6065, 13083-970 - Campinas - SP, Brasil
b) Dipartimento di Matematica e Informatica, Università degli Studi di Trieste, Via Valerio 12/1, 34127 Trieste, Italia

Received February 01, 2007, in final form March 20, 2007; Published online March 25, 2007

Abstract
We discuss the notion of criticality of semilinear differential equations and systems, its relations to scaling transformations and the Noether approach to Pokhozhaev's identities. For this purpose we propose a definition for criticality based on the S. Lie symmetry theory. We show that this definition is compatible with the well-known notion of critical exponent by considering various examples. We also review some related recent papers.

Key words: Pokhozhaev identities; Noether identity; critical exponents.

pdf (284 kb)   ps (184 kb)   tex (17 kb)

References

  1. Anco S.C., Ivanova N.M., Conservation laws and symmetries of semilinear radial wave equations, J. Math. Anal. Appl., to appear, math-ph/0608037.
  2. Anco S.C., Liu S., Exact solutions of semilinear radial wave equations in n dimensions, J. Math. Anal. Appl. 297 (2004), 317-342, math-ph/0309049.
  3. Baouendi M.S., Sur une classe d'operateurs elliptique dégénérés, Bull. Soc. Math. France 95 (1967), 45-87.
  4. Bliss G., An integral inequality, J. London Math. Soc. 5 (1930), 40-46.
  5. Bluman G.W., Kumei S., Symmetries and differential equations, Springer, New York, 1989.
  6. Bozhkov Y.D., Noether symmetries and critical exponents, SIGMA 1 (2005), 022, 12 pages, nlin.SI/0511058.
  7. Bozhkov Y.D., Divergence symmetries of semilinear polyharmonic equations involving critical nonlinearities, J. Differential Equations 225 (2006), 666-684.
  8. Bozhkov Y.D., Freire I.L., Group classification of semilinear Kohn-Laplace equations, Nonlinear Anal., to appear.
  9. Bozhkov Y.D., Freire I.L., Divergence symmetries of critical Kohn-Laplace equations on Heisenberg groups, Diff. Uravn., to appear.
  10. Bozhkov Y.D., Gilli Martins A.C., On the symmetry group of a differential equation and the Liouville-Gelfand problem, Rendiconti dell'Istituto di Matematica dell'Università di Trieste 34 (2002), 103-120.
  11. Bozhkov Y.D., Gilli Martins A.C., Lie point symmetries and exact solutions of quasilinear differential equations with critical exponents, Nonlinear Anal. 57 (2004), 773-793.
  12. Bozhkov Y.D., Gilli Martins A.C., Lie point symmetries of the Lane-Emden system, J. Math. Anal. Appl. 294 (2004), 334-344.
  13. Bozhkov Y.D., Mitidieri E., The Noether approach to Pokhozhaev's identities, Mediterr. J. Math., to appear.
  14. Caffarelli L.A., Gidas B., Spruck J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), 271-297.
  15. Clément P., de Figueiredo D. G., Mitidieri E., Quasilinear elliptic equations with critical exponents, Topol. Methods Nonlinear Anal. 7 (1996), 133-170.
  16. Clément P., Felmer P., Mitidieri E., Homoclinic orbits for a class of infinite-dimensional Hamiltonian systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), 367-393.
  17. Clément P., van der Vorst R.C.A.M., On the non-existence of homoclinic orbits for a class of infinite-dimensional Hamiltonian systems, Proc. Amer. Math. Soc. 125 (1997), 1167-1176.
  18. D'Ambrosio L., Hardy inequalities related to Grushin type operators, Proc. Amer. Math. Soc. 132 (2004), 725-734.
  19. Garofalo N., Lanconelli E., Existence and nonexistence results for semilinear equations on the Heisenberg group, Indiana Univ. Math. J. 41 (1992), 71-98.
  20. Gidas B., Spruck J., Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), 525-598.
  21. Grushin V.V., On a class of hypoelliptic operators, Math. Sbornik USSR 12 (1970), 458-476.
  22. Guedda M., Veron, L., Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. 13 (1989), 879-902.
  23. Ibragimov N.H., Noether's identity, Dinamika Sploshnoy Sredy 38 (1979), 26-32 (in Russian).
  24. Ibragimov N.H., Transformation groups applied to mathematical physics, D. Reidel Publishing Co., Dordrecht, 1985.
  25. Mitidieri E., A Rellich identity and applications, Rapporti Interni, Univ. Udine (1990), no. 25, 1-35.
  26. Mitidieri E., A Rellich type identity and applications, Commun. Partial Differential Equations 18 (1993), 125-151.
  27. Mitidieri E., Nonexistence of positive solutions of semilinear elliptic systems in RN, Differential Integral Equations 9 (1996), 465-479.
  28. Mitidieri E., Pokhozhaev S.I., A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math. 234 (2001), 1-362.
  29. Olver P.J., Applications of Lie groups to differential equations, Springer, New York, 1986.
  30. Ovsiannikov L., Group analysis of differential equations, Academic Press, London, 1982.
  31. Pokhozhaev S.I., On the eigenfunctions of the equation Du+lf(u)=0, Dokl. Akad. Nauk SSSR 165 (1965), 36-39 (English transl.: Soviet Math. Dokl. 6 (1965), 1408-1411).
  32. Pokhozhaev S.I., On eigenfunctions of quasilinear elliptic problems, Mat. Sb. 82 (1970), 192-212 (English transl.: Math. USSR Sbornik 11 (1970), 171-188).
  33. Pohozaev S.I., Veron L., Nonexistence results of solutions of semilinear differential inequalities on the Heisenberg group, Manuscripta Math. 102 (2000), 85-99.
  34. Pucci P., Serrin S., A general variational identity, Indiana Univ. Math. J. 35 (1986), 681-703.
  35. Pucci P., Serrin S., Critical exponents and critical dimensions for polyharmonic operators, J. Math. Pures Appl. (9) 69 (1990), 55-83.
  36. Serrin J., Zou H., Non-existence of positive solutions of semilinear elliptic systems, Discourses Math. Appl. 3 (1994), 55-68.
  37. Serrin J., Zou H., Non-existence of positive solutions of the Lane-Emden systems Differential Integral Equations 9 (1996), 635-653.
  38. Serrin J., Zou H., Existence of positive solutions of the Lane-Emden systems, Atti Sem. Mat. Fis. Univ. Modena 46 (1998), supl., 369-380.
  39. van der Vorst R.C.A.M., Variational identities and applications to differential systems, Arch. Rational Mech. Anal. 116 (1992), 375-398.

Previous article   Next article   Contents of Volume 3 (2007)