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Abstract. In the paper, properties of antisymmetric orbit functions are reviewed and
further developed. Antisymmetric orbit functions on the Euclidean space E,, are antisym-
metrized exponential functions. Antisymmetrization is fulfilled by a Weyl group, corre-
sponding to a Coxeter—Dynkin diagram. Properties of such functions are described. These
functions are closely related to irreducible characters of a compact semisimple Lie group G
of rank n. Up to a sign, values of antisymmetric orbit functions are repeated on copies
of the fundamental domain F' of the affine Weyl group (determined by the initial Weyl
group) in the entire Euclidean space E,. Antisymmetric orbit functions are solutions of
the corresponding Laplace equation in F,, vanishing on the boundary of the fundamental
domain F. Antisymmetric orbit functions determine a so-called antisymmetrized Fourier
transform which is closely related to expansions of central functions in characters of irre-
ducible representations of the group GG. They also determine a transform on a finite set of
points of F' (the discrete antisymmetric orbit function transform). Symmetric and antisym-
metric multivariate exponential, sine and cosine discrete transforms are given.
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1 Introduction

In [1] and [2] we considered properties and applications of symmetric orbit functions (they are
called there orbit functions; without the word “symmetric”). They are closely related to finite
groups W of geometric symmetries generated by reflection transformations r; (that is, such
that 2 = 1), i = 1,2,...,n, of the n-dimensional Euclidean space E,, with respect to (n—1)-
dimensional subspaces containing the origin. In order to obtain a symmetric orbit function we
take a point A € E,, and act upon A by all elements of the group W. If O()) is the W-orbit of
the point A, that is the set of all different points of the form wA, w € W, then the symmetric
orbit function, determined by A, coincides with

¢/\($): Z 627ri<,u,r>’

HEO(N)

where (u, x) is the scalar product on E,,. These functions are invariant with respect to the action
by elements of the group W: ¢)(wz) = ¢x(z), w € W. If X is an integral point of E,, then
o (z) is invariant with respect to the affine Weyl group W2 corresponding to W. Since in the
simplest case symmetric orbit functions coincide with the cosine function, sometimes they are
called C-functions.
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Symmetric orbit functions are multivariate functions having many beautiful and useful pro-
perties and applicable both in mathematics and engineering. For this reason, they can be treated
as special functions [2].

Symmetricity is the main property of symmetric orbit functions, considered in [1] and [2],
which make them useful in applications. Being a modification of monomial symmetric functions,
they are directly related to the theory of symmetric (Laurent) polynomials [3, 4, 5, 6] (see
Section 11 in [1]).

Symmetric orbit functions ¢, (x) for integral A are closely related to the representation theory
of compact groups G. In particular, they were effectively used for different calculations in
representation theory [7, 8,9, 10, 11]. They are constituents of traces (characters) of irreducible
unitary representations of G. Although characters contain all (or almost all) information about
the corresponding irreducible representations, they are seldom used as special functions. The
reason is that a construction of characters is rather complicated, whereas orbit functions have
much more simple structure.

The symmetric orbit function ¢, (z) is a symmetrized (by means of the group W) exponential
function €2 on E,. For each transformation group W, the symmetric orbit functions
form a complete orthogonal basis in the space of symmetric (with respect to W) polynomials
in e2™% j =1,2,...,n, or in the Hilbert space obtained by closing this space with respect to an
appropriate scalar product. Orbit functions ¢y (z), when A runs over integral weights, determine
so-called (symmetric) orbit function transform, which is a symmerization of the usual Fourier
series expansion on E,. If A runs over the space E,, then ¢)(x) determines a symmetric orbit
function transform, which is a symmetrization of the usual continuous Fourier expansion in F,,
(that is, of the Fourier integral).

In the same way as the Fourier transform leads to discrete Fourier transform, the symmetric
orbit function transform leads to a discrete analogue of this transform (which is a generalization
of the discrete cosine transform [12]). This discrete transform is useful in many things related
to discretization (see [13, 14, 15, 16, 17, 18, 19, 20]). Construction of the discrete orbit function
transform is fulfilled by means of the results of paper [21].

In this paper we consider antisymmetric orbit functions (since in the simplest case they
coincide with the sine function, sometimes they are called S-functions). They are given by

ox(z) = Z (det w)e?mi{wA ) z € Fy,
weW

where A is a strictly dominant weight and det w is a determinant of the transformation w (it is
equal to 1 or —1, depending on either w is a product of even or odd number of reflections). The
orbit functions () have many properties that the symmetric orbit functions ¢, do. But anti-
symmetricity leads to some new properties which are useful for applications [22]. For integral \,
antisymmetric orbit functions are closely related to characters of irreducible representations of
the corresponding compact Lie group G. Namely, the character x of the irreducible represen-
tation T, A € Py, coincides with px1,/p,, where p is a half of a sum of positive roots related
to the Weyl group W.

Symmetric orbit functions are a generalization of the cosine function, whereas antisymmetric
orbit functions are a generalization of the sine function. A generalization of the exponential
functions are called E-orbit functions. A detailed description of these functions for rank two see
in [23].

Our goal in this paper is to bring together in full generality the diverse facts about antisym-
metric orbit functions, many of which are not found in the literature, although they often are
straightforward consequences of known facts. In general, for a given transformation group W
of the Euclidean space E,, most of the properties of antisymmetric orbit functions, which are
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described in this paper, are implications of properties either of the orbits of the group W or of
the usual exponential function on FE,,.

For dominant elements A, antisymmetric orbit functions ¢y (z) are antisymmetric with re-
spect to elements of the corresponding Weyl group, that is, px(wx) = (detw)py(z) for any
w € W. For this reason, antisymmetric orbit functions are defined only for strictly dominant
elements A (a dominant element A is strictly dominant if wA = A means that w = 1). If A is
integral strictly dominant element, then the corresponding antisymmetric orbit function ¢)(z)
is antisymmetric also with respect to elements of the affine Weyl group W2 corresponding
to the Weyl group W. Antisymmetricity is a main property of antisymmetric orbit functions.
Because of antisymmetricity, it is enough to determine ¢, (z) only on a fundamental domain of
the affine Weyl group W2 (if ) is integral).

In the case when the group W is a direct product of its subgroups, say W = W; x Wa, the
fundamental domain is the Cartesian product of fundamental domains for Wy and Ws. Similarly,
antisymmetric orbit functions of W are products of antisymmetric orbit functions of W7 and Wa.
Hence it suffices to carry out our considerations for groups W which cannot be represented as
a product of its subgroups (that is, for such W for which a corresponding Coxeter-Dynkin
diagram is connected).

In the article many examples of dimensions 2 and 3 are shown because they are likely to be
used more often.

We shall need a general information on Weyl groups, affine Weyl groups, root systems and
their properties. We have given this information in [1]. In order to make this paper self-contained
we repeat a part of that information in Section 2.

In Section 3 we describe signed Weyl group orbits. They differ from the Weyl group or-
bits by a sign (equal to +1 or —1) assigned to each point of an orbit. To each signed orbit
there corresponds an antisymmetric orbit function if a dominant element of the orbit is strictly
dominant.

Section 4 is devoted to description of antisymmetric orbit functions. Antisymmetric orbit
functions, corresponding to Coxeter—Dynkin diagrams, containing only two nodes, are given in
an explicit form. In this section we also give explicit formulas for antisymmetric orbit functions,
corresponding to Coxeter—Dynkin diagrams of A,, B,, C,, and D,, in the corresponding ortho-
gonal coordinate systems. In Section 5 properties of antisymmetric orbit functions are described.
If A is integral, then a main property of the antisymmetric orbit function ¢, is an invariance
with respect to the affine Weyl group W2, We also give here the symmetric and antisymmetric
orbit functions ¢,(x) and ¢,(z), corresponding to the half-sum p of positive roots, in a form of
products of the cosine and sine functions of certain angles depending on x. Specific properties
of antisymmetric orbit functions of the Coxeter—Dynkin diagram A,, are given in Section 6.

In Section 7 we consider expansions of products of symmetric (antisymmetric) orbit functions
into a sum of symmetric or antisymmetric orbit functions. These expansions are closely related
to properties of (signed) W-orbits. Many examples for expansions in the case of Coxeter—Dynkin
diagrams A, and Cs are considered. Section 8 is devoted to expansion of antisymmetric W-orbit
functions into a sum of antisymmetric W’-orbit functions, where W’ is a subgroup of the Weyl
group W. Many particular cases are studied in detail.

Connection between antisymmetric orbit functions ¢y (x) with integral A and characters of
finite dimensional irreducible representations of the corresponding simple compact Lie groups
is studied in Section 9. In particular, the well-known Weyl formula for characters of such
representations contains antisymmetric orbit functions.

In Section 10 we expose antisymmetric orbit function transforms. There are two types of
such transforms. The first one is an analogue of the expansion into Fourier series and the
second one is an analogue of the Fourier integral transform. In Section 11 a description of an
antisymmetric generalization of the multi-dimensional finite Fourier transform is given. This
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analogue is connected with grids on the corresponding fundamental domains for the affine Weyl
groups Wt Symmetric and antisymmetric multivariate exponential discrete transforms, as
well as symmetric and antisymmetric multivariate sine and cosine discrete transforms are given
in this section.

In Section 12 we show that antisymmetric orbit functions are solutions of the Laplace equation
on the corresponding n-dimensional simplex vanishing on a boundary of the simplex. It is shown
that antisymmetric orbit functions are eigenfunctions of other differential operators.

Section 13 is devoted to exposition of symmetric and antisymmetric functions, which are
symmetric and antisymmetric analogues of special functions of mathematical physics or ortho-
gonal polynomials. In particular, we find eigenfunctions of antisymmetric and symmetric orbit
function transforms. These eigenfunctions are connected with classical Hermite polynomials.

2 Weyl groups and affine Weyl groups

2.1 Coxeter—-Dynkin diagrams and Cartan matrices

The sets of symmetric or antisymmetric orbit functions on the n-dimensional Euclidean space E,
are determined by finite transformation groups W, generated by reflections r;, ¢ = 1,2,...,n
(a characteristic property of reflections is the equality r? = 1); the theory of such groups see,
for example, in [24] and [25]. We are interested in those groups W which are Weyl groups
of semisimple Lie groups (semisimple Lie algebras). It is well-known that such Weyl groups
together with the corresponding systems of reflections r;, ¢ = 1,2,...,n, are determined by
Coxeter—Dynkin diagrams. There are 4 series and 5 separate simple Lie algebras, which uniquely
determine their Weyl groups W. They are denoted as

An (n21)7 Bn (77/23)7 Cn (n22)7 Dn (7124), E67 E77 E87 F47 G2~

To these Lie algebras there correspond connected Coxeter—Dynkin diagrams. To semisimple
Lie algebras (they are direct sums of simple Lie subalgebras) there correspond Coxeter—Dynkin
diagrams, which consist of connected parts, corresponding to simple Lie subalgebras; these
parts are not connected with each other (a description of the correspondence between simple
Lie algebras and Coxeter-Dynkin diagrams see, for example, in [26]). Thus, we describe only
Coxeter—Dynkin diagrams, corresponding to simple Lie algebras. They are of the form

1 2 3 n n
A, O—0—0-""-0 12 n—?@ n-l
DTL ..
n—2
1 2 n—1 n 6
B, O—O—"""—-C—e 1 2 4 5
Eg
1 2 n—1 n 3
C, —@—  —@—0O 3
7 1 2 3 4 6 7
1 2 4 5 6 o)
Er 5
3
1 2 3 4 12
F, O—C—e—e Gy, O—=®
A diagram determines a certain non-orthogonal basis {a1, a9, ..., a,} in the Euclidean spa-

ce F,. Each node is associated with a basis vector ay, called a simple root. A direct link
between two nodes indicates that the corresponding basis vectors are not orthogonal. Conversely,
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an absence of a direct link between nodes implies orthogonality of the corresponding vectors.
Single, double, and triple links indicate that the relative angles between the two simple roots
are 2w /3, 3w /4, 5 /6, respectively. There can be only two cases: all simple roots are of the same
length or there are only two different lengths of simple roots. In the first case all simple roots
are denoted by white nodes. In the case of two lengths, shorter roots are denoted by black nodes
and longer ones by white nodes. Lengths of roots are determined uniquely up to a common
constant. For the cases B,, C,, and F}, the squared longer root length is double the squared
shorter root length. For Gs, the squared longer root length is triple the squared shorter root
length.

If two nodes are connected by a single line, then the angle between the corresponding simple
roots is 27/3. If nodes are connected by a double line, then the angle is 3w/4. A triple line
means that the angle is 57/6. Simple roots of the same length are orthogonal to each other or
an angle between them is 27/3.

To each Coxeter—Dynkin diagram there corresponds a Cartan matrix M, consisting of the
entries

2<aj7 ak>

M =
i (o, o)

o hke{l2,.nj, (2.1)

where (x,y) denotes the scalar product of z,y € E,. Cartan matrices of simple Lie algebras are
given in many places (see, for example, [27]). We recall them here for ranks 2 and 3 because of
their usage later on:

2 -1 2 -1 2 -3
A2.<_1 2), cg.<_2 2), G2.<_1 2),
2 -1 0 2 -1 0 2 -1 0
As: | -1 2 -1 ], Bs:| -1 2 =2 ], Cs: | -1 2 -1
0o -1 2 0o -1 2 0o -2 2
Lengths of the basis vectors «; are fixed by the corresponding Coxeter—Dynkin diagram up
to a constant. We adopt the standard choice in the Lie theory, namely

(o, ) =2

for all simple roots of A,, D,, Eg, F7, Eg and for the longer simple roots of B,,, Cy,, Fy, Go.

2.2 Weyl group

A Coxeter—Dynkin diagram determines uniquely the corresponding transformation group of F,,
generated by reflections r;, ¢ = 1,2,...,n. These reflections correspond to simple roots «;,
i = 1,2,...,n. Namely, the transformation r; corresponds to the simple root a; and is the
reflection with respect to (n — 1)-dimensional linear subspace (hyperplane) of F,, (containing
the origin), orthogonal to ;. It is well-known that such reflections are given by the formula

2(x, i)

(0, i)

L =X — o, 1=1,2,...,n, x¢€ E,. (2.2)
Each reflection r; can be thought as attached to the i-th node of the corresponding diagram.

A finite group W, generated by the reflections r;, ¢ = 1,2,...,n, is called a Weyl group,
corresponding to a given Coxeter—Dynkin diagram. If a Weyl group W corresponds to a Coxeter—
Dynkin diagram of a simple Lie algebra L, then this Weyl group is often denoted by W (L).
Properties of Weyl groups are well known (see [24] and [25]). The orders (numbers of elements)
of Weyl groups are given by the formulas

W(A)| = (n+ 1), |[W(B,)|=|W(Cy)|=2"l |W(D,)|=2""nl,
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|W(Eg)| = 51840,  |W(E+)| = 2903040, |W (Es)| = 696 729 600, (2.3)
W(Fy)|=1152,  |[W(Ga)| = 12.

In particular,

[W(A2)| = 6, W(C2)| =38, (W (As3)[ = 24, [W(Cs)| = 48.

2.3 Roots and weights

A Coxeter—Dynkin diagram determines a system of simple roots in the Euclidean space FE,,.
Acting by elements of the Weyl group W upon simple roots we obtain a finite system of vectors,
which is invariant with respect to W. A set of all these vectors is called a system of roots
associated with a given Coxeter—Dynkin diagram. It is denoted by R. As we see, a system of
roots R is calculated from simple roots by a straightforward algorithm.

It is proved (see, for example, [26]) that roots of R are linear combinations of simple roots
with integral coefficients. Moreover, there exist no roots, which are linear combinations of «;,
i=1,2,...,n, both with positive and negative coefficients. Therefore, the set of roots R can
be represented as a union R = Ry U R_, where Ry (respectively R_) is the set of roots which
are linear combination of simple roots with positive (negative) coefficients. The set R4 (the
set R_) is called a set of positive (negative) roots.

As mentioned above, a set R of roots is invariant under the action of elements of the Weyl
group W (R). However, wR; # R, if w is not a trivial element of W. The following proposition
holds:

Proposition 1. A refiection r; € W, corresponding to a simple root a;, maps oy into —q; and
reflects the set Ri\{«;} of all other roots of Ry onto itself.

Let X, be the (n — 1)-dimensional linear subspace (hyperplane) of E,, which contains the
origin and is orthogonal to the root . Clearly, X, = X_,. The set of reflections with respect
to X4, @ € Ry, coincides with the set of all reflections of the corresponding Weyl group W.
The hyperplane X, consists of all points x € E,, such that (z,a) = 0.

The subspaces X,, o € R4, split the Euclidean space E, into connected parts which are
called Weyl chambers. A number of Weyl chambers coincides with the number of elements of
the Weyl group W. Elements of the Weyl group permute Weyl chambers. A part of a Weyl
chamber, which belongs to some hyperplane X, is called a wall of this Weyl chamber. If for
some element x of a Weyl chamber we have (x,a) = 0 for some root «, then this point belongs
to a wall. The Weyl chamber consisting of points x such that

(x,a;) >0, 1=1,2,...,n,

is called the dominant Weyl chamber. 1t is denoted by D.. Elements of D, are called dominant.
If (x,0;) >0,9=1,2,...,n, then x is called strictly dominant element.
The set @ of all linear combinations

n
Q= {Zaiai | a; € Z} = @Zai
i=1 i
is called a root lattice corresponding to a given Coxeter—Dynkin diagram. Its subset
n
Q+ = {Zaiai ‘ a; 2071727"'}
i=1

is called a positive root lattice.
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To each root a € R there corresponds the coroot o defined by the formula

v 2a

(o, a)

It is easy to see that oV = a. The set QV of all linear combinations

QY = {Zn:aiaiv | a; € Z} = @Za;/
=1 %

is called a coroot lattice corresponding to a given Coxeter—-Dynkin diagram. The subset

n
QY = {Zaiay | ai:O,l,Q,...}
i=1

is called a positive coroot lattice.

As noted above, the set of simple roots ay, i = 1,2,...,n, form a basis of the space E,. In
addition to the a-basis, it is convenient to introduce the so-called w-basis, wi,wa,...,w, (also
called the basis of fundamental weights). The two bases are dual to each other in the following
sense:

2<aj’wk>

(g, )

(O[}/,wk> = Ojk, 7.k € {1,2, . ,n}. (24)

The w-basis (as well as the a-basis) is not orthogonal.
Note that the factor 2/(«a;, ;) can take only three values. Indeed, with the standard nor-
malization of root lengths, we have

2

m =1 forrootsof A,, D,, Eg, E7, Eg,
2

Tonon) =1 for long roots of B,, C,, Fy, Ga,
2

——— =2 for short roots of B,, C,, Fj,

(o, ag)
2

——— =3 for short roots of Gbs.

(o, ag)

For this reason, we get

o) =ap for roots of A, D,, Egs, Fr, Es,
o) =ap for long roots of B, Cy, Fy, Go,
o) =2y, for short roots of B, C,, Fy,

oz% = 3ay, for short roots of Go.

The a- and w-bases are related by the Cartan matrix (2.1) and by its inverse:

n

n
aj = Z My wy, wj = Z(Mfl)jkak. (2.5)
k=1 k=1

For ranks 2 and 3 the inverse Cartan matrices are of the form

12 1 (112 (2 3
A2.3<12>, cg.(11>, G2.(12),
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1 3 2 1 1 2 2 2 1 2 21
A3:1 2 4 2 N B3:§ 2 4 4 5 03:5 2 4 2
1 2 3 1 2 3 2 4 3

Later on we need to calculate scalar products (z,y) when x and y are given by coordinates x;
and y; in w-basis. It is given by the formula

1 _ -
(@,y) =5 > wyun(M ) jrlon | ax) = aM ' Dy" = 28y", (2.6)
jih=1
where D is the diagonal matrix diag (3 (a1,1), ..., 3{on, an)). Matrices S, called ‘quadratic

form matrices’, are shown in [27] for all connected Coxeter—Dynkin diagrams.
The sets P and P, defined as

P=Zwi+  +Zw, O Py =201+ +Z2w,,

are called respectively the weight lattice and the cone of dominant weights. The set P can be
characterized as a set of all A\ € F,, such that

2<O‘j7)‘> — (Y
(o) (N EE

for all simple roots ;. Clearly, () C P. Below we shall need also the set P_ﬁ of dominant weights
of Py, which do not belong to any Weyl chamber (the set of integral strictly dominant weights).
Then A € P! means that (A, ;) > 0 for all simple roots ;. We have

Pl =770 + Z7%: + -+ - + 270wy,

The smallest dominant weights of P, different from zero, coincide with the elements wy, ws,
...,wy of the w-basis. They are called fundamental weights. They are highest weights of funda-
mental irreducible representations of the corresponding simple Lie algebra L.

Through the paper we often use the following notation for weights in w-basis:

z:E ajw; = (a1 az ... ap), ai,...,ap € 7.

n
If 2 = 3 bjaf, then
j=1

(z,x) = Zajbj. (2.7)
j=1

2.4 Highest root

There exists a unique highest (long) root £ and a unique highest short root &. The highest
(long) root can be written as

n

£= Zn:miai = Zmz <ai72ai>0éiv = Zn:qz'oé;/. (2.8)
i=1 i=1

i=1

The coefficients m; and ¢; can be viewed as attached to the i-th node of the diagram. They are
called marks and comarks and are often listed in the literature (see, for example, [27]). In root
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systems with two lengths of roots, namely in B,,, Cy, Fy and G3, the highest (long) root & is of
the form

B, : €=(010...0)=a +2a2 + 203 + - + 20, (2.9)
Co: €= (20...0) =20 + 204 + 2001 + 0y, (2.10)
Fy : &= (100 0) = 201 + 32 + 4as + 20y, (2.11)
Gy : &= ( ) = 201 + 3as. (2.12)

For A,,, D,, and E,, all roots are of the same length, hence £, = £&. We have

A, : €=(10...01)=a;+as 4+ ap, (2.13)
D, : 52(010 0) = a1+ 203+ + 20,3 + Q1 + an, (2.14)
Es : £€=(010...0) =0 + 202 + 3as + 204 + as + 2a, (2.15)
Er : €=(100...0) = 2a; + 3a2 + 4as + 3aq + 2a5 + ag + 27, (2.16)
Es : £€=(00...01) =207 + 3az + 4as + bay + 6as + 4ag + 2a7 + 3as. (2.17)

Note that for highest root £ we have

&V =¢ (2.18)
Moreover, if all simple roots are of the same length, then

oy

;. = O4.

For this reason,

(Ql)q27 cee ,Qn) — (mlum27 cee 7mn)'

for A,,, D,, and E,,. Formulas (2.13)—(2.18) determine these numbers. For short roots «; of By,
C,, and Fy; we have 0%\‘/ = 2a;. For short root ap of G2 we have ay = 3. For this reason,

(QI)q27"')Qn):(1727"'7271) for Bnu

(q1,q2, - qn) = (1,1,...,1,1)  for Gy,
(Q17QQ7(]37Q4) - (273727 1) for F47
(QI7Q2) = (2,1) for GQ.

To each root system R there corresponds an extended root system (which is also called an
affine root system). It is constructed with the help of the highest root £ of R. Namely, if
a1, Q9,...,0, is a set of all simple roots, then the roots

Qo = _670[170[27"'70471

constitute a set of simple roots of the corresponding extended root system. Taking into account
the orthogonality (non-orthogonality) of the root ag to other simple roots, the diagram of an
extended root system can be constructed (which is an extension of the corresponding Coxeter—
Dynkin diagram; see, for example, [28]). Note that for all simple Lie algebras (except for A,)
only one simple root is orthogonal to the root ag. In the case of A,, the two simple roots «y
and a,, are not orthogonal to «y.
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2.5 Affine Weyl groups

We are interested in antisymmetric orbit functions which are given on the Euclidean space E,,.
These functions are anti-invariant with respect to action by elements of a Weyl group W, which is
a transformation group of F,. However, W does not describe all symmetries of orbit functions
corresponding to weights \ € Pj. A whole group of anti-invariances of antisymmetric orbit
functions is isomorphic to the affine Weyl group W2 which is an extension of the Weyl group W.
This group is defined as follows.

Let ay, a9, ..., a, be simple roots in the Euclidean space E,, and let W be the corresponding
Weyl group. The group W is generated by reflections r,,, 2 = 1,2,...,n. In order to construct
the affine Weyl group W#f, corresponding to the group W, we have to add an additional
reflection. This reflection is constructed as follows.

We consider the reflection r¢ with respect to the (n — 1)-dimensional subspace (hyperplane)
X,,—1 containing the origin and orthogonal to the highest (long) root &, given in (2.8):

2(z, §)
(€, €)

Clearly, r¢ € W. We shift the hyperplane X,,_1 by the vector £¥/2, where £¥ = 2¢/(&,§).
(Note that by (2.18) we have £V = £. However, it is convenient to use here £.) The reflection
with respect to the hyperplane X,,_1 + ¢ /2 will be denoted by 9. Then in order to fulfill the
transformation ry we have to fulfill the transformation r¢ and then to shift the result by £,
that is,

3 (2.19)

TeX =X —

rox =rex + €Y.
We have ro0 = ¢ and it follows from (2.19) that ro maps = + £V/2 to

re(x+&7/2) + & =x+ /2 — (x,£")¢

Therefore,
2(x, € 2(z, &Y
S S AREATNCEE oo
_ \Y _ 2<(L‘ +§V/2’§\/> \Y 2<§V/2’§\/> \Y
B S R AT/
Denoting x + £V /2 by y we obtain that rq is given also by the formula
2y, £V
oY =Y+ (1 - <£<\%év;> €V =&Y +rey. (2.20)

The element g does not belong to W since elements of W do not move the point 0 € E,,.
The hyperplane X,,_1 + £V /2 coincides with the set of points y such that roy = y. It follows
from (2.20) that this hyperplane is given by the equation

L= 20687
(€v,€Y)

=, 8) = ara, (2.21)
k=1
where

n n

Vv

Y= § apWr, §= E qrOy
k=1 k=1

(see (2.7)).
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A group of transformations of the Euclidean space E,, generated by reflections ro, 70, .- ., Ta,,
is called the affine Weyl group of the root system R and is denoted by W2 or by Wf‘%ﬂ (if is
necessary to indicate the initial root system), see [28].

Adjoining the reflection rg to the Weyl group W completely change properties of the group
W,

If 7¢ is the reflection with respect to the hyperplane X,,_1, then due to (2.19) and (2.20) for
any x € F, we have

rorex = ro(rex) = £ +rerer =z + €Y.

Clearly, (rore)*z = x + k€Y, k = 0,£1,+2,..., that is, the set of elements (ror¢)*, k =
0,+1,42,..., is an infinite commutative subgroup of W&, This means that (unlike to the
Weyl group W) W2 is an infinite group.

Since 190 = £V, for any w € W we have

wrpl = wfv = fl\{,,

where &, is a coroot of the same length as the coroot £¥. For this reason, wr is the reflection
with respect to the (n—1)-hyperplane perpendicular to the root £ and containing the point &, /2.
Moreover,

(wro)reye = x + &,

We also have ((wro)r%)kaj =ux+ k), k=0,+£1,42,.... Since w is any element of W, then
the set w&Y, w € W, coincides with the set of coroots of RV, corresponding to all long roots of
the root system R. Thus, the set W . 0 coincides with the lattice Q) generated by coroots o¥
taken for all long roots a from R.

It is checked for each type of root systems that each coroot &Y for a short root & of R is
a linear combination of coroots w¢" = &, w € W, with integral coefficients, that is, Q¥ = Q.
Therefore, The set W . 0 coincides with the coroot lattice Q¥ of R.

Let QV be the subgroup of W2 generated by the elements

(wro)ruw, we W, (2.22)

where 7, = r¢v for w € W. Since elements (2.22) pairwise commute with each other (since they
are shifts), Qv is a commutative group. The subgroup QV can be identified with the coroot
lattice QY. Namely, if for g € QY we have g-0 = v € QV, then g is identified with . This
correspondence is one-to-one.

The subgroups W and QV generate W since a subgroup of W generated by W and QV,
contains the element ro. The group W% is a semidirect product of its subgroups W and QV,
where QY is an invariant subgroup (see Section 5.2 in [1] for details).

2.6 Fundamental domain

An open connected simply connected set D C F,, is called a fundamental domain for the group
yaft (for the group W) if it does not contains equivalent points (that is, points z and 2’ such
that © = wz) and if its closure contains at least one point from each Wf-orbit (from each
W-orbit). It is evident that the dominant Weyl chamber (without walls of this chamber) is
a fundamental domain for the Weyl group W. Recall that this domain consists of all points
T =awi + -+ apw, € E, for which

a; = (z,a)) >0, 1=1,2,...,n.
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We wish to describe a fundamental domain for the group W2, Since W < W2, it can be
chosen as a subset of the dominant Weyl chamber for W.

We have seen that the element rg € W2 is a reflection with respect to the hyperplane
Xp—1+&Y/2, orthogonal to the root & and containing the point €Y /2. This hyperplane is given
by the equation (2.21). This equation shows that the hyperplane X,,_; + £¥/2 intersects the
axices, determined by the vectors w;, in the points w;/q;, i = 1,2,...,n, where ¢; are such as
in (2.21). We create the simplex with n + 1 vertices in the points

w1 Wn

0, 2L ... 2.23
q1 qn ( )

By the definition of this simplex and by (2.21), this simplex consists of all points y of the
dominant Weyl chamber for which (y,£) < 1. Clearly, the interior F' of this simplex belongs to
the dominant Weyl chamber. The following theorem is true (see, for example, [1]):

Theorem 1. The set F is a fundamental domain for the affine Weyl group WA,

For the rank 2 cases the fundamental domain is the interior of the simplex with the following
vertices:

A2 : {0, wi, wg},
CQ . {0, wi, wg},
Gy : {0, %, wo}.

3 Weyl group signed orbits

3.1 Signed orbits

As we have seen, the (n — 1)-dimensional linear subspaces X, of E,, orthogonal to positive
roots a and containing the origin, divide the space E,, into connected parts, which are called Weyl
chambers. A number of such chambers is equal to an order of the corresponding Weyl group W.
Elements of the Weyl group permute these chambers. There exists a single chamber D, such
that (aj,x) >0,z € Dy, i=1,2,...,n. It is the dominant Weyl chamber.

Clearly, the cone of dominant weights Py belongs to the dominant Weyl chamber D . (Note
that it is not a case for the set Q4.) We have PN D, = P,.

Let y be an arbitrary dominant element of the Euclidean space E,, which does not lie on
some Weyl chamber. We act upon y by all elements of the Weyl group W. As a result, we
obtain a set of elements wy, w € W, which is called Weyl group orbit. All these elements are
pairwise different. We attach to each point wy a sign coinciding with a sign of det w. The set
of all points wy, w € W, together with their signs is called a signed orbit of the point y with
respect the Weyl group (or a Weyl group signed orbit, containing y). Points of signed orbits
will be denoted by 2™ or 2™, depending on a sign. Sometimes, we denote points wy, y € D, of
the signed orbit, containing the point y, as wyd°*®, where instead of a sign we have +1 or —1,
respectively.

An orbit (where points do not have signs) of a point y € D is denoted by O(y) or Ow (y).
A size of an orbit O(y) is a number |O(y)| of its elements. Each Weyl chamber contains only
one point of a fixed orbit Q(y). A signed orbit of a strictly dominant point y € F,, is denoted
by O*(y) or Oy (y)-

Note that orbits O(y) are defined for any dominant elements y € E,,. Signed orbits OF (y)
can be defined only for strictly dominant y € E,,.
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3.2 Signed orbits of A;, A; X Ay, Az, Cs, G2

Assuming that a > 0 and b > 0, we list the contents of signed orbits in w-basis:

Ay : O%(a)3 ()T, (—a)” (3.1)

Ay x Ay OFab)3(ab)t, (—ab)”, (a =b)~, (—a —b)* 3.2
Ay: O%(ab) 3 (ab)t, (—aat+b)”, (a+b —b)",

(=b —a)~, (—a—ba)t, (b —a—b)". (3.3)

In the cases of Cy and Gy (where the second simple root is the longer one for Cy and the shorter
one for G2) we have

Cy: OFab)>(ab)™, (—aatb)™, (a+2b —b)~, (a+2b —a—b)",
(—a —b)", (—a —a—b)~, (—a—2bb)", (—a—2ba+b)", (3.4)
Go: OF(ab)s+(ab)t, £(—a 3a+b)~, +(at+b —b)",
+ (2a+b —3a—b)*, £(—a—b 3a+2b)", £(—2a—b 3a+2b)", (3.5)

where +(c,d)™ means two signed points (¢, d)* and (—c, —d)*.
As we see, for each point (¢ d) of a signed orbit of Cy or G2 there exists in the orbit the point
(—c¢ —d) with the same sign.

3.3 The case of A,,

In the cases of Coxeter—Dynkin diagrams A,,_1, B,, Cn, Dy, root and weight lattices, Weyl
groups and signed orbits are described in a simple way by using the orthogonal coordinate
system in F,,. In particular, this coordinate system is useful under practical work with signed
orbits.

In the case A, it is convenient to describe root and weight lattices, Weyl group and antisym-
metric orbit functions in the subspace of the Euclidean space E, 11, given by the equation

r14+ 22+ -+ Tpe1 =0,

where x1,x2,...,Tpy1 are orthogonal coordinates of a point x € E,11. The unit vectors in
directions of these coordinates are denoted by e;, respectively. Clearly, e; Le;, i # j. The set of
roots of A, is given by the vectors

wij = €; — €j, i F g
The roots
ij =ei—ej;, <],

are positive and the roots
Q = Qi+1 = € — €41, i:1727"'7n7

constitute the system of simple roots.
n+1
Ifz= > me,x1+x2+ -+ 241 =0, is a point of E,, 11, then this point belongs to the

=1
dominant Weyl chamber D if and only if

T1 2 X220 2 Tptl
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Indeed, if this condition is fulfilled, then (z,q;) = z; — 2,41 > 0,4 = 1,2,...,n, and z is
dominant. Conversely, if x is dominant, then (x,«;) > 0 and this condition is fulfilled. The
point x is strictly dominant if and only if

1> T > > Ty

n
If A\ = > A\w;, then the coordinates \; in the w-coordinates are connected with the orthogonal

—1
’ n+1
coordinates m; of A = > m;e; by the formulas
i=1
n n—1 n—2 2 1
A A A e —— —
mi n—l—ll 1 2+n+1 3+ +n+1n1+n—|—1 ns
1 n—1 n—2 2 1
— A A A e —— A\ —
mr=c Mt et ettt
1 2 n—2 2 1
_ A A A A
m3 ol ol 2+n+1 3+ +n+1n1+n 17\
1 2 3 n—1 1
= — A — — Ag — o — Ap— —
Mn n+1 t T F1? T a1 n+1n1+n+1 v
1 A\ 2 \ 3 n—1 n
m = — — _ —_— e e — S — .
T T a1 a1 T R
The inverse formulas are
)\i:mi—mi+1, i:1,2,...,n. (36)

By means of the formula

2(\, )

A

(3.7)

for the reflection with respect to the hyperplane, orthogonal to a root «, we can find that the
n+1
reflection r,,; acts upon the vector A =  m;e;, given by orthogonal coordinates, by permuting
i=1
the coordinates m; and m;. Since for each ¢ and j, 1 <14,j < n + 1, there exists a root «;;, the
Weyl group W (A,,) consists of all permutations of the orthogonal coordinates my, ma, ..., Mpy4+1
of a point A\, that is, W (A,,) coincides with the symmetric group Sp+1.
Sometimes (for example, if we wish that coordinates would be integers or non-negative inte-
gers), it is convenient to introduce orthogonal coordinates x1,xa, ..., 41 for A, in such a way

that
r1+x2+ -+ Tpye1 =m,

where m is some fixed real number. They are obtained from the previous orthogonal coordinates
by adding the same number m/(n + 1) to each coordinate. Then, as one can see from (3.6),
w-coordinates A\; = x; — z;41 and the Weyl group W do not change. Sometimes, it is natural to

use orthogonal coordinates x1, o, ..., x,4+1 for which all x; are non-negative.
We need below the half-sum p of the positive roots of A,, p = % > a. It is easy to see that
a>0

up to a common constant we have

p=ney+ (n—1)es+ -+ ey,
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that is, in orthogonal coordinates we have
p=(nn-1,...,1,0). (3.8)
In the non-orthogonal w-coordinates we have

p=wi+wst -+ wy.

The signed orbit OF(\), A\ = (my,ma,...,Myr1), M1 > ma > -+ > my,.1, consists of all
points
(mi1 My 7min+1)sgn (det w)
obtained from (m1, ma, ..., my41) by permutations w € W = S,,41. Below instead of sgn (det w)

we write simply det w.

3.4 The case of B,,

Orthogonal coordinates of a point = € E,, are denoted by z1,xo,...,z,. We denote by e; the
corresponding unit vectors. Then the set of roots of B,, is given by the vectors

O 45 :j:eij:ej, Z;éj, aﬂ:j:ei, i:1,2,...,n
(all combinations of signs must be taken). The roots
aiyij:eij:ej, 1< 7, a;=e€;, 1=12,....,n,
are positive and n roots
Q; 1= €; — €41, i:1,2,...,n—1, Qp = €p

constitute the system of simple roots.
n
It is easy to see that if A = >~ mje; is a point of E,,, then this point belongs to the dominant
i=1
Weyl chamber D if and only if

my > mg > - 2> my > 0.
Moreover, this point is strictly dominant if and only if

mip > mo >0 >my > 0.

n
If A = > A\w;, then the coordinates A; in the w-coordinates are connected with the coordi-
i=1

n
nates m; of A = ) m;e; by the formulas
i=1

mi = A1+ Ao+ Ao 13,
my = Aot A+ An—1F5An,

Ay

D=

My, =
The inverse formulas are

Ai=my —mip1, t=1,2...,n—1, An = 2my,.
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It is easy to see that if A € Py, then the coordinates mi,m1,..., m, are all integers or all
half-integers.
The half-sum p of positive roots of B,, p = % > «, in orthogonal coordinates has the form
a>0

_ 1 3
p=Mm—-35,n—5,...,

). (3.9)

In w-coordinates we have p = wy; +ws + -+ - 4+ wp.
By means of the formula (3.7) we find that the reflection r, acts upon orthogonal coordinates

D=

n
of the vector A = ) m;e; by permuting i-th and j-th coordinates if a = *(e; — e;), as the
i=1
permutation of i-th and j-th coordinates and the change of their signs if o = +(e; + €;), and
as the change of a sign of i-th coordinate if « = +e;. Thus, the Weyl group W(B,,) consists of

all permutations of the orthogonal coordinates mq,mo,...,m, of a point A with possible sign
alternations of any number of them.
The signed orbit OF(\), A = (my,ma,...,my), my > mg > --- > m, > 0, consists of all
points
(£mgy, £myy, . .., £m;, )9 (3.10)
(each combination of signs is possible) obtained from (mj,ma,...,my,) by permutations and

alternations of signs which constitute an element w of the Weyl group W(B,). Moreover,
detw is equal to £1 depending on whether w consists of even or odd number of reflections
and alternations of signs. A sign of detw can be determined as follows. We represent w as
a product w = es, where s is a permutation of (mi,mg,...,my) and € is an alternation of
signs of coordinates. Then detw = (det s)¢;, €;, - - - €;,,, where det s is defined as in the previous
subsection and €;; is a sign of i;-th coordinate.

3.5 The case of C,,

In the orthogonal system of coordinates of the Euclidean space E, the set of roots of C,, is given
by the vectors

Ot 45 :ieiiej, 7,75_], (6B ::E2€i, 1= 1,2,...,71,

where e; is the unit vector in the direction of i-th coordinate x; (all combinations of signs must
be taken). The roots

a+j =€ tej, 1<}, o =2e;, 1=1,2,...n,
are positive and n roots
o =€ —€41, 1=1,2,...,n—1, oy = 2ey,

constitute the system of simple roots.
n
It is easy to see that a point A = > m,e; € E,, belongs to the dominant Weyl chamber D
i=1
if and only if

my > mg > - 2> my > 0.
This point is strictly dominant if and only if

mip > mo > >my > 0.
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n
If A = > \wi, then the coordinates ); in the w-coordinates are connected with the coordi-
i=1

n
nates m; of A = Y m;e; by the formulas
i=1
m1 =AM+ Aot Ao+,
ma = Aot A1+,

My, = -
The inverse formulas are
)\i:mi—miﬂ, i:1,2,...,n—1, )\n:mn.

If A € P,, then all coordinates m; are integers.

The half-sum p of positive roots of C,, p = % >~ «a, in orthogonal coordinates has the form
a>0

p=Mmmn-—1,...,2,1). (3.11)

By means of the formula (3.7) we find that the reflection 7, acts upon orthogonal coordinates
n
of the vector A = ) m;e; by permuting i-th and j-th coordinates if a = +(e; — e;), as the
i=1
permutation of i-th and j-th coordinates and the change of their signs if & = +(e; +€;), and as
the change of a sign of i-th coordinate if & = 4+-2e;. Thus, the Weyl group W (C),) consists of all
permutations of the orthogonal coordinates my, mo, ..., m, of a point A\ with sign alternations
of some of them, that is, this Weyl group acts on orthogonal coordinates exactly in the same
way as the Weyl group W(B,,) does.

The signed orbit OF(\), A = (my,ma,...,my), my > mg > --- > m, > 0, consists of all
points
(j:mil, :I:TTZZ'27 ey :i:minJrl)detw
(each combination of signs is possible) obtained from (mj,ma,...,my,) by permutations and

alternations of signs which constitute an element w of the Weyl group W (C),). Moreover, det w
is equal to £1 depending on whether w consists of even or odd numbers of reflections and
alternations of signs. Since W(C,,) = W(B,), then a sign of detw is determined as in the
case B,,.

As we see, in the orthogonal coordinates signed orbits for (), coincide with signed orbits
of B,,.

3.6 The case of D,,

In the orthogonal system of coordinates of the Euclidean space FE,, the set of roots of D,, is given
by the vectors

Q4+ = Te; +ej, i#],

where e; is the unit vector in the direction of i-th coordinate (all combinations of signs must be
taken). The roots

Qi +j = € + €y, 1< j,
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are positive and n roots
o =€ —e€i41, 1=1,2,...,n—1, a, =e,_1+e,
constitute the system of simple roots.
It is easy to see that if A = i m;e; is a point of F,,, then this point belongs to the dominant
Weyl chamber D if and onlyli:f1
mip > mg > > My1 > My
This point is strictly dominant if and only if
my > mg > - > Mp_1 > My
(in particular, m,, can take the value 0).
It A= i Aiw;, then the coordinates \; in the w-coordinates are connected with the coordi-

=1
n

nates m; of A = ) m;e; by the formulas

=1
my =1+ Ao+ - ‘+An—2+%()\n—l+)\n)a
my = Aot A+ Aot 5 (A1),
Mn—1 = %()\nfl"k)\n)a
mp = %()\nfl_kn)a
The inverse formulas are
Ai =my —mip1, 1=1,2,...,n—2 An—1 = Mp_1 + My, An = Mp_1 — My,
If A € P4, then the coordinates my, ma, ..., m, are all integers or all half-integers.
The half-sum p of positive roots of D,,, p = % > a, in orthogonal coordinates has the form
a>0
p=Mm-1,n-2,...,1,0). (3.12)

By means of the formula (3.7) for the reflection r, we find that r, acts upon orthogonal
n
coordinates of the vector A = ) m;e; by permuting i-th and j-th coordinates if & = +(e; —e;),
i=1
and as the permutation of i-th and j-th coordinates and the change of their signs if o = +(e; +
e;). Thus, the Weyl group W (D,,) consists of all permutations of the orthogonal coordinates
mi,ma,..., My of a point A with sign alternations of even number of them.
Since an alternation of signs of two coordinates x; and x; is a product of two reflections 7,
with o = (e; + e;) and with o = (e; — e;), a sign of the determinant of this alternation is plus.
Note that |W(Dy)| = 3|W(By)|.

The signed orbit OF(\), A = (m1,ma2,...,my), my > mg > --- > m, > 0, consists of all
points
(:I:mil, :I:miQ, PN ﬂ:min+1)detw
obtained from (my, ma, ..., m,) by permutations and alternations of even number of signs which

constitute an element w of the Weyl group W(D,,). Moreover, det w is equal to +1 and a sign
of detw is determined as follows. The element w € W(D,,) can be represented as a product
w = 78, where s is a permutation from .S,, and 7 is an alternation of even number of coordinates.
Then det w = det s. Indeed, a determinant of a transform, given by an element of W which is
an alternation of two signs, is equal to +1 (since this element can be represented as a product
of two reflections).



Antisymmetric Orbit Functions 19

3.7 Signed orbits of Aj

Signed orbits for A3, Bs and C3 can be calculated by using the orthogonal coordinates in
the corresponding Euclidean space, described above, and the description of the Weyl groups
W(Asz), W(B3) and W (Cs3) in the orthogonal coordinate systems. Below we give results of
such calculations. Points A\ of signed orbits are given in the w-coordinates as (abc), where
A = awi + bwy + cws.

The signed orbit OF(a b ¢), a >0, b > 0, ¢ > 0, of A3 contains the points

OF(abe)s(abe)t,(a+b —b b+e)™, (a+b ¢ —b—c)T, (a b+c —c) 7,
(a+b+c —c —b)~, (a+bt+c —b—c b)*, (—a a+b ¢)”, (—a at+b+c —c)T,
(b —a—b a+b+c)T, (b+c —a—b—c a+b)”,(—a—b a b+c)T, (b —a a+b+c)”

and the points, contragredient to these points, where the contragredient of the point (a’ ¥ ¢/)*

is (—c =V —a/)* and the contragredient of the point (a’ & /)~ is (—¢ —b' —a’)".

3.8 Signed orbits of B;

As in the previous case, points A of signed orbits are given by the w-coordinates (a b ¢), where
A\ = awy + bwy + cws. The signed orbit OF(a b ¢), a > 0, b > 0, ¢ > 0, of B3 contains the points

OF(abe)s(abe)t,(a+b —b 2b+c)”, (—a a+b )™, (b —a—b 2a+2b+c) ™,
(—a—b a 2b+c)t, (b —a 2a+2b+c)”, (a b+c —c)~, (a+b+c —b—c 2b+c) ™,
(—a a+b+c —c)T, (b+c —a—b—c 2a+2b+c)”, (—a—b—c a 2b+c),
(=b—c —a 2a+2b+c)t, (—a—2b—c b ¢)”, (—a—b—c —b 2b+c) ™,
(a+2b+c —a—b—c ¢)T, (b at+b+ec —2a—2b—c)~, (a+b+c —a—2b—c 2b+c) ™,
(=b a+2b+c —2a—2b—c)", (—a—2b—c b+c —c)T, (—a—b —b—c 2b+c) ",
(a+2b+c —a—b —c)~, (b+c a+b —2a—2b—c)", (a+b —a—2b—c 2b+c) T,
(=b—c a+2b+c —2a—2b—c)~

and also all these points taken with opposite signs of coordinates, signs of these points are also
opposite.

3.9 Signed orbits of Cj

As in the previous cases, points A of signed orbits are given by the w-coordinates (a b ¢), where
A\ = awy + bws + cwz. The signed orbit OF(a b ¢), a > 0, b > 0, ¢ > 0, of C3 contains the points

OF(abe)>s(abe)t,(a+b —bbt+e)™, (—a at+be)~, (b —a—b a+btc)*,
(—a—ba b+c)", (=b —a a+b+c)”, (a b+2c —c)~, (a+b+2c —b—2¢ btc)T,
(—a a+b+2c —c)T, (b+2¢c —a—b—2c a+b+c)”, (—a—b—2c a b+c),
(=b—2c —a a+b+c)t, (—a—2b—2c b ¢)”, (—a—b—2c —b b+c)™,
(a+2b+2c —a—b—2c )T, (b a+b+2c —a—b—c) ™, (a+b+2c —a—2b—2c b+c) ™,
(=b a+2b+2c —a—b—c)t, (—a—2b—2¢ b+2¢ —c)t, (—a—b —b—2c b+c)~,
(a+2b+2c —a—b —c)~, (b+2¢ a+b —a—b—c)", (a+b —a—2b—2c b+c) ™,
(=b—2c a+2b+2c —a—b—c)~

and also all these points taken with opposite signs of coordinates, signs of these points are also
opposite.
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4 Antisymmetric orbit functions

4.1 Definition

The exponential functions 2™z ¢ E,, with fixed m = (my, mg,...,m,) determine the
Fourier transform on FE,. Antisymmetric orbit functions are an antisymmetrized (with respect
to a Weyl group) version of exponential functions. Correspondingly, they determine an anti-
symmetrized version of the Fourier transform.

First we define symmetric orbit functions, studied in [1]. Let W be a Weyl group of transfor-
mations of the Euclidean space E,. To each element \ € F,, from the dominant Weyl chamber
(that is, (A, ;) > 0 for all simple roots «;) there corresponds a symmetric orbit function ¢y
on F,, which is given by the formula

oa() = Y eMwm g e R, (4.1)
HEO(N)

where O()) is the W-orbit of the element A\. The number of summands is equal to the size
|O(A)]| of the orbit O(\) and we have ¢ (0) = |O(N)].

Sometimes (see, for example, [14] and [15]), it is convenient to use a modified definition of
orbit functions:

PA(z) = [Wh|ga(2), (4.2)

where W) is a subgroup in W whose elements leave \ fixed. Then for all orbit functions q%\ we
have ¢(0) = |W]|.

Antisymmetric orbit functions are defined (see [22] and [29]) for dominant elements A, which
do not belong to a wall of the dominant Weyl chamber (that is, for strictly dominant elements A).
The antisymmetric orbit function, corresponding to such an element, is defined as

pa(z) = > (detw)e?™ @A g e B, (4.3)
weW

A number of summands in (4.3) is equal to the size |W| of the Weyl group W. We have
@A(0) =0.

Symmetric orbit functions ¢, for which A € P, and antisymmetric orbit functions ¢ (x) for
which \ € Pj are of special interest for representation theory.

Example. Antisymmetric orbit functions for Ay. In this case, there exists only one simple
(positive) root a. We have (a,a) = 2. Then the relation 2(w,a)/{o,a) = 1 means that
(w,a) = 1. This means that w = /2 and (w,w) = 1/2. Elements of P} coincide with mw,
m € Zy. We identify points z of E; = R with fw. Since the Weyl group W (A;) consists of two
elements 1 and r,, and

2(6
ram:m—wa:m—ﬁa:m—%c:—x,
(o, a)

antisymmetric orbit functions py(z), A = mw, m > 0, are given by the formula

90)\(36) _ eQwi(mw,Gw) - e—27ri<mw,9w> _ eﬂim@ - e—ﬂime — 9 sin(wm@).

Note that for the symmetric orbit function ¢, (z) we have ¢y (x) = 2 cos(mmb).
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4.2 Antisymmetric orbit functions of A,

Antisymmetric orbit functions for the Coxeter—Dynkin diagrams of rank 2 were given in [22]. In
this subsection we give these functions for As.
Put A = awy + bwz = (a b) with a > 0, b > 0. Then for @(z) = ¢4 5)(z) We have from (4.3)
that
Pla b) (ZL‘) _ eZTri((a b),x) 627ri<(—a a+b),x) 627ri<(a+b —b),x)
+ eQﬂ'i((b —a—b),z) + e27ri<(—a—b a),x) 827Ti<(—b —a),x)‘

Using the representation @ = ¥1a1 + Y2a9, one obtains

Pla b) (z) = e2mila1+bya) _ 2mi(—ayr+(atb)pe) _ 2mi((a+b)ihr—bibz)

+ 2milbr—(atb)2) 4 2mi((—a—b)ditats) _ 2mi(—br—aya) (4.4)

The actual expression for ¢ p) (x) depends on a choice of coordinate systems for A and z.
Setting x = #1wy + Bows and A as before, we get

23

Pan(r)=e3 (2a-+b)01+(a+2b)62) _ 3" ((—a-+b)01+(a+2b)02)
B @ath)n+a—0)02) |~ (a0 +(2a+)02) @5
2mi 211

+ o~ 3 (a+2b)01+(—at+b)02) _ ,—73~ ((a+2b)01+(2a-+b)02)

Note that ¢, 4)(7) are pure imaginary for all a > 0 and

P(a a) (x) = 2i{sin 2mwa (1)1 + 2) + sin 2wa(1hy — 2¢h2) — sin 2wa (21 — ¥2)}
= 2i{sin 2mwa (6, + 02) — sin 2waf; — sin2wabs} . (4.6)

The pairs ¢, 1) (7) + ¢4 o)(7) are always pure imaginary functions.

4.3 Antisymmetric orbit functions of Cs and G,

Putting again A = aw; + bws = (ab), v = O1w; + Gows and using the matrices S from (2.6),
which are of the form

se)=4(; ) s@=1(5 ).

we find the orbit functions for Cy and Ga:

Cat @ py(w) =2cosm((a+b)01 + (a + 2b)0a) — 2cosm(b01 + (a + 2b)02)
—2cosm((a+ b)01 + ab2) + 2 cos (b — aba), (4.7)
Ga: b)) =2cosm((2a +b)01 + (a+ 2b)0;) — 2cosm((a + b)0y + (a + 2b)0s)
—2cos((2a + b)01 + (a + $b)62) + 2cosm((a + b)fy + $b6;)
+2cosm(aby + (a+ 3b)b2) — 2cosw(aby — bbs). (4.8)

As we see, orbit functions for Cy and G4 are real.
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4.4 Antisymmetric orbit functions of A,

It is difficult to write down an explicit form of orbit functions for A,, B,, C, and D, in
coordinates with respect to the w- or a-bases. For this reason, for these cases we use the
orthogonal coordinate systems, described in Section 3.

Let A = (m1,ma,...,mp41) be a strictly dominant element for A,, in orthogonal coordinates
described in Subsection 3.3. Then my; > mo > -+ > myu11. The Weyl group in this case
coincides with the symmetric group S,;i. Then the signed orbit OF(\) consists of points
(wA\)4et® w € W = S,,,1. Representing points x € E, 1 in the orthogonal coordinate system,
x = (x1,%2,...,Tnt1), and using formula (4.3) we find that

90)\(1,): Z (detw)e27ri(w(m1,...,mn+1),(xl,...,anrl)}

wGSnJrl

— Z (det w)e2m (WArz1t (WA ni1zni) (4.9)

WESn+1

where ((wA)1, (wA)a, ..., (wA),4+1) are the coordinates of the point wA.
Note that the element —(my4+1, my, ..., my) is strictly dominant if the element (mj,mo,...,
Mp41) 1s strictly dominant. In the Weyl group W (A,,) there exists an element wy such that

wo(my, ma, ..., Mpy1) = (Mpt1, My, ..., M1).
Moreover, we have

det wo = 1 for A4]€,1 and A4k,
det wo = -1 for A4k+1 and A4k+2.

It follows from here that in the expressions for the orbit functions ¢(m, ms.. . m...)(®) and
O (mnsr,mn, my) (T) there are summands
627ri<w0/\,x) _ 627ri(mn+1x1+--.+m1xn+1) and e*QWi(mn-Fll'l‘i’-.-erlxn-ﬁ—l)7 (4.1())

respectively, which are complex conjugate to each other. Moreover, the first expression is con-
tained with the sign (det wo) in ©(m, my,...ma.1) (%), that is, the expressions (4.10) are contained
in cp(ml’ngu.’mnﬂ)(:c) and 80—(mn+1,mn,...,m1)(93) with the same sign for n = 4k — 1,4k and with
opposite signs for n =4k + 1,4k + 2, k € Z,..

Similarly, in the expressions (4.9) for the function ¥(;, ms....m,.,)(7) and for the function
O (mpsr,mn,.ymy) (@) all other summands are (up to a sign, which depends on a value of n)
pairwise complex conjugate. Therefore,

w(m1,m2,...,mn+1)(m) = w—(mnﬂ,mn,...,ml)(:ﬁ) (411)
for n = 4k — 1,4k and

sa(ml,mg,...,anrl) ($) = 790—(mn+1,mn,...,m1) ('/”E) (412)

for n =4k + 1,4k + 2.
If we use for A the coordinates \; = (\, ) in the w-basis instead of the orthogonal coordi-
nates m;, then these equations can be written as

COneAa) () =000 a0 (@) Pon A (T) = =0, a0 (T),
respectively. According to (4.11) and (4.12), if

(mi,ma,...,Mmp+1) = —(Mpy1, My, ..., M) (4.13)
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(that is, the element A has in the w-basis the coordinates (A1, A2,..., A2, A1)), then the orbit
function oy is real for n = 4k — 1,4k and pure imaginary for n = 4k + 1,4k + 2. In the first
case the antisymmetric orbit function can be represented as a sum of cosines of angles and in
the second case as a sum of sines of angles multiplied by i = /—1.

Proposition 2. In the orthogonal coordinates, antisymmetric orbit functions of A, can be
represented as determinants of certain matrices:

imgz;\ 71
So(ml,m27.,,7mn+l)(x) = det (627r1m1;);])n

3,j=1
627rim1:r;1 e27rim1932 . e27rim1xn+1
627rim2271 e27rim2m2 L. 627rim2xn+1
= det : (4.14)
627rimn+121 e27rimn+1mg L. eZTrimn+1mn+1

Proof. A proof of this formula follows from the fact that this expression for ©(,, ma....m,i1)(T)
coincides with the expression given by the formula (4.9); see [30].

Taking into account the form of the half-sum of positive roots p for A,,, we can write down the

orbit function ¢, (z), corresponding to the weight p = % >~ «, in the form of the Vandermonde
a>0
determinant,

SOp(CU) — det (eZWiixj)?;‘:ll _ H(eQNia:k _ 672771:1:[). (415)
k<l

The last equality follows from the expression for the Vandermonde determinant.

4.5 Antisymmetric orbit functions of B,

Let A = (m1,ma,...,my,) be a strictly dominant element for B, in orthogonal coordinates
described in Subsection 3.4. Then m; > mg > --- > my, > 0. The Weyl group W (B,,) consists of
permutations of the coordinates m; with sign alternations of some of them. Representing points
x € E,, also in the orthogonal coordinate system, = = (z1,z2,...,x,), and using formula (4.3)
we find that

90)\($) — Z Z (det w)€1€2 B .En62ﬂi<w(51m1""’Enm”)’(xl""’:p"»

= Z Z (det w)5152 e 6n6271’1((11)(6)\))1381+~-~+(’u)(€)\))n$n)’ (416)
ei=t1wes,
where (w(eX))1, ..., (w(eX)), are the orthogonal coordinates of the points w(eA) if eA = (e1my,

ey EnMp).

Since in W (B,,) there exists an element which changes signs of all coordinates m;, then for
each summand e2™((w(EN) 121+ +(w(EN)nn) i the expressions (4.16) for the antisymmetric orbit
function @, ms,....mn) (x) there exists exactly one summand complex conjugate to it, that is, the
summand e~ 27(((w(EN)) 1214+ @(EN)n2n) - This summand is with sign (—1)" = (detw’), where
w’ changes signs of all coordinates. Therefore, (detw’) = 1 if n = 2k and (detw’) = —1 if
n = 2k + 1. This means that antisymmetric orbit functions of B, are real if n = 2k and pure
imaginary if n = 2k + 1. Each antisymmetric orbit function of B, can be represented as a sum
of cosines of the corresponding angles if n = 2k and as a sum of sines, multiplied by i = /—1,
if n = 2k + 1. The following proposition is true [30]:
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Proposition 3. Antisymmetric orbit functions of B, can be represented in the form

2mimga; e_zﬂimixj)n (21)™ det (sin 2mrm;z;); (4.17)

@(ml,m27...,mn)<$) = det (e ij=1 ij=1"

Proof. Let us take on the right hand side of (4.16) the sum of terms with fixed w € S,,. It can
be written down as

(det w) Z E€1E2 -+ 6n€27r1((w(8>‘))1x1++(w(8A))’ﬂxn)
==+1

_ (det w)(627ri(w)\)1a:1 . 6—27ri(w)\)1a:1) . (627ri(w>\)n:vn . e—27ri(w)\)nacn)

= (detw)(21)" sin 2w (wA) 121 - . .. - SIn 27T (W), Ty

Then for ¢y (z) we have

ox(z) = (21)" Z (det w) sin 2w (wA) 21 - . .. - sin 2w (wWA) 2y,
wESn
= (21)" det (sin 2mm;z;);'
where A = (my, ma,...,my,). Proposition is proved. [

For the antisymmetric orbit function ¢,, corresponding to the half-sum p of positive roots
of B,,, one has

pp(x) = (20)" det (sin 2mp;z;);

Wherep:(pl)p27"'7pn):(n_%,n—ﬁ,...,%).

4.6 Antisymmetric orbit functions of C,,

Let A = (mq,ma,...,my) be a strictly dominant element for C,, in the orthogonal coordinates
described in Subsection 3.5. Then m; > mg > --- > my, > 0. The Weyl group W (C,,) consists
of permutations of the coordinates with sign alternations of some of them. Representing points

x € E, also in the orthogonal coordinate system, x = (z1,x2, ...,y ), we find that
@)= 3 T (detw)eres ... e 2T OEM ) (15 0)
ei=t1 weSy,
= Z Z (det w)€152 . €n€27Ti((’IU(E>\))11‘1+'“+(’w(8>\))nxn)’ (418)
ei=t1wesS,
where, as above, (w(e)))1,..., (w(eX)), are the orthogonal coordinates of the points w(e)) if
EXN = (61m1, Ce ,Enmn).

As in the case of B, in the expressions (4.18) for the functions ¢, ms,. . m,)(x) for each
summand 2™ ((WEN) w1+ +(w(EA)nn) there exists exactly one summand complex conjugate to
it, that is, the summand e 2m((w(E))z1++w(EA)nzn)  Moreover, this summand is with sign
“+7 if n = 2k and with sign “—” if n = 2k + 1. Therefore, antisymmetric orbit functions of Cy,
are real if n = 2k and pure imaginary if n = 2k + 1.

Note that in the orthogonal coordinates the antisymmetric orbit functions ‘P(ml,mz,...,mn)(*f)
of €y, coincides with the antisymmetric orbit functions ¥(,,; ms.....m,)(*) of By, that is, anti-
symmetric orbit functions (4.16) and (4.18) coincide. However, a-coordinates of the element
(m1,ma,...,my) for C, do not coincide with a-coordinates of the element (mi,mo,...,my,)
for B, that is, in a-coordinates the corresponding antisymmetric orbit functions of B,, and C),
are different.
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Proposition 4. Antisymmetric orbit functions of C, can be represented in the form

sp(ml’m%m’mn)(;p) — det (627Timﬂj _ e—%imi”fj)zjzl = (2i)" det (sin 27rmi:zj)zj:1 . (4.19)
Proof. This proposition follows from Proposition 3 if we take into account that antisymmetric
orbit functions of (), and of B, coincide in the orthogonal coordinate systems. |

For the antisymmetric orbit function ¢,, corresponding to the half-sum of positive roots
of C,,, one has

pp(z) = (21)" det (sin2mp;z;)

where p = (p1,p2,...,pn) = (n,n—1,...,1).

4.7 Antisymmetric orbit functions of D,,

Let A = (m1,ma,...,my,) be a strictly dominant element for D,, in the orthogonal coordinates
described in Subsection 3.6. Then m; > mg > -+ > my_1 > |my,|. The Weyl group W(D,,)
consists of permutations of the coordinates with sign alternations of even number of them.
Representing points = € E,, also in the orthogonal coordinate system, = = (x1, z2,...,%,), and
using formula (4.3) we find that

SO)\(.%) _ Z / Z (det w)eQni(w(elml,...,anmn),(m,...,:vn)>

gi=%1 wesS,

_ Z / Z (det w)€27ri((w(€/\))111Jr'"Jr(117(f‘3)\))713U7L)7 (420)

e;i=*1 weS,

where (w(eX))1, ..., (w(eX)), are the orthogonal coordinates of the points w(e\) and the prime
at the sum sign means that the summation is over values of €; with even number of sign minus.
We have taken into account that an alternation of coordinates without any permutation does
not change a determinant.

Let my, # 0. Then in the expressions (4.20) for the orbit function w(m, ms,....m,) (%) of Dp=ay
for each summand e?™{((W(EN1@1++(w(EN)nzn) there exists exactly one summand (with the same
sign) complex conjugate to it. This means that these antisymmetric orbit functions of Dsy are
real. Each orbit function of Dy can be represented as a sum of cosines of the corresponding
angles.

It is also proved by using the formula (4.20) that for m,, # 0 the antisymmetric orbit functions
O(mr,mopmanst)(T) A0 Py moy —mop.1)(T) of Dagy1 are complex conjugate.

If my, = 0, then it follows from (4.20) that antisymmetric orbit functions of D,, are real and
can be represented as a sum of cosines of certain angles.

Explicit forms of antisymmetric orbit functions of D,, are described by the following propo-
sition [30]:

Proposition 5. Antisymmetric orbit functions of D,, are representable in the form

n n

‘10(m1,m2,...,mn)(x) — %det (627r1mixj_e—27r1mixj) +% det (eQmmi:cj +e—27r1mixj)

i,j=1 =1
= 1(21)" det (sin 2mmix;); iy + 2"~ 1 det (cos 2mmx;); i (4.21)
if my, # 0, and in the form
P(m1,ma,...,mn) () = %det (€2Trimixj + eizﬂimﬂj):’tjzl = 2" det (cos QWmixj)ZjZI (4.22)

if my, = 0.



26 A. Klimyk and J. Patera

Proof. Let m, # 0. We take on the right hand side of (4.20) a sum of terms with fixed w € S,,.
It can be written as

I, = (detw) ey - g2 (@EN T (W(EN) i)
g;i==%1

where 129 -+ - €, = 1 (since there is an even number of ¢; with ; = —1). A value of I,, does not
change if we add and subtract the same term to it:

Iy = (detw) Y ‘e1eg - e 2m((@WEN 1T+ (w(EN)nTn)
gi==t1

+ L(detw) Y Y eleg -+ ey @2M((WEN) 1T A (w(EN) nn)
Ei::tl

(detw) S " iy 2 ((@EN T (W(EN)nn)
=+1

N =

the sum with two primes here means that the summation is over values of ¢; with an odd number
of negative ;. We split down the right hand side into two parts,

Ly = | (detw) D "o = d(detw) D" bdetw) Y- o+ b(detw) Y

g;==%1 gi==%1 g;i==%1 gi==%1

"

+

and repeat the reasoning of the proof of Proposition 3. As a result, we have
I, = %(det w)(627ri(w)\)1ml - 6727ri(w)\)1z1) . (627Ti(w/\)nxn o 6727ri(w)\)nzn)
+ %(det w)(627ri(w)\)1zl + 6727ri(w)\)1m1) . (627ri(w)\)nxn + efQWi(wA)nzn)
= %(det w)(21)" sin 2w (wA) 21 - -+ - sin 27w (wA )y,

+ 3(det w)2" cos 2 (WA )1z - -+ - €08 27 (W) T,

Then for ¢)(z) we have

pa(z) = 3(21)" Z (det w) sin 2w (wA)1xy - -« - sin 27w (wA) a2y
wESn
+ 32" Z (detw) cos 2m(wA) 21 - - -+ - €os 2m(WA) 2,
’u}ESn
= 1(2i)" det (sin 2mmz;); g + 2"~ 1 det (cos 2mmiT;); iy
where A = (m1, ma,...,my,). Thus, the proposition is proved for the case m,, # 0.

Let m,, = 0. Then, in the expression (4.20) for ¢)(x), in each term of the sum there exists
the multiplier e?™€»™n%i with some i. Since m, = 0 we have e?™en™n% — 1 for ¢, = 1 and for
en = —1. The case €, = 1 gives an even number of negative ¢; in the set (e1,e2,...,6,-1) and
the case €, = —1 gives an odd number of negative ¢; in this set. Therefore, we may throw out
the sum over €, and consider that summation in (4.20) runs over ¢; = +1, i = 1,2,...n — 1
(with even or odd number of negative ¢;):

paz) = Y 3 (detw)emiwENmt Tt (wE)awn), (4.23)

where in the sum the multipliers, containing m,, are removed and the first sum does not contain
summation over €,. As in the case of the proof of Proposition 3, we take in (4.23) terms with
fixed w and write down it as
(det ’U)) Z e27ri((w(e)\))111+~~~+(w(€)\))nmn)
g;==t1
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— %(det w)(627ri(w)\)1331 + 6727ri(w)\)1w1) L (627ri(w)\)nzn + 6727ri(w)\)n:rn)

= 2" 1(det w) cos 2m(wA) 11 - - -+ - cos 2 (W) Ly,
where, as before, the multipliers, containing m,,, are omitted. Since e?™™mn®i 4 e=2mimnzi — 9
this leads to the formula (4.22) for ¢)(x) when m,, = 0. The proposition is proved. |

For the antisymmetric orbit function ¢,, p = % >~ «, one has
a>0

n

QOP(J") = 2n—1 det (COS 27Tpixj)ij:1 y

where p = (p1,p2,.-.,0n) = (n—1,n—2,...,1,0).

4.8 Symmetric orbit functions of B,,, C,, and D,,

In Subsections 4.5-4.7 we have derived expressions for antisymmetric orbit functions ¢y (x)
of B,, C, and D, in orthogonal coordinates as determinants of sine and cosine functions.
Similar expressions can be derived for symmetric orbit functions of B,,, C},, and D,,. Since in
the defining expressions for symmetric orbit functions ¢y (x) (see formula (4.1)) there are no
multipliers (detw), then ¢)(x) is expressed in terms of products of sine and cosine functions
(instead of determinants).

As before, we express elements A = (mq,ma,...,my) and x = (x1,x2,...,2,) in the corre-
sponding orthogonal coordinate systems. In Propositions 6 and 7 below we suppose that A is
an element of the dominant Weyl chamber and is not obligatory integral.

Proposition 6. Symmetric orbit functions of B, and Cy can be represented in the form

B(mi,ma,..ma) (T) = 2" Z COS 2T My(1) @1+ *** * COS 2T My () T (4.24)
wESn
where w(1),w(2),...,w(n) is the set of numbers 1,2, ... ,n obtained by acting by the permutation
w E S,.

This proposition is proved in the same way as Proposition 3 and we omit it.

Proposition 7. Symmetric orbit functions of D, can be represented in the form

B, ma,...ymn) (T) = on—1 Z COS 2T My (1)T1 * *** * COS 2T My() Ty,
wGSn
+ 2(21)" Z SIN 27M(1) @1 < ¢ - SN 2T () T (4.25)

if my, # 0 and in the form

@(ml,mz,..‘,mn)<x) = on-1 Z COS 2T Myy(1) @1 * *** * COS 2T My () T (4.26)
wESy

if mp =0, where w(1),w(2),...,w(n) is the set of numbers 1,2,...,n obtained by acting by the
permutation s € Sy,.

A proof is similar to the proof of Proposition 5.
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5 Properties of antisymmetric orbit functions

5.1 Anti-invariance with respect to the Weyl group
Since the scalar product (-,-) in E,, is invariant with respect to the Weyl group W, that is,
<wx,wy> = <l',y>, U)GVV, ﬂC,?JGEm

antisymmetric orbit functions ¢, for strictly positive elements A (not obligatory belonging to ij)
are anti-invariant with respect to W, that is,

pa(w'z) = (detw’)pr(z),  w' € W.

Indeed,
go)\(w'x) _ Z (det w)€27ri(w)\,w’:c> _ Z (det w)e27ri(w’_1w)\,:c)
weWw weWw
= (detw’) Y (detw)e®™ M) = (det w')px(z)
weW

. -1
since w'~ "w runs over the whole group W when w runs over W.

5.2 Anti-invariance with respect to the affine Weyl group

The affine Weyl group W2 is generated by reflections 7o, 7oy, . .., 7, (see Subsection 2.5). We
say that an antisymmetric orbit function ¢y, A € Pj, is anti-invariant with respect to the affine
Weyl group W if ) (roz) = —¢x(z). Let us show that oy (x) satisfies this relation. Since
rox = rex + &Y, where £ is the highest root (see Subsection 2.4), for p € P we have

(o) = (s ree) = 2L 4 ) = teer + (re )

since 7“2 = 1. Hence,

@a(ror) = Z (det w)e2”i<W)"T0x> = Z (det w)e%i(rgw)\,:c)

= (detre) Y (detw)e?™ @A) = —o) (z)
weWw

since 7¢ is a reflection belonging to W.

If A # P, then @) is not anti-invariant with respect to r¢. It is anti-invariant only under
action by elements of the Weyl group W.

Due to the anti-invariance of antisymmetric orbit functions ¢y, A € ij, with respect to the
group W it is enough to consider them only on the fundamental domain F = F(WaF) of Waf,
Values of oy on other points of E,, are determined by using the action of W2 on F or taking
a limit. In particular, functions ¢y, A € P}, are anti-invariant under a reflection with respect
to any (n — 1)-dimensional wall of the fundamental domain F'.

5.3 Continuity and vanishing

An antisymmetric orbit function ) is a finite sum of exponential functions. Therefore it is
continuous and has continuous derivatives of all orders in E,,.

Due to anti-invariance of the orbit functions @y, A € Di, with respect to the Weyl group W,
@y vanishes on all walls of the Weyl chambers. The anti-invariance ¢)(rox) = —¢x(x) for
A€ Pj shows that @y, A € Pi, vanishes on the boundary of the fundamental domain F of the
affine Weyl group WA,
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5.4 Realness and complex conjugation

The results, formulated below and concerning antisymmetric orbit functions of the Coxeter—
Dynkin diagrams A, B, Cp, D, and G2, were proved in the previous section.
Antisymmetric orbit functions of the following Coxeter—Dynkin diagrams are real:

Bak, Co,  Go.
Antisymmetric orbit functions of the Coxeter-Dynkin diagrams Bogi1 and Coriq are purely

imaginary. The antisymmetric orbit functions ¢, of the Coxeter-Dynkin diagrams A1 and
Ay, satisfy the condition

PO Az A) (T) = PnAn1,n) (T)

and antisymmetric orbit functions ¢y of the Coxeter—Dynkin diagrams Ayy11 and Aggyo satisfy
the condition

PO A2 ) (T) = =000 Mmoo 0) (T)

Antisymmetric orbit functions P(A1 A2 00) of Dy, are real if \,_1 = A,. If A\y_1 # Ay, then
orbit functions ¢y, ,,..\,) are real for n = 2k and satisfy the condition

SD()\17“">\TL727A7‘L*17)\TL) = (/0()\1a~~-7)\n72a>\n7)\n71)

ifn=2k+1.

5.5 Scaling symmetry

Let O()) be an orbit of A\, A € D}. Since w(cA) = cw(A) for any ¢ € R and for any w € W,
then the orbit O(cA) is an orbit consisting of the points cw), w € W. Moreover, points wA
and cw) of the signed orbits OF()\) and OF(c)), respectively, have the same sign. Let ¢y =

> (det w)e* A be the antisymmetric orbit function for A € DT. Then
weW

SOC)\(«T) — Z (det w)€27ri(cw)\,:p> — Z (det w)627r1<w)\,cx) _ QO)\(CZII).
weW weW

The equality pcx(z) = pa(cz) expresses the scaling symmetry of orbit functions.

If we consider only antisymmetric orbit functions ¢y, corresponding to A € ij, then the
scaling symmetry ¢.x(z) = ¢ (cz) holds for those values ¢ € R\{0} for which cA € P}.
5.6 Duality

Due to the invariance of the scalar product (-, -) with respect to the Weyl group W, (wu, wy) =
(,y), for z € E, not lying on a wall of some Weyl chamber we have

pa(@) = Y (detw)e?™ O = B (det w)e? ™M) = o, ().
weW weW

The relation py(z) = @, (\) expresses the duality of antisymmetric orbit functions.
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5.7 Orthogonality

Antisymmetric orbit functions py, A € P, are orthogonal on F with respect to the Euclidean
measure [31]:

FI7 [ er@on e = [Wiau. (5.1)

where the overbar means complex conjugation. This relation directly follows from orthogonality
of the exponential functions 2™ (%) (entering into the definition of orbit functions) for different
weights p and from the fact that a given weight v € P belongs to precisely one orbit function.
n (5.1), |F| means an area of the fundamental domain F.

Sometimes, it is difficult to find the area |F|. In this case it is useful the following form of
the formula (5.1):

/T ox(@)on (@) dz = W5y,

where T is the torus in F,, described in Subsection 9.1 below. If to assume that an area of T is
equal to 1, |T| = 1, then |F| = |W|~! and formula (5.1) takes the form

/F ox(2) o @)z = by (5.2)

The formula (5.2) gives the orthogonality relation for the antisymmetric multivariate sine
function (4.19). We have

o2n /F det (sin QWmiJ?j)ijl det (sin 27rm;xj)zj:1 dz = Om /', (5.3)
where m = (mq,ma,...,my,) and m’ = (m},mi,...,m}) are strictly dominant and integral
(that is, m;,m]; € 7% my > mg > --- > my, > 0), and the domain F consists of points

x = (x1,22,...,2,) € E, such that

>r12>2r22> 22,20

N | —

(see Subsection 5.10 below).
A similar orthogonality relation can be written down for the symmetric multivariate cosine
function (4.24). Introducing the notation

det™ (cos 2mmix;); ey = Z COS 2T My(1)T1 * ** * + COS 2T My () Ty (5.4)
’LUGSn
we have
22n /F det™ (cos 27rmi:vj)zj:1 det™ (cos 27rm;xj)zj:1 dz = |Wm|dm,m’, (5.5)
where m and m’ are such that m; > mg > -+- > my,, miy > mi > --- > m/, and |Wy| is an

order of the subgroup |Wy,| C S, consisting of elements leaving m invariant.
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5.8 Orthogonality to symmetric orbit functions

Let o; be a simple root. We create the domain F™' = F' U ro, F', where 7o, is the reflection
corresponding to the root a; and F' is the fundamental domain. Since for p € P_t we have

u(ra;z) = dpu(z), u(ra, ) = —pu(x),

where ¢, is a symmetric orbit function, then

du(x)pu(x)dr = 0. (5.6)

Jrext

Indeed, due to symmetry and antisymmetry of symmetric and antisymmetric orbit functions we
have

Pu(@)op(® dw—/% )z d:c+/ b () o, (z)da

/dm ) pu(@ dx+/¢ﬂ (“pnu(@))dz = 0.

For the case of A; the orthogonality (5.6) means the orthogonality of the functions sine and
cosine on the interval (0, 27).

The formula (5.6) determines orthogonality of multivariate sine and cosine functions (4.19)
and (5.4):

/Fext det (sin 2mrm;x;); =1 det™ (cos 2mmy ;)7 = dax = 0,

where the notations are such as in (5.3) and F®** consists of points z € E,, such that

t1>r>a9> >, >0  or > o> a1 >3 > a4 > >3y > 0.

NO|—=

5.9 Antisymmetric orbit functions ¢,
Let p be the half-sum of all positive roots of a root system:
1
a>0

It is well-known that for all simple Lie algebras in w-coordinate we have
p=witwr+-+w,=(11---1).

The antisymmetric orbit function ¢, is important in the theory of characters of group represen-
tations. We have

p(x) = Z (det w)e2mi{wee), (5.8)
weWw
Proposition 8. The antisymmetric orbit function ¢, can be represented as

S%(ﬁ) _ H(ewi(a,:p) - 6—7ri<a,:c>) _ 627ri(p,m) H(l - 6—27ri(a,m>)

a>0 a>0

= (2i)" H sinm(a, ), (5.9)
a>0

where v 1s a number of positive roots in the corresponding root system.
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Proof. The expression g(z) = [] (e™®® — ¢~m{®2)) is antisymmetric with respect to the
a>0
Weyl group W. Indeed, if r; is a reflection, corresponding to the simple root «;, then due to

Proposition 1 we have

g(nx) _ H(ewi<o¢,mx) - e—wi(a,rm)) _ H(eﬂi(ma,a}> N e—wi(ria,x))
a>0 a>0
_ (e—wi(ai,x) o ewi(ai,x)) H (ewi(a,m) . e—wi(a,;v)) _ —g(l’).
a>0,a#a;

Since «; is an arbitrary simple root, g(x) is antisymmetric with respect to W. Then g(z) is
a sum of antisymmetric orbit functions. Representing H.oz>0 (em®) =) in the form (4.3),
we see that in this form there exists only one term e™*®) with a strictly dominant weight A

and this weight coincides with p. Therefore, g(z) = ¢,(z). Proposition is proved. [ |

An invariant measure of the compact Lie group G, associated with the Weyl group W,
is expressed in terms of ]gop\Q. Taking into account an explicit form of positive roots in the
orthogonal coordinate systems, it is easy to derive from (5.9) that in these coordinates we have

Yp(x) = (21)n (172 H sinm(z; — x;) for A,

1<i<j<n+1
Yp(x) = (21)”2 H sinm(z; — ;) sinm(z; + x5) H sin for By,
1<i<j<n 1<i<n
Yp(x) = (21)”2 H sinm(x; — ;) sinw(z; + x;) H sin 27, for Cy,
1<i<j<n 1<i<n
o) = (2i)=1) H sinm(x; — ;) sinw(z; + x;) for D,.
1<i<j<n

These formulas give other expressions for |p,(z)| with respect to formulas derived in Subsec-
tions 4.4-4.7.

Proposition 9. The antisymmetric orbit function y, vanishes on the boundary of the funda-
mental domain F. It does not vanish on intrinsic points of F'.

Proof. Since p € ij, then ¢, vanishes on the boundary of F' due to the results of Subsec-
tion 5.3. From the other side, it is easy to see from (5.9) that the set of points, on which ¢, (z)
vanishes, coincides with the set of all points x € E,, for which («, z) € Z for some root a. No of
these points is an intrinsic point of F. The proposition is proved. |

From Proposition 9 and from the above formulas for ¢,(z) we easily derive explicit forms of
the fundamental domains for the cases A,, By, C,, D, in the orthogonal coordinates.

(a) The fundamental domain F'(A,,) is contained in the domain of real points z = (z1, z2, . ..,
Zn+1) such that

T1 > T2 > > T, 1+ a2+ -+ xpye1 =0.

Moreover, a point x of this domain belongs to F(4,,) if and only if z1 + |x,4+1| < 1. The last
condition means in fact the relation (x,&) < 1 for the highest root £ of the root system A,,.

(b) The fundamental domain F(B,,) is contained in the domain of points x = (x1,x2,...,
Zn) such that

1l>z1>29>--- > 25 >0.
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Moreover, a point z of this domain belongs to F'(By,) if and only if z; + z9 < 1.

(c¢) The fundamental domain F'(C),) consists of all points z = (z1, z2,...,%,) such that
%>x1>x2>--->xn>0.

(d) The fundamental domain F'(D,,) is contained in the domain of points x = (1,2, ...,
Zn) such that

1>z >20> - > Tpo1 > |2y

Moreover, a point z of this domain belongs to F'(D,,) if and only if 21 4+ z3 < 1.

5.10 Symmetric orbit functions ¢,
Let us consider a symmetric counterpart of the antisymmetric orbit function ¢, (z):

Gp(z) = Y ePmilwnm), (5.10)

weW

where, as before, p = % > a.
a>0

Proposition 10. The symmetric orbit function ¢, can be represented as

@p(x) _ H(eﬂi<a,x) + efﬂ'i<o¢,x>) _ e27ri<p,x) H(l + 6727ri<a,x>)

a>0 a>0

=2" H cos (o, x), (5.11)

a>0

where 1 is a number of positive roots in the corresponding root system.

This proposition is proved in the same way as Proposition 6.

It is easy to derive from (5.11) that in the orthogonal coordinate systems we have

pp(x) = 2nn+D/2 H cos m(x; — ) for A,

1<i<j<n+1
bp(x) = o’ H cosm(x; — ;) cosm(x; + x5) H COS TT; for By,
1<i<j<n 1<i<n
dp(x) = o’ H cosT(x; — x;) cosm(x; + x5) H oS 2T x; for C,,
1<i<j<n 1<i<n
Pp(x) = gnn—1) H cosm(x; — xj) cosm(x; + x;5) for D,,.
1<i<j<n

6 Properties of antisymmetric orbit functions of A,

By using results on decomposition of certain reducible representations of the group GL(n,C)
into irreducible constituents, properties of antisymmetric orbit functions of A, can be derived.
We use in this section the results of [30].
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6.1 Decomposition of symmetric powers of representations

We need some formulas for decomposition of symmetric powers of finite dimensional irreducible
representations of the group GL(n1,C) x GL(ng,C). Let us first define symmetric powers of
representations.

Let T be a finite dimensional representation of a group G on a linear space X. It induces
a representation on the space P, (X), which is a subspace of the space P(X) of polynomials on X,
consisting of all homogeneous polynomials of power m. In order to determine this representation
we note that the formula

Qg)p)(z) =p(T(g~ " )z), =ze€X, gegq,

gives a representation of G on P(X) which is denoted by Q. The subspace P,,,(X) is invariant
with respect to the representation (). The restriction of @ onto P, (X) is called an m-th
symmetric power of the representation T and is denoted as o, (7).

Let G = GL(n1,C) x GL(n2,C), n1 < ng. Then a finite dimensional irreducible representa-
tion of G is given (in the orthogonal coordinate system) by

()\|,u,) = (ml’m27° . 'amnl |7’1,’I"2,. "7Tn2))
where
my 2> Mo = -+ 2 My, T 2T9 2> 2 Ty

We assume that m,, > 0 and r,, > 0.
One can consider three representations of G = GL(n1,C) x GL(ng,C) on the space M, p, (C)
of n1 X ny complex matrices. They are given by the formulas

T(g1,92)X = 1. X g5, (6.1)
T'(g1,92)X = 91X g3,
T"(g1,92)X = 1 X g5, (6.3)

where the index ¢t means a transposition and * means a transposition together with complex
conjugation. Then for symmetric powers of these representations we have the following decom-
positions into irreducible representations of G' (a proof see in [30]):

om(T) = Z (1,52, Sn, | S1,82, -+, 5n;,0,...,0), (6.4)
2 si=m

om(T) = Z (81,82, -+ Sn, | S1,82,+.,8n,,0,-+,0), (6.5)
> si=m

om(T") = Z (51,82, 580, 10,000, —=8nys —Sngy -y —51), (6.6)
2 si=m

where summations are over all s1, s2,. .., sy, such that
812522“'28711205 31+82+”'+Sn1:m

and the overbar means that a representation is anti-analytic.
If ny = ny = n, then the formulas (6.1)—(6.3) determine the following tensor product repre-
sentations of G = GL(n,C) on the space M, (C) of complex n x n matrices:

(Ty @ TV)(9)X = gXd',
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(M @ T1)(9)X = gXg",
(11 © T1)(9)X = gXg~'
where T; is the first fundamental representation (with highest weight (1,0,...,0)) of G =

GL(n,C), Ty and T are the complex conjugate and contragredient representations to the rep-
resentation 77, respectively. Then according to (6.4)—(6.6) we have

m(TL ® T1) ZM®M, (6.7)

m(T1 ®Th) Z%@M, (6.8)

%m®ﬂ22n@m, (6.9)
m

where Ty, is the irreducible representation of the group GL(n,C) with highest weight m =
(mi,ma,...,my), mi > mg > -+ > my > 0, and the summation is over those m for which
mi1+mo+---+my, =m.

Replacing the space 9, (C) by the subspaces of all symmetric or all antisymmetric matrices
from 9, (C) we obtain the following decompositions of symmetric powers of the irreducible
representations of GL(n,C) with highest weights (2,0,...,0) and (1,1,0,...,0), respectively:

om(T(2,0,..0) = ZT(2m1,2m2,...,2mn)7 (6.10)
m
O'm(T(l,l,O,l..,O)) = ZT(ml,ml,...,mk,mk)a (611)
m
where the summations are over those m = (mq,ma, ..., my) for whichmy; >mg > -+ >m, >0

and mi + mo + - - - +m, = m. In the second formula n = 2k; if n = 2k 4+ 1, then on the right
hand side we have to replace T(;n; m,.....mu,my) PY Limy,ma,....mpme,0)-

6.2 Properties of antisymmetric orbit functions of A,

We represent antisymmetric orbit functions of A, in the orthogonal coordinate system as in

formula (4.9). Let A = (m1,ma,...,mp4+1) and A\+7 = (my+r,mo+7,...,mp41 + 1), where r
is a fixed real number. If x = (z1,292,...,2p41), 1 + 22+ -+ Tpy1 = 0, and w € W, then we
have

627r1<)\+7‘,w:v) _ eQm(A,wx>627rl(0+T,wx) _ eQm(A,wx).

It follows from this equality that

o) = oapr(2),  OA(T) = darr(T) (6.12)

where \ = (mq, ma,...,myy1) is given in the orthogonal coordinate system. This means that
instead of m;, i =1,2,...,n4+1, determined by formulas of Subsection 3.3, we may assume that
mi,Ma, ..., My are integers such that my > mo > -+ > my 1 > 0. We adopt this assumption
in this subsection.

For simplicity we introduce the following notations:

e%mﬂ':yj, i=12,...,n+1.
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In order to receive relations for antisymmetric orbit functions we have to take characters of
representations on both sides of relations of the previous subsection and to substitute the ex-
pression

Prtp()

X/\(QZ') = SOp(JC)

for characters (see Subsection 9.1 below).
The relation (6.4) gives the equality

Xom@(91:92) = Y Xs(g1)xs(g2)
> mi=m

for characters of representations, where s’ = (s1,89,...,8,,,0,...,0) and the sum is such as
n (6.4). Multiply both sides by ™ and sum up over all non-negative integral values of m. We
get

Z t"™" X (1) (91, 92) Z Y xalg)xs (92). (6.13)

m=0 m=0 S mi=m
i

Take this relation for g; = diag(y1,y2, ..., Yn,) and go = diag(z1, 22, . .., 2n,). For such ¢g; and g2
the left hand side takes the form

Pn
Z " Xo (1) (915 G2) Z tm Zy?y? T LY CRRREHiCH

m=0

n
where the second summation on the right hand side is over integral r; and p; such that > r; +
i=1

n2
>~ pj = m. Therefore, the relation (6.13) can be written as

(0.9} niy n2
Do > xslgxs(g2) = [T - twizy) ™
m=0 > mi=m i=17=1

where g1 = diag(y1,92, ..., Yn,), 92 = diag(z1, 22, ..., 2n,) and [t| < 1, |y;| < 1, |z5] < 1.
Further, we represent characters in (6.13) in terms of antisymmetric orbit functions and set
t = 1. As a result, we receive the following relation for antisymmetric orbit functions:

nip n2

e el () IO —wiz)™ = 2 el o) (6:14)
i=1j=1
where y = (y1,92,..-,Yny)s 2 = (21,22,...,2n,), and p; and po are half-sums of positive roots

for A,,—1 and A,,_1, respectively. In particular, if ny = ny = n, then

n

SOp(y)SOp(Z) H (1 yzz] ZSDSer (Perp( )
i,j=1
Applying to this relation the Cauchy lemma, which states that

n

det ((1 — yizj)_l)?J 1= p(¥)pp(2) H (1- yizj)_la

ij=1
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we obtain the identity

ZSOAer(?/)(PAer(Z) = det ((1 - yizj)_l)Zj:1 :
A

Now we use the relation (6.10) for representations of the group GL(n,C) in order to derive
the equality

X( ,ees0),m Z X?m g e GL(TL,(C),

lm|=m

where on the left hand side is the character of the representation o, (T(2,,.. 0y) from (6.10),
2m = (2mq,2ma,...,2my), mi > mg > -+ > my > 0, Im| = my +mg + -+ + my,. We derive
from this equality that

o0 oo
> X0 @ =D > xam(9)- (6.15)
m=0 m=0 |m|=m
Setting g = diag(y1, y2,- .., Yn), for the left hand side we have the expression
o0
Z X(2,0,...0)m (9" = H (1 —tyiy;) ",
m=0 1<i<j<n

where |y;| < 1 and |t| < 1. Now using the Weyl character formula one receives

> oo™ =woy) [ (1 —tyayp) ™" (6.16)

m I<i<j<n

Substituting into (6.16) the expression for @om+,(y), setting ¢ = 1 and using the evident
relation

Za’lnlag” cea™ =(1—a) "1 —ara) - (1 —ajaz - -an) 7,

we get a non-trivial identity

. . . 1 n— 2
sign(it, i, ..., i) Y; Ui *Yip— _
Y omnse ey ew I a-w
(insizrin) 1 Yir Uiy Yir =0 Yin 1<i<j<n
where summation is over all permutations (i1, 42, . ..,4,) of the natural numbers 1,2,...,n and
sign (i1, 12, ...,i,) means a sign of the permutation (i1, 42, ... ,i,).

In the same way, from the decomposition (6.11) we derive

> omot™ =0,) [ (0 —twiy) " (6.17)

1<i<j<n
where summation is over m = (my,ma,...,mg), k = [n/2], m; > mg > -+ > my > 0,
m = (mq,mi, mo, ma,...,mg,mg) (here one has to add 0 at the end if n = 2k + 1). As above,

we receive from here the identity

n—1, n—2

sign(it, ia, ..., in) Y. Y Yin _
2 (1= yi, i) (1 — “) 22(1_ i ):*"”(y) II -
(i1 si2 i) Yi1 Yio YirYiaYizYiy Yiy Yio,, \<iZi<n
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In order to derive other identities we note that for 8 = (61,609, ...,60,) one has
él_r% SOA—&-p(e%ie) = 9p(A+p).

Taking into account this relation and substituting y = (1,...,1) and z = (1,...,1) into (6.14),
we derive a relation for the antisymmetric orbit functions ¢,:

(s) ™ (xq _Gram =D o m
‘ zlz @ps (m + ps)@pr (m+ Pr) - (ST‘ _ 1)‘m| Sops (Ps)%opr (pr)v (618)
where r > s > 0, m = (my, ma,...,mg), m = (my,ma,...,ms,0,...,0), | m| =m3 +ma+---+

ms and pp, = (k—1,k—2,...,1,0).
From the relations (6.16) and (6.17) one similarly obtains the identities

(m + %n(n +1)-1)!

(3n(n+ 1) —1)!m! #olp), (6.19)

Z vp(2m + p) =

|m|
N (m+ in(n—1) —1)!
m-+ p) = , 6.20
Em:sop( p) (Tt — 1) = i ©o(p) (6.20)
where m = (my,ma,...,my,), m = (my,my, ma, Mo, ...,my,my,), v=[n/2].

From (6.18)—(6.20) we derive the relations
> e m+ p)ep) (it p )™ = (1= 6)"" o[ (p) el (pr),

> pp2m+ p)tl = (1 — )Ry (),

m

Y+ )t = (1 — )7V (o).

Other decompositions of the previous subsection lead to new relations for antisymmetric orbit
functions of A,,.

7 Decomposition of products of (anti)symmetric orbit functions

The aim of this section is to derive how to decompose products of (anti)symmetric orbit functions
into sums of (anti)symmetric orbit functions. Such operations are fulfilled by means of the
corresponding decompositions of (signed) orbits.

7.1 Products of symmetric and antisymmetric orbit functions

Invariance of symmetric orbit functions ¢, and anti-invariance of antisymmetric orbit func-
tions ¢y with respect to the Weyl group W lead to the following statements:

Proposition 11. (a) A product of symmetric orbit functions expands into a sum of symmetric
orbit functions:

¢A¢u = Znu¢ua (71)

where an integer n,, shows how many times the orbit function ¢, is contained in the product g ¢,,.
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(b) A product of antisymmetric orbit functions expands into a sum of symmetric orbit func-
tions:

PAPu =D nudy, (7.2)

where n, are positive or negative integral coefficients.
(¢) A product of symmetric and antisymmetric orbit functions expands into a sum of anti-
symmetric orbit functions:

Papp = Znu(Pu- (7.3)

where n,, are positive or negative integral coefficients.

Proof. In the case (b) we have

pa(wz)pu(we) = (det w)*or(2)pu(@) = oa(2)pu(@).

Therefore, the product ¢y¢, is invariant with respect to W. Hence, it can be expanded into
symmetric orbit functions (see Subsection 7.8 in [1]). Since antisymmetric orbit functions @)
are sums of exponential functions e>™{%%) with coefficients 41, the coefficients n, in (7.2) are
integers. In the case (c¢) we have a similar situation. The case (a) is considered in [1]. [

In order to fulfill expansions (a)—(c) in an explicit form it is necessary to fulfill the corre-
sponding decompositions of products of (signed) orbit, considering usual (not signed) orbits as
signed orbits in which to all points the sign “4” is assigned, and to take into account that
multiplication of (singed) orbit functions are reduced to multiplication of exponential functions.

A product OF(A\) ® OF(X) of two signed orbits OF()\) and O%(\) (one or two of them can
be replaced by usual orbits, that is, to the corresponding points the sign “+” is assigned) is the
set of all points of the form A; + Ay (where A\; € OF()\) and Ay € OF()')) with a sign which is a
product of signs of A and \'. Since a set of points A\; + A2 (without signs), Ay € O(N), Ay € O(N),
is invariant with respect to action of the corresponding Weyl group, each product of orbits is
decomposable into a sum of orbits. Then it follows from assertions (a)—(c) of Proposition 11
that, considering points A\; + Ao with signs, we obtain decomposition of OF(\) ® OF(X) into
usual orbits, where to each point a sign is assigned (the same sign for points of a fixed orbit).
Moreover, a product of a signed orbit with a usual orbit decomposes into signed orbits (not into
usual orbits).

Under product of (signed) orbits we may receive an orbit with signed points in which the

sign “—” corresponds to a dominant weight. This means that we obtain a signed orbit with
opposite signs for its points. In this case we say that a product of (signed) orbits contains
the corresponding signed orbit with sign “—” and denote it by —O% (). That is why in (7.2)

and (7.3) negative coefficients can appear.

Example. Orbits of Ay. If a € E is strictly positive, then the signed orbit of this point OF(a)
consists of two signed points a™ and —a~. It is easy to see that for the product O*(a) @ OF(b)
we have

O*(a) ® OF(b) = {at, —a "} @ {bT, -1}
={(a+b)" (—a=b) I U{(la—b])", (~la—b])"}
= O(a+b)U—-0O(la—b|),

where O(a + b) and O(|a — b|) are usual (not signed) orbits. Therefore,
Pa(2)pp(7) = bayb(x) = Dla—p)(2).



40 A. Klimyk and J. Patera

Similarly, we have

O*(a) ® O(b)
O*(a) ® O(b)

O (a+b)UO*(a—b), a>b>0,
OF(a+b)U—-0%(b—a), b>a>0.

Thus,

Pa(2)pp(2) = Parp(T) + Qa_p(®),  a>b>0,
@a(x)¢b(x) = 90a+b($) — QO\a_b‘(x), b>a>0.

For the corresponding decompositions for O(a) ® O(b) see [1].

Decomposition of products of orbits in higher dimension of the Euclidean space is not a simple
task. In the next subsection we consider some general results on the decomposition.

7.2 Products of symmetric and antisymmetric orbits

Let O()\) = {wA|w € W/Wy} be a usual orbit and OF(u) = {wu|lw € W} be a signed orbit.
Then

O\ ® OF () = {(wA + ') |w € W/Wy,w' € W}
= {(wA4wy ) | weW /Wyt U {(wr+wapu) W2 | weW /Wyt U - - -
U { (wA+we )0 | weW /Wy }, (7.4)

where w1y, ws, ..., ws is the set of elements of W. Since a product of an orbit and a signed orbit
decomposes into signed orbits, for decomposition of the product O(A\) ® O*(u) into separate
signed orbits it is necessary to take dominant elements from each term of the right hand side
of (7.4). That is, O(\) ® OF(u) is a union of the signed orbits, corresponding to points from

D({(wA + wi) ™™ [w € W/WAY),  D{(wA+wop) ™ [w € W/Wa}), ...
D({(wA + wy) ™™ [w € W/Wh}), (7.5)

where D({(wA + w;u)% Wi |w € W/Wy}) means the set of dominant signed elements in {(w\ -+
wip) €V w € W/W) Y.

Proposition 12. The product O(N\)®@OF (1) consists only of signed orbits of the form OF (|lwA+
ul), w e W/Wy, where [wA+ p| is a dominant weight of the orbit containing wA + p. Moreover,
each such orbit OF (Jw\ + u|), w € W/Wy, except for those of them, for which |wX + p| lies on
some wall of the dominant Weyl chamber, belongs to the product O(\) @ OF (p).

Proof. For each dominant element wA + w;u from (7.5) there exists an element w” € W such
that w” (wA 4+ w;p) = w' A+ p. It means that wA + w;p is of the form |[w'A+ pl, w' € W/W,. Tt
is clear that a sign of this dominant element is det w;w”. Conversely, take any element w\ + ,
w € W/Wy. It belongs (with some sign) to the product O(\) ® OF(u). This means that
|wA + p| also belongs to this product. Therefore, the signed orbit O (|wA + p|) is contained in
O(\) ® OF (i) with some coefficient if [w\ + p| does not lie on some wall of the dominant Weyl
chamber. This coefficient cannot vanish since if it vanishes, then in the product O(\) ® OF(u)
there are contained points of OF (Jw\ + u|), but taken with an opposite signs. In this case there
exists another element w'\ + p such that w\ 4+ p = w”(w' A + p). Since p does not lie on a wall,
this is not possible. Proposition is proved. |
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It follows from Proposition 12 that for decomposition of the product O(\) ® O*(u) into
separate signed orbits we have to take all elements wA + p, w € W/W,, and to find the
corresponding strictly dominant elements |w\ + pl, w € W/W,.

Corollary. For the product O(\) ® OF(n) we have

o @0t w = ewO=(lwr+ pl), (7.6)

wEW/WA
where the prime means that the term with |wA + p| lying on a wall must be omitted, and e, is
equal to +1 or —1.

Proof. This corollary is similar to Proposition 4 in [1]. A proof is also similar. We only have
to take into account that signed orbits can be contained in O(\) ® OF(u) with the sign “—".
The corollary is proved. n

Note that in the case of product O(\) ® O(u), A € Py, u € Py, of usual orbits the orbits
O(v) with multiplicities m, > 1 may appear in the decomposition . As we see from Corollary,
all coefficients in the decomposition (7.6) are modulo 1. The only problem which appears here
is to find signs of the coefficients ¢,.

According to Corollary we have

NOTOEDS

/

wEW/WAEng'w)\ﬁu' (x)7

where summation is such as in (7.6) and &,, are equal to +1 or —1.

Proposition 13. Let O(\), A # 0, be an orbit and let OF () be a signed orbit. If all elements
wA + p, w € W/Wy, are dominant, then

/

+
wEW/W)\O (WA + p),

o @ 0*(w =
where the prime means that terms corresponding to w\ + p lying on a wall must be omitted.

Proof. The statement of this proposition follows from the above corollary. |

At the end of this subsection we formulate the following method for decomposition of products
O()\) ® OF (), which follows from statement of Proposition 12. On the first step we shift all
points of the orbit O(A) by u. As a result, we obtain the set of points wA + p, w € W/W,. On
the second step, we map non-dominant elements of this set by elements of the Weyl group W
to the dominant Weyl chamber. On this step we obtain the set |wA + p|, w € W/W,. Then
according to Proposition 12, O(\) ® OF(u) consists of the signed orbits OF (Jjw\ + p|) for which
|wA + | do not lie on a wall of the dominant Weyl chamber. On the third step, we determine
signs of these orbits, taking into account the above propositions or making a direct calculation.

7.3 Products of antisymmetric orbits

Let OF(\) = {(wM\)®%|w € W} and OF () = {(wp)®®|w € W} be two signed orbits, where
A and p are strictly dominant elements of E,,. Then

OF(\) ® OF (1) = {(wA + w' ) |w e W,uw' e W}
= {(wAw )3 | weW} U {(wA+wap) 2 |weW U - - -
U {(wAdwsp) s [weW '}, (7.7)
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where wi,ws,...,ws is the set of all elements of W. Since a product of two signed orbits
decomposes into usual orbits (all points of some of these orbits are taken with the sign “—7),
for decomposition of the product OF()\) ® OF(u) into separate orbits it is necessary to take
dominant elements from each term of the right hand side of (7.7). That is, OF(\) ® OF(u) is a
union of the orbits (some of them with the sign “—”) corresponding to points from

D({(wA +wip)® [w e W}), D{(w+wap)¥™2|w e W}, ...,
D({(w + wep) s |w € W), (7.8)

where D({(w) + w;p)%* ¥l € W}) means the set of dominant signed elements in {(w\ +
wiu)detwwi|w c W}

Proposition 14. The product OF(\) ® OF () consists only of orbits (with signs “+” or “~”)
of the form O(|lwA + p|), w € W, where |[wA + u| is a dominant weight of the orbit containing
wA+p. Moreover, each such orbit O(lw\+p|), w € W, for which |{wA+ u| does not lie on some
wall of the dominant Weyl chamber, belongs to the product OF(\) @ OF(u).

Proof. For each dominant element wA + w;u from (7.8) there exists an element w” € W such
that w”(wA + w;p) = WA + p. It means that wA + w;p is of the form |[w'A + p|, w' € W, and
the first part of the proposition follows.

Take any element w\ + p, w € W, which does not lie on a wall. Then |wA + u| does not lie
on a wall. Then w\ + u belongs (with some sign) to the product OF(\) ® OF(u). This means
that |wA + p| also belongs to this product. Therefore, the orbit O(|wA + p|) is contained in
O*(\) ® O%(u) with some coefficient. This coefficient cannot vanish since if it vanishes, then
in the product O*(\) ® OF(p) there are contained points of OF(JwA 4 p|), but taken with an
opposite signs. In this case there exists another element w’ A+ p such that wA+p = w” (W' X+ p).
Since p does not lie on a wall, this is not possible. Proposition is proved. |

It follows from Proposition 14 that for decomposition of the product O*(\) ® OF(u) into
orbits we have to take all elements wA + p, w € W, and to find the corresponding dominant
elements [w\ + p|, w € W.

Corollary. For the product OF(\) ® OF (1) we have
+ + —
0+ ® 0% (1) =,y wOwA + 1), (7.9)

where €, is equal to +1 or —1 if [w\ + u| does not lie on some wall.

In the case of product OF(A\)@O0T (u), A € ij, p € P, of sighed orbits in the decomposition
may appear orbits O(v) with integral coefficients m, such that m, > 1. Such coefficients may
appear only for v lying on a wall.

Proposition 15. Let OF()\) and OF(u) be two signed orbits. If all elements wA + p, w € W,
are dominant, then

0 () © 0* (1) = | cwOwA + ),
weW

where €y, is equal to +1 or —1, if |[w\ + u| does not lie on some wall.

This proposition is proved in the same way as Proposition 14 and we omit it.
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Proposition 16. Let O ()\) and OF(u) be sighed orbits, and let all elements w\ + pu, w € W,
be strictly dominant (that is, they are dominant and do not belong to any wall of the dominant
Weyl chamber). Then

OF(N) @ 0F(u) = | ewO(wA + ),
weW

where €., are equal to +1 or —1.

This proposition is proved in the same way as Proposition 2 in [1].

7.4 Decomposition of products for rank 2

We give here examples of decompositions of products of (signed) orbits for the cases Ay and Co.
Orbits for these cases are placed on the plane. Therefore, decompositions can be done by
geometrical calculations on this plane. These cases can be easily considered by using for orbit
points the orthogonal coordinates from Section 3. The corresponding Weyl groups have a simple
description in these coordinates and this gives a possibility to make calculations in a simple
manner.

For the case of Ay at a # b we have

Ay 0 OF(a b) ® O(c 0) = OF(atc b) U OF(a—c b+c)

U—0%(a+b—c c—b) (a>c>b),
O*(a b) ® O(c 0) = OF(a+c b) U OF (a—c b+c)
UO*(a b—c) (a>c,b>c),
O*(a b) ® O(c 0) = OF(a+c b) (a=b=c),
O*(a b) ® O(c 0) = OF(a+c b) U —OF (a+b—c c—b)) (a=c>b),
O*(a b) ® O(c 0) = O*(a+c b) U OF(a b—c) (b>a=c),
0% (a b) ® O(c 0) = OF (atc b) U —O*F(c—a a+b) (a <b=c),
O0%(a b) @ O(c 0) = OF(a+c b) U —O*(c—a a+b)
UO*(c—a—b a) (c>a+b),
O0%(a b) ® O(c 0) = OF(a+c b) U —O*(c—a a+b)
U—-0%(a+b—c c—a) (a+b>c>0D),
O*(a b) ® O(c 0) = OF(a+c b) U —OF (c—a a+b)
UO*(a b—c) (a+b>b>c).
If a = b, then we get
O*(a a) @ O(c 0) = OF (a+c a) U OF(c—2a a)
U—-0%(c—a 2a) (¢ > 2a),
O*(a a) ® O(c 0) = O%(a+c a) U —0%(2a—c c—a)
U—-0%(c—a 2a) (2a > ¢ > a),
O*(a a) ® O(c 0) = O*(a+c a) U OF(a—c a+c)
UO*(a a—c) (a>c).

Similar products of Cy orbits are of the form

Cy : O%(a b) ®O(c 0) = OF(a+c b) U —OF(—a—2b+c b) U —OF(c—a a+b)
U O*(c—2b—a a+b) (a+b—c<b),
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O*(a b) ® O(c 0) = OF(a+c b) U OF (a+2b—c c—a—b) U OF(a—c b+c)
U —O0*(a+2b—c c—b) (b>c—a—b,a>c),

O*(a b) ® O(c 0) = O*(a+c b) U OF (a+2b—c c—a—b) U —OF (c—a a+b)
U —0%(a+2b—c c—b) (b>c—a—b,c>a),

O*(a b) ® O(c 0) = O*(a+c b) U OF(a—c b) UOF (a—c b+c)
U —0*(a+2b—c c—b) (a+b>b+c),

O0*(a b) ® O(c 0) = OF(a+c b) U —OF (¢c—a a+b—c) U —OF (c—a a+b)
U —0%(a4+2b—c c—b) (b+c>a+b>c—b),

O0*(a b) ® O(c 0) = OF(a+c b) U —OF (c—a a+b—c) U —OF (c—a a+b)
U O*(c—a—2b a+b) (a+b<c—b).

The corresponding decompositions of products of antisymmetric and symmetric orbit func-
tions can also be easily written down.

8 Decomposition of antisymmetric W-orbit functions
into antisymmetric W’-orbit functions

As in Section 7, for these decompositions it is enough to obtain the corresponding decompositions
for signed orbits. For this reason, we shall deal mainly with signed orbits. Our reasoning here
is very similar to that of Section 4 in [1].

8.1 Introduction

Let R be a root system with a Weyl group W, and let R’ be another root system which is
a subset of the set R. Then a Weyl group W’ for R’ can be considered as a subgroup of W.

Let O?,EV()\) be a signed W-orbit. The set of points of the usual orbit Oy (A) is invariant
with respect to W’. This means that the signed orbit Oﬁ,(A) consists of signed W’ -orbits. In
this section we deal with representing O?,EV()\) as a union of signed W'-orbits. Properties of
such a representation depend on root systems R and R’ (or on Weyl groups W and W’). We
distinguish two cases:

Case 1: Root systems R and R’ span vector spaces of the same dimension. In this case Weyl
chambers for W are smaller than Weyl chambers for W’. Moreover, each Weyl chamber for W’
consists of |W/W'| chambers for W. Let D, be a dominant Weyl chamber for the root system R.
Then a dominant Weyl chamber for W’ consists of W-chambers w;Dy, i = 1,2,...,k, k =
|W/W'|, where w;, i = 1,2,...,k, are representatives of cosets in W/W’'. If X does not lie on
any wall of the dominant Weyl chamber D, then

k
O3 (A) = | (detws) OF, (wih), (8.1)
i=1

where O%V, are signed W’-orbits. (Note that if det w; = —1, then (det w;) Oa}, (wi\) means the
signed orbit O%,(wi)\) in which each point is taken with opposite sign.)

Representing A by coordinates in w-basis it is necessary to take into account that coordinates
of the same point in w-bases related to the root systems R and R’ are different. There exist
matrices connecting coordinates in these different w-bases (see [32]).
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For expanding an antisymmetric W-orbit function into antisymmetric W’-orbit functions it
is necessary to take into account the formula (8.1). Namely, the following expansion

k

PN (@) =D (detwi)py ) (x)
i=1

corresponds to the decomposition (8.1).

Case 2: Root systems R and R' span vector spaces of different dimensions. This case is more
complicated. In order to represent O;EV()\) as a union of signed W'-orbits, it is necessary to
project points p of O?,EV(/\) to the vector subspace E, spanned by R’ and to select in the set
of these projected points dominant points with respect to the root system R’. Note that under
projection, different points of O;,—LV(/\) can give the same point in F,,. This leads to appearing
of coinciding signed W/ -orbits in a representation of Oﬁ,()\) as a union of W’-orbits. Moreover,
for some signed W'-orbits their points must be taken with opposite signs.

As in the previous case, under expansion of an antisymmetric W-orbit function @) (x) into
antisymmetric WW’-orbit functions we have to consider ¢, (x) on the subspace E,, C E,, and to
take into account the corresponding decomposition of the signed orbit Offv()\). For this reason,
below in this section we consider decomposition of signed W-orbits into W’-orbits. They uniquely
determine the corresponding expansions for antisymmetric orbit functions.

8.2 Decomposition of signed W4, -orbits into W4 __, -orbits

For such decomposition it is convenient to represent orbit elements in orthogonal coordinates
(see Section 3). Let OF(\) = OF(my,ma,...,mu11) be a signed Wy, -orbit with dominant
element A\ = (my,ma,...,mpy41), where

mip>mg > - > My > Mpgl-

The orthogonal coordinates my, ma, ..., my11 satisfy the conditions mj +mo + - +mp41 = 0.
However, we may add to all coordinates m; the same real number, since under this procedure
the w-coordinates A; = m; —m;y1, i =1,2,...,n do not change (see Section 3).

The signed orbit OF(\) consists of all points
w(my,ma, ..., Mpg1) = (Mg, Mgy -+, My )5 we Wy, (8.2)

where (i1,142,...,i,+1) is a permutation of the numbers 1,2,...,n + 1, determined by w. The
sign of (detw) is attached to such point. Points of OF(\) belong to the vector space E,11. We
restrict these points to the vector subspace F,, spanned by the simple roots aj, a9, ..., a1
of A,, which form a set of simple roots of A,_1. This restriction is reduced to removing the
last coordinate m;, ,, in points (m;,,mi,,...,m;,,,) of the signed orbit O%()) (see (8.2)). As
a result, we obtain a set of points

(mi1 y Mgy v v am’in) (83)
received from the points (8.2). The point (8.3) is dominant if and only if

It is easy to see that after restriction to F, (that is, under removing the last coordinate) we
obtain from the set of points (8.2) the following set of dominant elements:

(ml,...,mi_l,mi,mi+1,...,mn+1), 1=1,2,....,n+1,

where a hat over m; means that the coordinate m; must be omitted.
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Thus, the signed W, -orbit OF (my,ma, ..., mui1) consists of the following signed Wa, .-
orbits:

+ A .
0] (ml,...,mi_l,mi,mi+1,...,mn+1), 1=1,2,...,n4+ 1.

Each of these signed orbits must be taken with a coefficient +1 or —1. Moreover, a coefficient
at the orbit OF(my, ..., mi_1,Mi, Mis1,...,Mpy1) 18 1, if after m; in the point

(ml, ceey Myi—1, Tfli,miJrl, e ,mn+1)

a number of coordinates is even, and —1 otherwise. This statement completely determines an
Way)

expansion of the antisymmetric orbit function S
k) EARRS) n

) into antisymmetric W4, ,-orbit

function:
n+1
@(m1,m2,...,mn+1)(x) = Z(detw(m’i))Qp(ml,...,mi_l,mi,mi+1,...,mn+1)(‘r)?
=1

where w(m;) is the permutation which sends the coordinate m; to the end, not changing an
order of other coordinates.

8.3 Decomposition of signed W, _,-orbits
into Wy, , X Wy, _ -orbits, p+q=n

Again we use orthogonal coordinates for orbit elements. We take in the system of simple roots
a1, 00, ...,0,1 of A,_q two parts as o, ag,...,ap—1 and api1,0p42,. .., Qpyrg—1 = p—1. The
first part determines W4, , and the second part generates W4, ,. We consider a signed Wy, _, -
orbit OF (), where X\ = (mq1,ma,...,my), m1 > ma > --- > m,. This orbit consists of points

w(my, ma, ..., myp) = (M4, Miy, ..., My, ), we Wy, |, (8.4)

where (i1, 149, ...,4,) is a permutation of the numbers 1,2, ..., n. We restrict points (8.4) to the
vector subspace E, X F; spanned by the simple roots a1, v, ..., 0p—1 and apy1, apya, ..., 01,
respectively. Under restriction the point (8.4) turns into the point

(mil,miQ, c. ,mip)(mipﬂ,mipﬂ, PN ,min).
In order to determine a set of signed Wy, , xW4,_,-orbits contained in the signed orbit O%()\)
we have to choose from (8.4) all elements for which
m¢1>mi2>--->mip, mip+1>mip+2>--->min.

To find this set of points we have to take all subsets m;,, m;,, ..., m;, in the set my, ma,...,my,
such that m;, > m;, > --- > m;,. Let ¥ denote the collection of such subsets. Then O%(\)
consists of signed Wa,_, x Wa,_, -orbits

Oi((milam’izv-'-amip)(mjumjm'-'aqu))a (mil’mi2?"'7mip) €3, (85)
where (mj,,mj,,...,m;.) is a supplement of the subset (m;,mi,,...,m;,) in the whole set
(m1,ma,...,my), taken in such an order that mj > mj, > --- > m;, . Each of these Wy, | x

W,_,-orbits is contained in O*()\) only once. Each such a signed orbit is contained in the
signed orbit OF(\) with sign “4” if the set of numbers

(mil,miQ,.. . ,mip,mjl,mj2,...,qu)

“wo»

from (8.5) is obtained from the set (1,2,...,n) by an even permutation and with sign “—

w.
otherwise. The corresponding expansions of antisymmetric orbit functions cpf\ A”‘l)(x) into
antisymmetric Wy,_, X W4, _,-orbit functions is evident.
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8.4 Decomposition of signed Wg,_ -orbits into Wg__, -orbits
and of signed W¢,-orbits into W _,-orbits

Decomposition of signed W, -orbits and decomposition of signed W, -orbits are fulfilled in the
same way. For this reason, we give a proof only for the case of signed W, -orbits.

A set of simple roots of C,, consists of roots ay, as,...,a,. The roots as,...,a, constitute
a set of simple roots of C,,_1. They span the subspace F,_1.

For determining elements A of E, we use orthogonal coordinates my,mo, ..., m,. Then A is
strictly dominant if and only if

mip>mg > - >my, > 0.

Then the signed orbit OF(\) consists of all points

w(my, ma, ..., my) = (£m;,, £tm4,, ..., £tm;, ), we We,, (8.6)
where (i1,12,...,1,) is a permutation of the set 1,2,...,n, and all combinations of signs are
possible.

Restriction of elements (8.6) to the vector subspace F,,_1, defined above, reduces to removing
the first coordinate £m;, in (8.6). As a result, we obtain from the set of points (8.6) the collection

(:l:miw:l:miga'--y:tmin), w e ch.

Only the points (mi,, mi,, ..., m4, ,,m;,) with positive coordinates may be dominant. More-
over, such a point is dominant if and only if

My > Mjg > =00 > My,

Therefore, under restriction of points (8.6) to E,_; we obtain the following strictly W¢, -
dominant elements:

(m17m27"'7mi—17mi7mi+17'"7m7L)7 Z4:1727"'7”7 (87>

where a hat over m; means that the coordinate m; must be omitted. Moreover, the element (8.7)
with fixed i can be obtained from two elements in (8.6), namely, from (mq, mo, ..., m;—1, m;,
M1, ..., My). In the signed orbit OF(mq, ma, ..., m,) these two elements have opposite signs.

Thus, the signed W, -orbits OF(mq, ma,...,m,) consists of the following signed W, _,-
orbits:

+ « .
O~ (M1, ma, ..., Mi—1, My, Mg 1, .oy M)y 1=1,2,...,n.

Each such signed W, _,-orbit is contained in O*(my,ma, ..., m,) twice with opposite signs.
Therefore, a restriction of the antisymmetric orbil function V(my ms,..m,) to the subspa-
ce E,_1, described above, vanishes.
For Wg, -orbits we have similar assertions. A signed Wpg,_-orbits O (m1,ma, ..., my,), m >
mg > --- > my > 0, consists of Wp, _-orbits

Oi(ml,mg, ey mi_l,mi,miﬂ, v ,mn), 1= 1, 2, NN N
and each such orbit is contained in the decomposition two times (with opposite signs), that

is, a restriction of the antisymmetric orbit function (m, ms....m,) 0f Bn to the subspace Ej_1,
described above, vanishes.



48 A. Klimyk and J. Patera

8.5 Decomposition of signed W¢, -orbits into W4, , X Wg, -orbits, p+qg =n

If o1, 9, ..., oy are simple roots for Cy, then oy, a9, ..., qp_1 are simple roots for A,_; (they
can be embedded into the linear subspace E,) and apt1, apt2, ..., oy are simple roots for Cy
(they generate the linear subspace Ej).

We use orthogonal coordinates for elements of E,, and consider a signed W, -orbit OF (),
my > mg > --- > my > 0. This orbit consists of all points (8.6). Restriction of these points to
the vector subspace E, x E, reduces to splitting of coordinates (8.6) into two parts:

(:l:mila :l:mizv R imip)(:l:mierl? R imm) (88>

Due to the condition my > ms > --- > m, > 0, these elements do not lie on walls of the
Wa,_, x Wg,-chambers. We have to choose dominant elements (with respect to the Weyl group
Wa,_, x Wg,) in the set of points (8.8). The conditions of dominantness for elements of £,
and F,; show that only the elements

(mila"wmijv_mi]‘_;rl'” 7_mip)(mip+17"‘7min)7 ]2071727"'71)7
satisfying the conditions
mi1>mi2>--->mi]., mij+1<mij+2<---<mip, mip+1>mip+2>--->min,

are dominant. Moreover, each such point is contained in the signed W, -orbit O%()\) only once.
This assertion completely determines a list of signed Wy, _, x W, -orbits in O*()\). Each signed
Wa,_, x We,-orbit is contained in O*()) only once.

This assertion uniquely determines a list of antisymmetric Wa,_, X Wg, -orbit functions,
contained in the antisymmetric W, -orbit function ). However, it is necessary to determine
signs of antisymmetric Wy, , X W¢,-orbit functions in the decomposition. It is easily made by
using the description of the Weyl groups in the Euclidean space E,, with orthogonal coordinates.

8.6 Decomposition of signed Wp, -orbits into signed Wp__,-orbits

Assume that aq,as, ..., ay, is the set of simple roots of D,,, n > 4. Then o, ..., o, are simple
roots of D,_1. The last roots span the subspace E,_1.
For elements A of F,, we again use orthogonal coordinates m1,mo, ..., m,. Then A is strictly

dominant if and only if m; > mg > --+ > my_1 > |my,|. We assume that \ satisfies the condition
my>mg > - >my > 0.

Then the signed orbit OF(\) consists of all points
w(my,ma,...,my) = (m;, tmg,,...,£m; ), we Wp,, (8.9)

where (i1,12,...,1,) is a permutation of the numbers 1,2, ..., n and there exists an even number
of signs “—”. Restriction of elements (8.9) to the subspace E,_; reduces to removing the first
coordinate +m;, in (8.9). As a result, we obtain from the set of points (8.9) the collection

(£m,, tmi,, ..., £m;, ), w e Wp,,

[}

where a number of signs “—” may be either even or odd. Only points of the form (mj,, m,, ...,
m;, _,,£m;, ) may be dominant. Moreover, such a point is dominant if and only if

Miy > My > -+ >my, | > |m;, |
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Therefore, under restriction of points (8.9) to E,_; we obtain the following Wp, ,-dominant
elements:

(ml,mg,...,mi_l,mi,miﬂ,...,mn_l,:tmn), i:1,2,...,n, (810)

where a hat over m; means that the coordinate m; must be omitted. Moreover, the ele-
ment (8.10) with fixed i can be obtained only from one element in (8.9), namely, from element
(my1,ma,...,mi—1,£m;, mijs1,...,£my,), where at m; and m,, signs are coinciding.

Thus, the signed Wp, -orbit Oi(ml,mg, ceoymy) with my > mg > --- > my > 0 consists of
the following signed Wp,, ,-orbits:

+ ~ .
O (ml,mQ,. ey MG 1 MG M1, - - - ,:I:mn), 1= 1,2,. Lo, n.

Each such signed Wp,,_, -orbit is contained in OF (mq,ma, ..., my) only once (with sign “+” or
“~7). A sign of such an orbit depends on a number i and on a sign at m,,. This sign is uniquely
determined by the sign (det w) of the corresponding element w of Wp, .

It is shown similarly that the signed Wp, -orbit

OF(my,...,Mp_1,—my), Mg >mg > -+ >my >0
consists of the same signed Wp, ,-orbits as the Wp, -orbits Oi(ml, ey Mp—1,My) with the
same numbers mi,...,Mp_1, My does.

The above assertions uniquely determine expansions for the corresponding antisymmetric
Wp,,-orbit functions.

8.7 Decomposition of signed Wp_-orbits into Wa,_, X Wp,-orbits,
ptgq=mn,q=>4

If oy, 9, ..., o are simple roots for Dy, then aq,ag,...,a,—1 are simple roots for A,_; (they
can be embedded into the Euclidean subspace E,) and a;11, 12, . . ., oy, are simple roots for Dy,
(they generate the Euclidean subspace Ej).

We use orthogonal coordinates in F, and consider signed Wp, _-orbits OF(\) with A =
(my,ma,...,my) such that m; > mg > --- > m, > 0. The orbit O(\) consists of all points (8.9).
Restriction of these points to the vector subspace E,_1 x E, reduces to splitting the set of coor-
dinates (8.9) into two parts:

(:I:mil, :I:mz-2, e ,:l:mip)(:tmip+1, ceey :I:mzn) (811)

Due to the condition my > mso > --- > m, > 0, these elements do not lie on walls of the
Wa,_, x Wp,-chambers. We have to choose dominant elements (with respect to the Weyl group
Wa,_, x Wp,) in the set of points (8.11). The conditions of dominantness for elements of £,
and F,; show that only the elements

(Mg sy My =M ey =M, ) (M g - EMG,), i=0,1,2,...,p,
having even number of sign minus and satisfying the conditions
My > My > -0 > My, My <My < o0 <My, Mg = Mg > 00 > My,

are dominant. Moreover, each such point is contained in the Wp, -orbit O%(\) only once. These
assertions completely determine a list of signed W4, , x Wp -orbits in the signed Wp, -orbit
O*(X). All signed Wy, , x Wp,-orbits are contained in OF(X) with multiplicity 1 and with
sign “4+” or “—”. This determines uniquely expansions for the corresponding antisymmetric
Wp,,-orbit functions.
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9 Characters of representations and antisymmetric
orbit functions

Antisymmetric orbit functions py(z) with A\ € Pj_r are closely related to characters of irreducible
representations of the corresponding compact Lie group G. This relation serves for derivations
of some properties of antisymmetric orbit functions.

9.1 Connection of characters with orbit functions

To each Coxeter-Dynkin diagram there corresponds a connected compact semisimple Lie
group G. Let us fix a Coxeter—Dynkin diagram and, therefore, a connected compact Lie group G.
A complex valued function f(g) on G satisfying the condition

flg)=f(hgh™),  heG,

is called a class function. It is constant on classes of conjugate elements.

For simplicity, we assume that G is realized by matrices such that the set of its diagonal
matrices constitute a Cartan subgroup, which will be denoted by H. This subgroup can be
identified with the n-dimensional torus T, where n is a rank of the group G. The subgroup H
can be represented as H = exp(ih), where b is a real form of an appropriate Cartan subalgebra
of the complex semisimple Lie algebra, determined by the Coxeter—Dynkin diagram.

It is well-known that each element g of G is conjugate to some element of H, that is, class
functions are uniquely determined by their values on H.

There exists a one-to-one correspondence between irreducible unitary representations of the
group G and integral highest weights A € P, , where P, is determined by the Coxeter—Dynkin
diagram. The irreducible representation, corresponding to a highest weight A, will be denoted
by T». The representation 7% and its properties are determined by its character x(g), which is
defined as the trace of T)(¢g):

xalg) = Tr Tx(g), g€Qq.

Since Tr Ty (hgh™') = Tr T)\(g), h € G, the character y, is a class function, that is, it is uniquely
determined by its values on the subgroup H.

All the operators Th\(h), h € H, are diagonal with respect to an appropriate basis of the
representation space (this basis is called a weight basis) and their diagonal matrix elements are
of the form e2™{"%) where u € P is a weight of the representation Ty, x = (r1,22,...,2y) are
coordinates of an element t of the Cartan subalgebra h in an appropriate coordinate system
(that is, coordinates on the torus T) and (-,-) is an appropriate bilinear form, which can be
chosen coinciding with the scalar product on E,, considered above. Then the character xy(h)
is a linear combination of the diagonal matrix elements:

Z che?mile (9.1)

nED(A

where D()) is the set of all weights of the irreducible representation T and ¢ is a multiplicity
of the weight p € D()\) in the representation Ty. It is known from representation theory that
the weight system D(\) of T}, is invariant with respect to the Weyl group W, corresponding to
the Coxeter-Dynkin diagram, and ci(} = c)\7 w € W, for each p € D(\). This means that the
character x(h) can be represented as

)= > deula), (9.2)

reDL(A)
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where D () is the set of all dominant weights in D(A) and ¢, () is a symmetric orbit function,
corresponding to the weight € Dy (\). Representing x(h) as xx(z), where z = (1,22, ..., 2y)
are coordinates corresponding to the element ¢ € h such that h = exp 2wit, we can make an
analytic continuation of both sides of (9.2) to the n-dimensional Euclidean space E,,. Since the
right hand side of (9.2) is invariant under transformations from the affine Weyl group Waf,
corresponding to the Weyl group W, the function x,(z) is also invariant under the affine Weyl
group W2, That is, it is enough to define y,(z) only on the fundamental domain F of the
group W, To this fundamental domain F there corresponds a fundamental domain (we denote
it by F) in the subgroup H (and on the torus T).

Many properties of orbit functions follow from properties of characters x,, and we consider
them as known from representation theory.

The well-known Weyl formula for characters of irreducible representations of the group G
states [33] that under appropriate selection of coordinates (z1,z1,...,x,) of points h € H we
have

Z (det w)e27ri<)\+p,x)

X)\( ) Z (det U})€27T1<p7x> SDID(JU) Y ( )
weW

where, as before, p = % > «. This is why antisymmetric orbit functions are so important for
a>0
representation theory. Note that for dominant A € Py the element A\ 4 p is strictly dominant;

for this reason, the antisymmetric orbit function ¢y, ,(x) in (9.3) does not vanish for A € Py.

9.2 Orthogonality of characters

The relation (9.3) between characters of irreducible representations of compact Lie groups and
the corresponding antisymmetric orbit functions leads to a simple proof of orthogonality of
irreducible characters xx(h) = xa(z). Indeed, due to the orthogonality (5.2) for antisymmetric
orbit functions and to the relation (9.3) we have

[ oren@ipres@iin = [ xa@rn@lepte)ds = by,
F F

that is, irreducible characters are orthogonal on F with respect to the measure |¢,(x)|?dz. The
expressions for the function ¢, (x) for the classical compact Lie groups are given in Subsection 5.9.

9.3 Relations for antisymmetric orbit functions

The formulas (9.2) and (9.3) are a source of relations for antisymmetric orbit functions.
Comparing the expressions (9.2) and (9.3) for characters, one gets the relation

rp(a) = Y Adula)py(a), (9.4)

nEDL(A)

where, as before, c‘; are multiplicities of weights p in the irreducible representation T of G.
Let T and T}, be two irreducible representations of G. Then their tensor product decomposes
as a direct sum of irreducible representations of G as

T\@Ty= Y my'T,, (9.5)

vePy
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where mﬁ” is a multiplicity of the irreducible representation 7}, in the tensor product. Since T

and T}, are finite dimensional representations, the sum on the right hand side of (9.5) is finite.
To the decomposition (9.5) there corresponds a relation for characters,

a@)xu(@) = Y mx(@). (9.6)

vePy

Due to (9.3) it can be written as

50)\+p(513) Sou—&—p(fc) _ m ‘PV—&-p(x)
ep(r)  pplz) 2 Pp(T)

)

veP,

where summation is such as in (9.6). Therefore, we have the following expression for a product
of two antisymmetric orbit functions:

Patp(@)pptp(@ Z M Py () (). (9.7)

veP,

In particular, if p = w;, where w; is i-th fundamental wight of the group G, then this formula
takes the form

Ot p(T)Puwitp(T Z m Y utp(T)pp(T).
Z/EP+

Since multiplicities of irreducible constituents in the tensor product T\ ® T, for many groups
can be found in a simple way (in many cases these multiplicities are equal to 1; for example, if
i = 1, then for the groups SU(n) and SO(n) they do not exceed 1), then this formula can be
considered as a recurrence relation for antisymmetric orbit functions.

10 Antisymmetric orbit function transforms

As in the case of symmetric orbit functions, antisymmetric orbit functions determine certain
orbit function transforms which generalize the sine transform (in the case of symmetric orbit
functions these transforms generalize the cosine transform) [29, 31].

As in the case of symmetric orbit functions, antisymmetric orbit functions determine three
types of orbit function transforms: the first one is related to the antisymmetric orbit func-
tions py(z) with integral A, the second one is related to ¢y (x) with dominant A € E,, and the
third one is the related discrete transforms.

10.1 Decomposition in antisymmetric orbit functions on F'

Let f(g) be a continuous class function on G (see Subsection 9.1). It defines a continuous
function on the commutative subgroup H. We assume that this function on H has continuous
partial derivatives of all orders with respect to analytic parameters on H. Such function f can
be decomposed in characters of irreducible unitary representations of G:

=3 e (10.1)

AEPL

We see from this decomposition that each class function is symmetric with respect to the corre-
sponding affine Weyl group W2 (since characters y) admit this symmetry) and, therefore, is
uniquely determined by its values on the fundamental domain F' in H.
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Going to the coordinate description of the points h € H (see Subsection 9.1), we obtain

f@) =Y o),  z€B.

AEPL

Taking into account formula (9.3) for the characters we receive

po(@) f(x) = Z APA+p(T). (10.2)

AEPL

Due to Proposition 7, we may state that any antisymmetric (with respect to the affine Weyl
group W) continuous function f on E,,, which has continuous derivatives and vanishes on the
boundary OF of the fundamental domain F, can be represented in the form f(z) = ¢,(x)f(z),
where f (z) is a symmetric (with respect to W) continuous function on F,, with continuous
derivatives. Thus, due to (10.2) we may state that any antisymmetric (with respect to W)
continuous function f on E,, which has continuous derivatives and vanishes on the boundary OF,

can be decomposed in antisymmetric orbit functions py, A € P,

f@) =Y cxpa(). (10.3)

+
AepP;

By the orthogonality relation (5.2) for antisymmetric orbit functions, the coefficients ¢y in
this decomposition are determined by the formula

cA:/Ff(x)goA(x)da:. (10.4)

Moreover, the Plancherel formula

S a2 = /F ()P (10.5)

AePy

holds, which means that the Hilbert spaces with the appropriate scalar products are isometric.
Formula (10.4) is the antisymmetrized Fourier transform of the function f(x). Formula (10.3)
gives an inverse transform. Formulas (10.3) and (10.4) give the orbit function transforms corre-
sponding to antisymmetric orbit functions @y, A € ij.
Let £3(F) denote the Hilbert space of functions on the fundamental domain F, which vanish
on the boundary 9F of the fundamental domain, with the scalar product

<f1,f2>=Af1(x)de.

The set of continuous functions on F' (vanishing on the boundary 0F') with continuous derivatives
is dense in L(F). Therefore, the formulas (10.3)—(10.5) show that the set of orbit functions @y,
A€ ij, form an orthogonal basis of LE(F).

10.2 Symmetric and antisymmetric multivariate sine and cosine series

Symmetric and antisymmetric orbit functions for the Coxeter-Dynkin diagram C), can be ex-
pressed in terns of symmetric and antisymmetric multivariate sine and cosine functions (see
formulas (4.19) and (5.4)). Their application in the formulas for symmetric and antisymmetric
orbit function transforms gives antisymmetric and symmetric multivariate sine and cosine series
expansions.



54 A. Klimyk and J. Patera

The formulas (10.3) and (10.4), applied to the case C,,, determine expansions of functions,
given on the fundamental domain

F={1/2>z >x9>--- >, >0}

for the Coxeter—Dynkin diagram C,,, into antisymmetric multivariate sine functions:

f(x Z cm det (sin ZWmZ:BJ)” 15 (10.6)
mEPJr
where m = (mq,ma, ..., my) are integer n-tuples such that m; > mg > --- > m, > 0, and the

coefficients ¢y, are given by the formula
o = 22n/ f(x) det (sin2mrm;); 5, da. (10.7)

The Plancherel formula is of the form

¥ rcm|2—22"/f )|/ () 2de.

mEPJr

Similarly, using the symmetric orbit function transform on the fundamental domain F' (see
Subsection 8.2 in [1]), determined by symmetric orbit functions for the Coxeter—Dynkin diag-
ram C), given by the formulas (4.24) and (5.4), one obtains symmetric multivariate cosine ex-
pansion on F"

fz) = Z emdet ™ (cos 2mmy;) iy, (10.8)
meP
where m = (mq,ma, ..., my) are integer n-tuples such that m; > mg > --- > m,, > 0, and the

coefficients ¢y, are given by the formula
Cm = 22”/ f(x)det™ (cos 2mmz;); iy de. (10.9)
F

The Plancherel formula is of the form

S Jeml? = 22"/f )|/ () 2de.

meP,

10.3 Orbit function transform on the dominant Weyl chamber

The expansion (10.3) of functions on the fundamental domain F' is an expansion in the antisym-
metric orbit functions ¢y (x) with integral strictly dominant weights A\. The antisymmetric orbit
functions @y (z) with A lying in the dominant Weyl chamber (and not obligatory integral) are
not invariant with respect to the corresponding affine Weyl group W2, They are invariant only
with respect to the Weyl group W. A fundamental domain of W coincides with the dominant
Weyl chamber D, . For this reason, the orbit functions ¢y (z), A € Di, determine another orbit
function transform (a transform on D).
We began with the usual Fourier transforms on R™:

JN= | e 2T (10.10)

fla) = f( Je PN, (10.11)
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Let the function f(x) be anti-invariant with respect to the Weyl group W, that is, f(wz) =
(detw) f(z), w € W. It is easy to check that the function f()\) is also anti-invariant with respect
to the Weyl group W. Replace in (10.10) A by wA, w € W, multiply both sides by det w, and
sum these both side over w € W. Then instead of (10.10) we obtain

f) = i f(@)ea(z)dz, X e DI, (10.12)

where we have taken into account that f(z) is anti-invariant with respect to W.
Similarly, starting from (10.11), we obtain the inverse formula:

fw)= | F)pa(z)dA. (10.13)

For the transforms (10.12) and (10.13) the Plancherel formula

2 _ r3 2
/D+|f(m)\ dx—/D+|f<A>| 0\

holds.

10.4 Symmetric and antisymmetric multivariate sine
and cosine integral transforms

The orbit function transforms (10.12) and (10.13) in the case of the Coxeter—Dynkin diagram C,
lead to symmetric and antisymmetric multivariate sine and cosine integral transforms.

Taking into account the expression (4.19) for antisymmetric orbit functions for C,, we obtain
the transform

fN) = : (x) det (sin 2w \iz;);,_, dx, (10.14)
+

where A = (A, \a,..., \p) € Di, that is, Ay > A2 > --- > A\, > 0 (the function f()\) vanishes

on the boundary of D). The inverse transform is of the form

fl@) =2 [ f()det (sin2mA;w;)? ) dA. (10.15)
Dy ’

For these transforms the Plancherel formula

2 _ 02n 3 2
/mlf(x)\ dr =2 / FO 2

Dy

holds.
Similar transformations hold for symmetric multivariate cosine function:

f\) = (x)det™ (cos 277)‘@'131')?]‘:1 dz, (10.16)
Dy ’
fla)y=2"" | f(N\)det™ (cos2mAiz;)7,_ dA, (10.17)
Dy ’

where A\ = (A1, A2,...,\,) € Dy and the function det™ (cos )\i:cj)?jzl is given by formula (5.4).
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11 Multivariate generalization of the finite Fourier transform
and of finite sine and cosine transforms

Along with the integral Fourier transform there exists a discrete Fourier transform. Similarly, it
is possible to introduce a finite orbit function transform, based on antisymmetric orbit functions.
It is done in the same way as in the case of symmetric orbit functions in [1] by using the results
of the paper [21] (see [31]). We first consider the finite Fourier transform. Then we consider a
general theory (appropriate for any connected Coxeter—Dynkin diagram). In the last subsections
we give concrete antisymmetric and symmetric generalizations of the finite Fourier transform.
In particular, we consider antisymmetric and symmetric multivariate finite Fourier transforms,
discrete sine and cosine transforms, and antisymmetric and symmetric multivariate discrete sine
and cosine transforms.

11.1 Finite Fourier transform
Let us fix a positive integer N and consider the numbers

emn := N~'/% exp(2rimn/N), m,n=1,2,...,N. (11.1)

The matrix (emn)ﬁm:l is unitary, that is,
Z Emkenk = Omn, Z €kmCkn = Omn- (112)
k k

Indeed, according to the formula for a sum of a geometric progression we have
tr ot T = (L) (=), £,
i R i t=1.

Setting t = exp(27i(m —n)/N), a=1and r = N — 1, we prove (11.2).
Let f(n) be a function of n € {1,2,..., N}. We may consider the transform

N N
> " f(n)emn = N"V2> " f(n) exp(2rimn/N) = f(m). (11.3)
n=1

n=1

Then due to unitarity of the matrix (emy) we express f(n) as a linear combination of

conjugates of the functions (11.1):

N
m,n=11

N
f(n) = N2> " f(m) exp(—2rimn/N). (11.4)
m=1

The function f (m) is a finite Fourier transform of f(n). This transform is a linear map. The
formula (11.4) gives an inverse transform. The Plancherel formula

N ~ N
Yo Fm)P =" 1f )P
m=1 n=1

holds for transforms (11.3) and (11.4). This means that the finite Fourier transform preserves
the norm introduced in the space of functions on {1,2,..., N}.

The finite Fourier transform on the r-dimensional linear space F, is defined similarly. We
again fix a positive integer N. Let m = (mj,ma,...,m,) be an r-tuple of integers such that
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each m,; runs over the integers 1,2,..., N. Then the finite Fourier transform on E, is given by
the kernel

— o —r/2 .
€mn = €mini €maony * * * Emym, = N / exp(2rim - n/N),

where m - n = myn;+maong+- - -+myn,. If F(m) is a function of r-tuples m, m; € {1,2,..., N},
then the finite Fourier transform of F' is given by

F(n) = N""/? Z F(m)exp(2mim - n/N).

The inverse transform is

F(m) = N2 " F(n) exp(—27im - n/N).

The corresponding Plancherel formula is of the form 3 |F(m)|? = 3 |F(n)|?.

n

11.2 W-invariant lattices

In order to determine an analogue of the finite Fourier transform, based on antisymmetric orbit
functions, we need an analogue of the set

{m={mqy,mo,...,mu} | m; € {1,2,...,N}},

used for multidimensional finite Fourier transform. Such a set has to be invariant with respect
to the Weyl group W (see [21]).

We know that QV is a discrete W-invariant subset of E,. Clearly, the set %Qv is also
W-invariant, where m is a fixed positive integer. Then the set

T = %QV/QV

is finite and W-invariant. If aq, s, ..., is the set of simple root for the Weyl group W, then
T, can be identified with the set of elements

l
m 'y ey,  d;=0,1,2,...,m—1. (11.5)
=1

We select from T, the set of elements which belongs to the fundamental domain F. These
elements lie in the collection %Qv NF.

Let u € %Qv NF be an element determining an element of T},, and let M be the least positive
integer such that My € PV. Then there exists the least positive integer N such that Nu € QV.
One has M|N and N|m.

The collection of points of T, which belong to F' (we denote the set of these points by Fs)
coincides with the set of elements

S51 S1 y 2wy
—_ — L] —_— , . — 77 11'6
§ = ¥ + et T w; (o, o) (11.6)
where s1, s9, ..., s runs over values from {0,1,2,...} and satisfy the following condition: there

exists a non-negative integer sg such that

l
30+Zsimi =M, (11.7)
=1
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where my, mg, ..., m; are positive integers from formula (2.8). Values of m,; for all simple Lie
algebras can be found in Subsection 2.4.
Indeed, the fundamental domain consists of all points y from the dominant Weyl chamber for

!
which (y,£) < 1, where £ is the highest (long) root, £ = > m;aq;. Since for elements s of (11.6)
i=1
one has s;/M > 0 and

(s,&) = ]\14;5177% = %(M —50) <1,

then s € F. The converse reasoning shows that points of %QV N F must be of the form (11.6).

To every positive integer M there corresponds the grid Fj; of points (11.6) in F which
corresponds to some set T), such that M|m. The precise relation between M and n can be
defined by the grid Fys (see [21]). Acting upon the grid Fjs by elements of the Weyl group W
we obtain the whole set T,,.

Since antisymmetric orbit functions vanish on the boundary of a fundamental domain F', it
make sense to consider also a subgrid F), consisting of all points of F}; which do not lie on
a wall of F.

Example. Grids Fy; for A1. We take into account results of Example in Subsection 4.1. For A;
we have w" = w = «/2, where « is the simple root. Elements of Py coincide with mw, m € Z.
Fixing M € Z, we have

Fy = {s = 1, where so+s1 =M for sg,s1 € ZZO}.
Therefore,
_ 12 M—1
FM_{()’M’M”""T’l}'

11.3 Grids Fjs for A,, Cs> and G2

In this section we give some examples of grids Fys for the rank two cases (see [14] and [15]).
Since the long root £ of A, is representable in the form & = a1 + a9, where a; and as are simple
roots, that is, m; = mg =1 (see formula (11.7)), then

Fr(Ag) = {3hwi + 32wa; so+s1+ 52 =M, s0,51,82 € ZZO}-

It is seen from here that the vertices 0, w1, ws of the fundamental domain F(A3) belong to each
grid Fjs(Ag). A direct computation shows that in the w-coordinates we have

FQ(AZ):{(O’O)a 7 7 071)’(% )7( ) (%’%)}’
Fy(A2) = {(0,0), (1,0),(0:1), (5,0), (0.3), (5,0), (0.5). (5:5)- (5:3). (5:5) } -
In F»(As), only the point (%, %) does not belong to a wall of the fundamental domain F(As).

In F5(As), three points (3, 3) (%, é), (3, 3) do not belong to a wall of F/(As).

The set F; (As) consists of the points

F5 (A2) = {(5:5). (5:5): (5:5). (5:3): (5:5): (5:5) } -

Since the long root & of (s is representable in the form & = 21 + a9, where a; and as are
simple roots, that is, m; = 2, mg = 1, then

)

>0
{Mwl Mw2,80+251+82 M, 50,81,8262—}.
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A direct computation shows that in the w"-coordinates we have
F3(C2) = {(0,0),(0,1), (3,0), (0,3) },
F3(02> {(0,0),(0,1), (5,0), (0:5), (0:3), (5.3) }
Fr(Gy) = {(7’7) (% %) (7’7) (% %)’(%v%)’ %»%)}

Since the long root £ of G5 is representable in the form & = 2a; + 3aw, where a; and as are
simple roots, that is, mq = 2, mo = 3, then

v (Ga) = {sﬂlwi/ + Sﬁw;;So 4+ 281+ 3s9 = M, sp,581,82 € ZZO}.

A computation shows that in the w"-coordinates we have

F5(G2) ={(0,0),(1,0)},

F3(G2) = {(0,0), (0,%), (3,0) } ,

Fy(Ga) = Fa(G2) U{(3,0),(0,%)},

F5(G2) = {(0,0), (0, 3), (5.0). (5.5). (3.0)}.

Fy(Ga) = Fi(G2) U{(5.0). (0,5). (5.5) (1-8) }

Fry(Go) ={(7.11): (1) (31 7) (i 11)> (3 10) - (3: 7).

11.4 Expanding in antisymmetric orbit functions through finite sets

Let us give an analogue of the finite Fourier transform when instead of exponential functions we

use antisymmetric orbit functions. This analogue is not so simple as finite Fourier transform.

For this reason, we consider some weak form of the transform. In fact, we consider this weak

form in order to be able to recover (at least approximately) the decomposition f(z) = > axex(x)
A

by values of f(z) on a finite set of points.

Considering the finite Fourier transform in Section 11.1, we have restricted the exponential
function to a discrete set. Similarly, in order to determine a finite transform, based on anti-
symmetric orbit functions, we have to restrict orbit functions ¢, (z) to appropriate finite sets of
values of . Candidates for such finite sets are sets T},,. However, antisymmetric orbit functions
@x(x) with integral \ are invariant with respect to the affine Weyl group W2, For this reason,
we consider orbit functions ¢y (x) on grids Fiy.

On the other side, we also have to choose a finite number of antisymmetric orbit functions,
that is, a finite number of integral strictly dominant elements A. The best choice is when
a number of orbit functions coincides with |Fys|. These antisymmetric orbit functions must be
selected in such a way that the matrix

(0x:(25)) \ e, Far (11.8)

(where Q is our finite set of strictly dominant elements \) is not singular. In order to have non-
singularity of this matrix some conditions must be satisfied. In general, they are not known.
For this reason, we consider some, more weak, form of the transform (when || > |Fy/|) and
then explain how the set |2 of A € P} can be chosen in such a way that |Q| = |Fa|.

Let O(\) and O(u) be two different W-orbits for integral strictly dominant elements A and p.
We say that the group 7T, separates O(\) and O(u) if for any two elements A\; € O(\) and
p1 € O(p) there exists an element x € 1), such that exp(27i(\1,x)) # exp(2mi(u1, z)) (we use
here orbits, not signed orbits, since signs of points are not important for this reasoning). Note
that A may coincide with u.



60 A. Klimyk and J. Patera

Let f; and f2 be two functions on F,, which are finite linear combinations of orbit functions.
We introduce a T;,-scalar product for them by the formula

(fr. )1 = Y fi(@) fa().

:EETm
Then the following proposition is true (see [21] and [31]):

Proposition 17. If T, separates the orbits O(X) and O(u), A\, u € ij, then
(x, )T, =M™ [W|Sxp- (11.9)

Proof. We have

(@x, Pu) T, = Z Z Z (det w)(det w') exp(2mi{wA — w'p, )

€Ty, weW w'eWw

= Z Z (det ww") (Z exp(2mi{wA — u/u,x})) .

weW w'eWw €T,

Since T,,, separates O(A) and O(u), then none of the differences wA —w'p in the last sum vanishes
on T,,. Since T}, is a group, one has

Z exp(2mi{wA — w'p, T)) = M Fyp w -
€T

Therefore, (¢x, ou)1,, = M"|W|d),. Proposition is proved. [

Let f be an anti-invariant (with respect to W2T) function on E, which is a finite linear
combination of antisymmetric orbit functions:

fl@)y= )" ax e (). (11.10)

/\j EPI

Our aim is to determine f(x) by its values on a finite subset of E,,, namely, on T),.

We suppose that T}, separate orbits O();) with \; from the right hand side of (11.10). Then
taking the T,-scalar product of both sides of (11.10) with ¢, and using the relation (11.9) we
obtain

ax, = M" W)~ (f, 05,07,

Let now sV, s@ ... s be all elements of F N %Qv, which do not lie on some wall of Weyl
chambers. Then

h

ax, = m WY f@)on @) = m" 3 (D )on, (50). (11.11)

€T, i=1

Thus, the finite number of values f(s(i)), i=1,2,...,h, of the function f(x) determines the
coefficients ay, and, therefore, determines the function f(x) on the whole space Ej.

This means that we can reconstruct a W2-anti-invariant function f(z) on the whole space E,,
by its values on the finite set Fj; under an appropriate value of M. Namely, we have to
expand this function, taken on Fjy, into the series (11.10) by means of the coefficients a,,
determined by formula (11.11), and then to continue analytically the expansion (11.10) to the
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whole fundamental domain F' (and, therefore, to the whole space E,), that is, to consider the
decomposition (11.10) for all x € E,.

We have assumed that the function f(x) is a finite linear combination of orbit functions.
If f(x) expands into infinite sum of orbit functions, then for applying the above procedure we
have to approximate the function f(x) by taking a finite number of terms in this infinite sum
and then apply the procedure. That is, in this case we obtain an approximate expression of the
function f(z) by using a finite number of its values.

At last, we explain how to choose a set € in formula (11.8). The set Fjs consists of the
points (11.6). This set determines the set of points

A= S1wy + Sows + -+ - + Spwp,

where s1, S92, ..., S, run over the same values as for the set Fj;. The subset of this set, consisting
of strictly dominant elements, can be taken as the set  (see [31]).

11.5 Antisymmetric and symmetric multivariate discrete Fourier transforms

The discrete Fourier transform of Subsection 11.1 can be generalized to the n-dimensional case
in a symmetric or antisymmetric form without using the results of Subsection 11.4.
We take the discrete exponential function (11.1),

em(s) = N_I/Qexp(ZWims), SEFNE{%,%,...,%J}, m e 779,

and make a multivariate discrete exponential function taking a product of n copies of func-
tions (11.1):

EXPm(S) := €em, (51)emy(52) - - €m,, (Sn) (11.12)
= N2 exp(2mimy s1) exp(2mimasy) - - - exp(2mimpsy),  s; € Fy, m; € 220,

where s = (s1,82,...,8,) and m = (m1,ma,...,m,). Now we take these multivariate functions
for integers m; such that m; > mo > --- > m, > 0 and make an antisymmetrization. As
a result, we obtain a finite version of the antisymmetric orbit function (4.14):

em(s) = | Sn| 72 det(em, (5))1 1, (11.13)

where |Sy,| is the order of the symmetric group S,,.
The n-tuples s in (11.13) runs over Fy = Fiy x --- x Fx (n times). We denote by F} the
subset of F'y; consisting of s € Fi; such that

81> 89 > > 8p.

Note that acting by the permutations w € S,, upon F]\L[ we obtain the whole set F; without
those points which are invariant under some nontrivial permutation w € S,,. Clearly, the
function (11.13) vanishes on the last points.

Since the discrete exponential functions e, (s) satisfy the equality e, (s) = em+n(s), we do not
need to consider them for all values m € Z=Y. It is enough to consider them for m € {1,2,..., N}.
By D}, we denote the set of integer n-tuples m = (my,ma, ..., m;) such that

N>mi>mo>--->m, > 0.

We need a scalar product in the space of linear combinations of the functions (11.12). It can
be given by the formula
n n
(EXPpm(s), EXPry(s)) = [ [(emi (si)semr (s0)) =[] D emi(si)em(5:) = Ommy, (11.14)
=1 i=1s; EFN
mi,m; € {1,2,..., N},

where we used the relation (11.2).
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Proposition 18. For m,m’ € DJ'G the discrete functions (11.13) satisfy the orthogonality rela-
tion

(em(s), e (s)) = [Sul Y em(s)em(s) = S, (11.15)

SEF

where the scalar product is determined by formula (11.14).

Proof. Since m; > mg > --- > m, > 0, then due to the definition of the scalar product we
have
<€m(s)7em/(S)> = Z em(s)em/(s)
seEFy

= |Sn’_1 Z ﬁ Z emw(i)(si)em;}m(si) = mm’; (11'16)

wESy i=1 S, €EFN

where (1m,(1), Map(2), - - - ,mw(n)) is obtained from (my,ma, ..., m,) by action by the permutation
w € Sy,. Since functions ey, (s) are antisymmetric with respect to Sy, then

> em(s)em (s) = [Sal D em(s)em (s),
SEFy SGF‘]\L,

where we have taken into account that em(s) vanishes on those s € F} for which there exists
w € Sy, w# 1, such that ws = s. This proves the proposition. |

Let f be a function on FJ’\} (or an antisymmetric function on F). Then it can be expanded
in the functions (11.13) as

f(8)= ) amem(s). (11.17)
meD;\r]
The coefficients ay, are determined by the formula
am = [Su| D f(s)em(s). (11.18)
meﬁ'ﬁ

The expansions (11.17) and (11.18) follow from the facts that numbers of elements in DY, and
in F7 are the same, and that the matrix

(em(s))meDj\',,seF](,

is unitary. We call expansions (11.17) and (11.18) antisymmetric multivariate discrete Fourier
transforms.

Let us also give a symmetric multivariate discrete Fourier transforms. For this we take the
multivariate exponential functions (11.12) for integers m; such that

N>2myZ>2mg2>---2>2my >1

and make a symmetrization. We obtain a finite version of the symmetric orbit function (6.11)
in [1] for the case A:

Fun(s) 1= Sl /et (em, ()21 += 1Sul 72 37 T  ma () (11.19)

wESy i=1



Antisymmetric Orbit Functions 63

The n-tuples s in (11.19) run over F{ = Fy x --- x Fy (n times). We denote by F% the
subset of Iy, consisting of s € F; such that

8§12 822 2 Sp.

Note that acting by the permutations w € .S,, upon F’]\} we obtain the whole set F};, where each
point, having some coordinates m; coinciding, is repeated several times. Namely, a point s is
contained |Ss| times in {wF%;w € S,}, where Ss is the subgroup of S, consisting of elements
w € S, such that ws = s. The number |Ss| is called a multiplicity of the point s in the set
{(wFZ;w € Sy}

By ZU)JJ\F, we denote the set of integer n-tuples m = (mq, mo, ..., m,) such that

N>my>mg>--->my, > 1.
Proposition 19. For m,m’ € DE the discrete functions (11.19) satisfy the orthogonality rela-
tion
(Em(s), E = 1Sul > 1557 Eun(s) B (5) = S| Sram- (11.20)
seFl(ﬁI

Proof. This proposition is proved in the same way as Proposition 18, but we have to take into
account a difference between F}; and F};. Due to the definition of the scalar product we have

(Bm(s), Em(s)) = ) Em(s)Em(s)

SEFY

= ‘S ‘ 1|Sm’ Z H Z emw@) Sz m/ (Sz)

wESy 1=1s;,EFN
= |Sm|6mm/7

where (1m.,(1), Ma(2), - - - ,mw(n)) is obtained from (my, ma, ..., m,) by action by the permutation
w € Sy,. Here we have taken into account that additional summands appear (with respect to
(11.16)) because some summands on the right hand side of (11.19) may coincide.

Since functions Em(s) are symmetric with respect to S, then

3" Em(s = 1Sul Y 1957 Em(8) B (5),

sEFy sekp

where we have taken into account that under action by S,, upon F']\‘, a point s appears |Sg| times
in F;. This proves the proposition. |

Let f be a function on FZ"\} (or a symmetric function on F§;). Then it can be expanded in
functions (11.19) as

= > amPBm(s). (11.21)
meD}

The coefficients ay, are determined by the formula
am = [Sn[Sm|™" Y [Ss| 7 £(5)Er(s)- (11.22)
meﬁﬁ,

The expansions (11.21) and (11.22) follow from the facts that numbers of elements in D;\r,
and in F '\ are the same and from the orhogonality relation (11.20). We call expansions (11.21)
and (11.22) symmetric multivariate discrete Fourier transforms.
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11.6 Discrete sine and cosine transforms

The grid F)s for A; is of the form
Fy(A) ={0,47. &,..., M2 1}, (11.23)

The points 0 and 1 belong to the boundary of the fundamental domain F(A;) of Waf(4,).
Therefore, antisymmetric orbit functions of A; vanish on these points and

F]\_/[(Al):{ﬁ,%,...,%} (M — 1 points)

(see Subsection 11.2). Since the antisymmetric orbit functions for A; are of the form ¢)(z) =
2isin(mm#@) (see Example of Subsection 4.1), these functions on the grid F); are given by

©m(s) = 2isin(mms), seFy, melZ>. (11.24)

Since pim(s) = em+nm(s), we consider these discrete functions only for m € Dy, := {1,2,...,
M — 1}. The orthogonality relation for these functions is of the form

<§0m7 @m’) = Z @m(s)(ﬁm’(s) = 2M 6y m,m' €Dy
sEF,,

(see [22]). They determine the following expansion of functions, given on the grid F;:

M—1
F(8) =" amem(s), (11.25)
m=1
where the coefficients a,, are given by
1 -
Um = 57 Z f(8)pm(s). (11.26)
sEF,,

Formulas (11.25) and (11.26) determine the discrete sine transform.
The symmetric orbit functions for A; are of the form ¢y)(x) = 2cos(mm#). Then these
functions on the grid Fjs(A;) are

Om(s) = 2cos(mms), se€Fy, me{0,1,2,...,M}. (11.27)

The scalar product of these functions is given by

<¢m>¢m’> = Z Cs¢m(3)¢m’(5) = rmM(SmmH (11.28)

seFy

where r,,, = 4 for m = 0, M and r,, = 2 otherwise, ¢, = 1/2 for s = 0,1 and ¢5 = 1 otherwise.
The functions ¢,,, given by (11.27), determine an expansion of functions on the grid Fy; as

M
F(8) = bmdm(s),  s€ Fu, (11.29)
m=0

where the coefficients b,, are given by

b =1, Z cs f(8)Pm(s). (11.30)

sEF

Formulas (11.29) and (11.30) determine the discrete cosine transform.
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11.7 Antisymmetric multivariate discrete sine transforms

The discrete sine and cosine transforms of the previous subsection can be generalized to the
n-dimensional case in symmetric or antisymmetric form. In fact, these generalizations are finite
antisymmetric orbit function transforms (11.10) and (11.11) for multivariate sine transforms
and finite symmetric orbit function transforms (9.11) and (9.12) in [1] for multivariate cosine
transforms. However, we give in this subsection a derivation of these multivariate sine and cosine
transforms, independent of the previous consideration. We need only the 1-dimensional discrete
sine and cosine transforms of the previous subsection.

We take the discrete sine function (11.24) and make a multivariate discrete sine function by
multiplying n copies of functions (11.24):

SINm (s) := (21)" sin(7mmqs1) sin(wmess) - - - sin(wmy, sy, ), (11.31)
SjGFMEFM(Al), miGDME{l,Q,...,N—l},

where s = (s1,82,...,8,) and m = (m1,ma,...,m,). Now we take these multivariate functions
for integers m; such that M > my > mg > -+ > m, > 0 and make antisymmetrization. As a
result, we obtain a finite version of the orbit function (4.19):

em(s) = (20)"]Sn|~1/? det(sin wmgs; )y, (11.32)

where |S,,| is the order of the symmetric group |S,|. (We have here expressions sin7m;s;, not
sin 27rm;s; as in (4.19). Note that in (4.17) m;, 4 = 1,2, ..., n, run over integers and half-integers,
whereas in (11.32) m; run over integers. Thus, in fact we have replaced 2m; with half-integer
values of m; by m; with integer values of m;.)

The n-tuple s in (11.32) runs over Fy;(A1)" = Fy;(A1) x--- x F;(A1) (n times). We denote
by FATZ, the subset of F',;(A1)" consisting of s € F;;(A1)" such that

§1 >89 > > Sp.

Note that s; here may take the values ﬁ, %, el % Acting by permutations w € S,, upon FA’}[

we obtain the whole set F);(A1)" without those points which are invariant under some nontrivial
permutation w € S,. Clearly, the function (11.32) vanishes on the last points.
We denote by Dj\% the set of integer n-tuples m = (mq,ma, ..., my) such that

M>mq1>mg>--->m, >0.

We wish to have a scalar product of functions (11.32). For this we define a scalar product of
functions (11.31) as

n

(STNm(s). SNy (5)) = [ {2, (52, m (50))-

i=1

where the scalar product (pm,(si), Pm:(si)) is given in Subsection 11.6. Since functions ¢m(s)
are linear combinations of functions SINy,/(s), a scalar product for ¢ (s) is also defined.

Proposition 20. For m,m’ € Dy, the discrete functions (11.32) satisfy the orthogonality
relation

(Pm(s), prr(s)) = Pm(3)Pm(S) = Sn] D Om(8)Pm(8) = (2M) " dpp . (11.33)
s€ly (A" scFy,
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Proof. Since M > m; > mg > --- > m, > 0, then due to the orthogonality relation for the
sine functions 2isin(7wms) (see the previous subsection) we have

n M-1
Z ©m(8)om (8) = 4" S, |7} Z H Z SIN (714 (5)57) sin(mmy, @)Si) = (2M)"dmn,
SGFA_/[(Al) weSy 1=1 s;=1

where (m(1), Map(2)s - - - s Muy(n)) 18 Obtained from (m1,ma, ..., m,) by action by the permutation
w € Sp. Since functions ¢m(s) are antisymmetric with respect to S, we have

> em(8)om () =[Sl Y om(s)Pm(s).
SEF (A1) scFn,
This proves the proposition. |

Let f be a function on FF, (or an antisymmetric function on F,;(A1)"). Then it can be
expanded in functions (11.32) as

> am@m(s), (11.34)

mGD]tI

where the coefficients ay, are determined by the formula

am = (2M)7"1Su| Y f(8)ml(s). (11.35)
meﬁ‘z’c{
A validity of the expansions (11.34) and (11.35) follows from the facts that numbers of
elements in D}, and in FJ, are the same and from the orthogonality relation (11.33).

11.8 Symmetric multivariate discrete cosine transforms

We take the discrete cosine functions (11.27) and make multivariate discrete cosine functions by
multiplying n copies of these functions:

COSm(8) := Py (51)Pmy (52) -+ - Gy, (Sn) = 2™ cos(mmys1) cos(mmass) - - - cOS(TMy Sy ),
S EFMEFM(Al), m; € {0,1,2,...,M}. (11.36)

We take these functions for integers m,; such that M > my > mg > --- > m, > 0 and make
a symmetrization. As a result, we obtain a finite version of the orbit function (4.24):

Pm(s) := 27| S,|71/? Z COS TMMyy(1)51 * COS MNMyy(2)52 * * * COS TNy (1) S (11.37)
wWE Sy

(We have here expressions cos mm;s;, not cos 2mmy;s; as in (4.24).)
The n-tuple s in (11.37) runs over Fy; = Fy(A1)". We denote by F}; the subset of F};
consisting of s € F; such that

§1 2> 89 2+ 2 Sp.

Note that s; here may take the values 0, -, 2 %, 1. Acting by permutations w € S,

S Mo M >
upon I}, we obtain the whole set I}, where points, invariant under some nontrivial permutation
w € S, are repeated several times. It is easy to see that a point sy € Fy; is repeated |Ss,| times
in the set {wF};; w € Sy}, where |Sg,| is an order of the subgroup Ss, C S, whose elements

leaves sp invariant.
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We denote by lv)}& the set of integer n-tuples m = (my, ma, ..., my) such that
M>mi=>mg>--->my > 0.
A scalar product of functions (11.36) is determined by
(COSm(s), COSm () = [ [ (@m. (51), by (52)),
i=1

where the scalar product (¢, (si), ¢ (s:)) is given by (11.28). Since functions ¢m(s) are linear
combinations of functions COSyy (s), then a scalar product for ¢m(s) is also defined.

Proposition 21. For m,m’ € Df , the discrete functions (11.37) satisfy the orthogonality
relation

<¢m(s)7¢m’(s)> = Z CS¢m(S)¢m/(S) = |Sn| Z |Ss|_1cs¢m(s)¢m’(s)

SEFy; sein

n
= M"rm|Sm|dmm’, (11.38)
where ¢s = C5,Csy -+ Cspyy T's = T'myTmg = ** Ty, aNd Cs; and T, are such as in (11.28).

Proof. Due to the orthogonality relation for the cosine functions ¢,,(s) = 2cos(mms) (see
formula (11.28)) we have

n M
Y csbm(s)bm(s) = 471Sal 7 [Sml D T] D s cos(mmugysi) cos(mm, g 5:)

SEFJKZ‘[ weS, i=1s;=0
= |Sm|M" rmOmm’, (11.39)
where (1), Map(2)s - - - s Mup(n)) 18 obtained from (mq,ma, ..., m,) by action by the permutation

w € Sy,. Since functions ¢my,(s) are symmetric with respect to S, we have

> cstm()m(s) = [Sul Y 1Ss| 7 csbm(S) frn (5).
s€Fy(A1)" scFr,

This proves the proposition. |

Let f be a function on FA’} (or an antisymmetric function on F};). Then it can be expanded
in functions (11.37) as

f(S) = Z am¢m(s)a (11.40)
meD],

where the coefficients ay, are determined by the formula

am = Min’Sm|717'r7nl<f(S)7 ¢m(s)>
= M 7" Sm| "t 190 D 1Ssl T e f(S)m(s)- (11.41)

SEF—XL{

A validity of the expansions (11.40) and (11.41) follows from the fact that numbers of elements
in Dy, and F7, are the same and from the orthogonality relation (11.38).
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11.9 Other discrete cosine transforms

Along with the discrete cosine transform of Subsection 11.6 there are other discrete transforms
with the discrete cosine function as a kernel. In [34] the discrete cosine transforms are called as
DCT-1, DCT-2, DCT-3, DCT-4. The transform DCT-1 is in fact the transform, considered in
Subsection 11.6. Let us describe all these transforms (including the transform DCT-1). They
are determined by a positive integer N.

DCT-1. This transform is given by the kernel

wrk
(k) = —_— 11.42
pr (k) = cos — ( )

(we preserve the notation used in the literature on signal processing), where
k,re{0,1,2,...,N}. (11.43)

The orthogonality relation for these discrete functions is given by

N
mrk mr'k N
kzo Cj, COS N cos N = hTE&T/, (11.44)

where ¢, = 1/2 for k = 0, N and ¢ = 1 otherwise, h, = 2 for r = 0, N and h, = 1 otherwise.
Thus, these functions give the expansion

N N
mrk 2 mrk
f(k) = TE_O ar COS —, where a, = N kE_O ek f (k) cos N (11.45)
DCT-2. This transform is given by the kernel
1
5)k
wy(k) = cos W(Tj\_rQ), (11.46)

where
k,re€{0,1,2,...,N —1}.

The orthogonality relation for these discrete functions is given by

N-1 1 ry 1
Dk Dk N
E cp, COS m(r+3) cos (' +3) = —0pp, (11.47)
prrd N 2

where ¢ = 1/2 for k = 0 and ¢ = 1 otherwise.
These functions determine the expansion

N-1 o N-1
f(k) = ;) arwy(k), where ar = o ;::0 exf(k)wr (k). (11.48)

DCT-3. This transform is determined by the kernel

L+ 1
o, (k) = cos W(NJ”) (11.49)
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where k and r run over the values {0,1,2,..., N — 1}. The orthogonality relation for these
discrete functions is given by the formula

N-1 1 / 1
mr(k + 3) mr'(k+ 3) N
,;_0 cos N 22 cos N 27 — hTE(SM/, (11.50)

where hy = 2 for K = 0 and hy = 1 otherwise.
These functions give the expansion

N-1 1 N-1 1
mr(k +35) 2 nr(k +3)
= Z @y COS ———=, where a, = N f(k) cos (11.51)
r=0 k=0
DCT-4. This transform is given by the kernel
e+ 1
(k) = cos m(r + p)(k+ 5) (11.52)

N i

where k and r run over the values {0,1,2,..., N — 1}. The orthogonality relation for these
discrete functions is given by

Z cos )(k * ) cos m(r + %\)[(k i %) = g(srr" (11.53)

These functions determine the expansion

N-1
m(r+3)(k+3)
Tz:o a, cos N , (11.54)

2 m(r+ 3k +3)
ar:—Zf(k)cos QN 2

Note that there also exist four discrete sine transforms, corresponding to the above discrete
cosine transforms. They are obtained from the cosine transforms by replacing in (11.45), (11.48),
(11.51) and (11.54) cosines discrete functions by sine discrete functions (see [12] and [35]).

11.10 Other antisymmetric multivariate discrete cosine transforms

Each of the discrete cosine transforms DCT-1, DCT-2, DCT-3, DCT-4 generates the corres-
ponding antisymmetric multivariate discrete cosine transforms. We call these transforms as
AMDCT-1, AMDCT-2, AMDCT-3 and AMDCT-4. Let us give these transforms without proof.
Their proofs are the same as in the case of antisymmetric multivariate discrete cosine transforms
of Subsection 11.7. Below we use the notation D?V’_ for the subset of the set D}, = Dy x Dy x

-+ X Dy (n times) with Dy = {0,1,2,..., N} consisting of points r = (r1,7r2,...,7,), r; € Dy,
such that

N>ri>rg>--->r, > 0.
AMDCT-1. This transform is given by the kernel

My (k) = S| /2 det (s, (k)7 (11.55)

i,j=1"
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where p, (k) = cos ”—]’\"f and k = (k1,ko,... k), k; € {0,1,2,..., N}. The orthogonality relation
for these kernels is

N n
(Me(), My (k) = S| 3 cxcMir (k) My (K) = <2> 5enr (11.56)
keDy ™
where
Ck = C1C9 "+ Cp, hx = hihg -+ hy,

and ¢; and h; are such as in formula (11.44).
This transform is given by the formula

2 n
f(k) = Z ar My (k), where Qr = hr_1|5n| <N> Z e f(k)Me(k). (11.57)
reDy” keDy ™
The Plancherel formula for this transform is
2 N\" 2
50 Y alfP=(5) X el
keDy ™ reDy”

AMDCT-2. We use the subset Dy of the set D},_; with Dy_q = {0,1,2,...,N — 1}
consisting of points r = (r1,7r2,...,7,), i € Dy_1, such that

N—-1>ri1>r9>--->r, >0.
This transform is given by the kernel

(k) = [Sn|1/2 det (wr, (k))} 5y » (11.58)

1
where w, (k) = cos W(TEQM and k = (k1,ko,...,kn), ki €{0,1,2,..., N — 1}. The orthogonality
relation for these kernels is

(90:(6), Q0 (1)) =[S0 S ckszr<k>ar,<k>=<N) S (11.59)

- 2
keDy ",

where cx = cjca -+ ¢, and ¢; are such as in formula (11.47).
This transform is given by the formula

2 n
fk) = Z arQr(k), where  ay = |Sy| <N) Z o f (k)2 (k). (11.60)
reDyT, keDY ™,
The Plancherel formula for this transform is of the form

2 N\" 2

500X aditol=(5) X b

keDy ", reDy”,
AMDCT-3. This transform is given by the kernel

r(k) = |Sa| 71 det (o, (Ky))}

ij=1> rc DK[’:I, k‘j € Dn_1, (11.61)
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1
where o, (k) = cos w The orthogonality relation for these kernels is

(Se9), 1) = S S ST () = (g)a (11.62)
keD% ™,

where hy = hihy - - hy and h; are such as in formula (11.50).
This transform is given by the formula

f00= Y aSek),  where ax=h;lS,] <;)n S %K), (11.63)

reDyT, keDY~,
The Plancherel formula is of the form
N n
500X 1w =(5) Xt
keDy—, reDy",
AMDCT-4. This transform is given by the kernel

Te(k) = |Su| "/ det (7, (k)i .y, v €Dy, kj € Dy, (11.64)

7r(k+%)(7"+%)
N

where 7, (k) = cos . The orthogonality relation for these kernels is

(1), Tw(l)) =[S0 3 Tr<k>Tr/<k>=(N> b (11.65)

2
keDy ",

This transform is given by the formula

f) = Y al(k),  where ar:|sn|<]2v) Y FRTK). (11.66)

n,— n,—
reDN—l kEDN—l

The Plancherel formula for this transform is

s W0k =(5) X el

n,— n,—
keDy reDy—,

11.11 Other symmetric multivariate discrete cosine transforms

To each of the discrete cosine transforms DCT-1, DCT-2, DCT-3, DCT-4 there corresponds
a symmetric multivariate discrete cosine transform. We denote the corresponding transforms as
SMDCT-1, SMDCT-2, SMDCT-3, SMDCT-4. Below we give these transforms without proof
(proofs are the same as in the case of symmetric multivariate discrete cosine transforms of
Subsection 11.8). We fix a positive integer N and use the notation DK,”L for the subset of
the set D% = Dy X Dy x --- x Dy (n times) with Dy = {0,1,2,..., N} consisting of points
r=(ry,r2,...,mn), 7 € ZZ° such that

N>rp>2rg>--- 21y, >0.

The set Dz’+ is an extension of the set Dy~ from the previous subsection by adding points
which are invariant with respect of some elements of the permutation group .5,.
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The set D is obtained by action by elements of the group S, upon Dt that is, D7, coin-
cides with the set {wDX,’Jr; w € S, }. However, in {wDX,’JF; w € S, }, some points occur several
times. Namely, a point kg € Dy occurs |Sy,| times in the set {wDy";w € S,,}, where |Sy,| is
an order of the subgroup Sk, C S, consisting of elements w € §,, leaving k¢ invariant.

SMDCT-1. This transform is given by the kernel

Mr(k) = ’Sn‘il/Z Z NTwa)(kl)MTw(g)(k?) T :U’Tw(n)(kn)v (11'67)

where, as before, u,(k) = cos%k is the discrete cosine function from Subsection 11.9, k =

(k1, ko, ..., kn), ki €40,1,2,..., N}, and the set (w(1),w(2),...,w(n)) is obtained from the set
(1,2,...,n) by applying the permutation w € S,,. The orthogonality relation for these kernels

1S

. . . . N\"
(100 31000) = [8,] 3 1Skl e (0300 = e (% ) 5o (1168
keDyt

where S; is the subgroup of S, consisting of elements leaving r invariant,
Ck = C1C2 "+ Cp, hx = hihg - - hy,

and ¢; and h; are such as in formula (11.44).
This transform is given by the formula

n,+
reDy

where

ar = K15 ~1]S] (12v) S 1kl e () N (k).

+
keDyy

The Plancherel formula for this transform is

N n
S0 Y I tadf Wl = (5) 3 sl

keDyt reDyt

This transform is in fact a variation of the symmetric multivariate discrete cosine transforms
from Subsection 11.8.

SMDCT-2. This transform is given by the kernel

Qe (k) = [Sul ™2~ wry ) (k) wry ) (B2) - w1 (), (11.70)

wESy
rEDXf’fla rj € Dy-1={0,1,2,...,N — 1},

1
where w, (k) = cos W(TEQ)’C and k = (k1,ko,...,kn), ki € {0,1,2,..., N — 1}. The orthogonality

relation for these kernels is

(009, 000) =15, Y 150190009 = (5 ) 15105 (L)

n,+ 2
keDy ",
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where DJ"V’J:I is the set D?V’Jr with N replaced by N — 1, ¢x = cic2-- ¢, and ¢; are such as

in (11.47).
This transform is given by the formula

f(k) = Z arQr(k)a
reD]T\L,‘irl
where

S (2\" _ A
I E Y G I SR CARNTIS LA )
keDut
The Plancherel formula for this transform is of the form
—1 2 N " 2
S0 % I8 adfP = (5) X sl
keDut, reDY T

SMDCT-3. This transform is given by the kernel

21‘(1{) = \Sn\fl/z Z Oruw) (kl)arw(z) (k2)--- Orw(n) (kn),
’UJES’n

n,+
I‘GDNil, T € Dy_1,

1
where o, (k) = cos w The orthogonality relation for these kernels is

N . 1 - N\"
(£09,£009) =[5 3 1550005000 = e (3 ) [85le
keDyt,

where hy = hihy---h, and h; are such as in formula (11.50).
This transform is given by the formula

fk) = Z arir(k)v

reDg’fl
where
2\" .
=I5 (5) X IS 00500,
keD T,
The Plancherel formula is of the form
N n
5005 15 0E = (5) 5 melsilonl
keDut reDyt)
SMDCT-4. This transform is given by the kernel

Tl‘(k) = |STL|_1/2 Z Tryu1) (kl)TT1U(2) (kQ) © Try ) (kn)a

UJESTL

n,+
rEDN—l’ Tj € Dn_1,

(11.72)

(11.73)

(11.74)

(11.75)

(11.76)
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1 1
where 7, (k) = cos % The orthogonality relation for these kernels is
. . NP N\™
(), T () = 15, 32 1Skl 0T () = (5 ) [Selde (11.77)

keDut
This transform is given by the formula

fK)= > aTlk), (11.78)
rEDX,’iLl
where
2\" _ B .
%=<N>|&|WM > 1S F(R) T (K).
keDyt,
The Plancherel formula for this transform is

S0 % IS = () X Idak

n,+ n,+
keDy", reDy,

12 Solutions of the Laplace equation
on n-dimensional simplexes

We have seen in [1] that symmetric orbit functions are solutions of the Neumann boundary
value problem on n-dimensional simplexes. That is, they are solutions of the Laplace equation
Af(z) = Af(z) on the fundamental domain F of the corresponding affine Weyl group W&
satisfying the Neumann boundary condition

0o (x)

om |yp

=0, AePy, (12.1)

where OF is the (n — 1)-dimensional boundary of F' and m is the normal to the boundary. In
this section we show that antisymmetric orbit functions are solutions of the Laplace operator,
which vanish on the boundary 0F of the fundamental domain F'.

12.1 The case of n-dimensional simplexes related to A,,, B,,, C,, and D,,

Let F be the fundamental domain of one of the affine Weyl groups Wa(A,), Wl (B,),
wat(C,,), W (D,,) (see Subsection 5.9 for an explicit form of these domains). We use orthogo-
nal coordinates x1,x2,...,Zp+1 on F in the case of Waﬁ(An) and the orthogonal coordinates
T1,T2,...,2, in other cases (see Section 3). Thus the fundamental domain F for W2f(A,,) is
placed in the hyperplane z1 + x2 + -+ + 41 = 0.

The Laplace operator on F' in the orthogonal coordinates has the form

02 02 0?
“ o2 T T a2

T

A

where r = n + 1 for A,, and r = n for B,, C, and D,,. Let us consider the case B,. We take
a summand from the expression (4.16) for the antisymmetric orbit function @) (x) of B, and act
upon it by the operator A. We get

AeQﬂ*i((w(z—:)\))1:E1+--'+(’w(€)\))nwn)
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— —47‘(’2[(5177’11)2 N (Enmn)2]eZﬂi((w(sA))lxl+---+(w(s)\))nxn)
C dr2(m2 - 4 m2) 2 @E e (N )

_ _47_[_2()\’ )\> e27ri((w(8)\))1:c1+~~~+(w(6)\))n:vn)’

where A = (mj,ma,...,m,) is the weight, determining ¢, (z), in the orthogonal coordinates
and w € S,,. Since this action of A does not depend on a summand from (4.16), we have

Apy(x) = =47 (A, Apa(). (12.2)

For A, C, and D,, this formula also holds and the corresponding proofs are the same. Remark
that in the case A, the scalar product (A, \) is equal to

MA) =mi+ms+ - +may.

The formula (12.2) can be generalized in the following way. Let o (y1,y2, - .., yr) be the k-th

elementary symmetric polynomial of degree k of the variables 1,2, ..., ¥, that is,
O-k:(ylay27"'7y7') = Z Y Yky * " Yk,
1<k <ko<--<kr<n
Then
2 2 2
o ((%21,, 887%, e d%?) or(z) = (—4r2) o (m2, m3, ..., m>)ex(z), k=1,2,...,r, (12.3)

where, as before, r = n+1 for 4,, and r = n for B,,, C,, and D,,. r differential equations (12.3)
are algebraically independent.

Thus, antisymmetric orbit functions are eigenfunctions of the operator oy (88—;%, a%, el 8‘%),
k=1,2,...,n, on the fundamental domain F' satisfying the boundary condition
oa@) =0, AeDy, (12.4)

(see Subsection 5.3).

12.2 The Laplace operator in w-basis

We may parametrize elements of F' by coordinates in the w-basis: = 61wy +- - -+60swy. Denoting
by Ok partial derivative with respect to 6, we have the Laplace operator A in the form

n
A= 5 Z <O¢j, Oéj>_1Mijai8j, (12.5)
ij=1
where (M;;) is the corresponding Cartan matrix. One can see that it is indeed the Laplace
operator as follows. The matrix (S;;) = ({a, aj) "1 M;;) is symmetric with respect to transpo-
sition and its determinant is positive. Hence it can be diagonalized, so that A becomes a sum
of second derivatives with no mixed derivative terms.

12.3 Rank two and three special cases

We write down explicit form of the Laplace operators in coordinates in the w-basis for ranks 2
and 3. For rank two the operator A is of the form

Ay 2 (82 — 102+ 2)p = — 2T (a® + ab + V)¢, F = {0,wr,ws}, (12.6)
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Cy : (207 — 20102 + 02)p = —2712(a® + 4ab + 4b*)p, F = {0,w;,ws}, (12.7)
Go @ (02 — 30102 +303)p = — 42" (3% + 3ab + b)), F = {0,%,wo}. (12.8)

Here, to simplify notation, ¢ stands for ¢y(x), A = (a b) and x = (6; 62). Although the
same symbols are used for analogous objects in the three cases, their geometric meaning is very
different. It is given by the appropriate Cartan matrix M from (2.1). In particular, the vertices
of F' form an equilateral triangle in the case of Az, for Cy the triangle is half of a square, and it
is a half of an equilateral triangle for Gbs.

In the semisimple case A x Aj one has M = 2(} ), therefore A = 207 + 203, and () is
the product of two antisymmetric orbit functions, one from each A;. The fundamental domain
is a square.

There are three 3-dimensional cases to consider, namely A3, B3, and C3. In addition there
are four cases involving non-simple groups of the same rank. For Az, Bs, and C3 the result can
be represented by the formulas

Az ¢ A =0+ 05+ 95 — 0102 — 0205,
By : A= 8% + 822 + 2832, — 0109 — 20903,
Cz @ A =20% 4203 + 202 — 2010y — 20505. (12.9)

12.4 Antisymmetric orbit functions as eigenfunctions of other operators

Antisymmetric orbit functions are eigenfunctions of many other operators. We consider examples
of such operators.

We associate with each y € E), the shift operator T}, which acts on the exponential functions
2mi(\,x)
e as

2mi(\y) e27ri<)\,x)

Ty627ri(/\,x> _ e27ri<)\,x+y) —¢

The action of elements of the Weyl group W on functions, given on FE,, is given as wf(x) =
f(wz). For each y € E,, we define an operator acting on orbit functions by the formula

D, = Z (det w)wTy,.

weW
Then
Dypr(@) = Dy 3 (det w)e2ritr)
weWw

= Z (det w') E (det w)2mi{wAv) 2miwrw'a)
w' eW weWw

- Z (det w)emitwrv) Z (det w')e2m{wAw'e)
weWw w/EW

= Z (det w)e2™ {wAv) Z (det w/)e27ri<w’_1w/\,:c)
weW wew

= Z 627Ti<W/\7y> Z (det w/_lw)62ﬂi<w/_1w)\,a:>
wew w'eW

— Z eQWi(w/\’wSO)\(x) _ ¢/\(y)<,0,\($),
weW

that is, ¢y (z) is an eigenfunction of the operator D, with eigenvalue ¢y (y).
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Now we consider the operator

D, = E wT,.
weW
Then, conducting the same reasoning as above, we receive the relation

N

Dypxr(x) = oA(y)ea(z),

that is, o (z) is an eigenfunction of the operator D, with eigenvalue @y (y).
It is proved in the same way that

Dyoa(z) = pa(y)oa(x),

that is, the symmetric orbit function ¢, () is an eigenfunction of the operator D,, with eigenvalue
PA(Y)-

It is shown similarly that in the cases of A, B, Cy, D, antisymmetric orbit functions ¢y ()
are eigenfunctions of the operators

02
E w@, 1:1,2,...,7“7
weWw i

where x1,x2, ..., x, are orthogonal coordinates of the point x, r = n+ 1 for A, and r = n for
other cases. In fact, these operators are multiple to the Laplace operator A.

It is easy to show that in the cases of A,, By, C,, and also of D,, with even n, antisymmetric
orbit functions @, (x) are solutions of the equations

> w 0 f=0, i=12,...,m

ox;
weW ¢

13 Symmetric and antisymmetric functions

Symmetric (antisymmetric) orbit functions are symmetrized (antisymmetrized) versions of the
exponential function, when symmetrization (antisymmetrization) is fulfilled by a Weyl group.
Instead of the exponential function we can take any other set of functions, for example, a set
of orthogonal polynomials or a countable set of functions. Then we obtain a corresponding set
of orthogonal symmetric (antisymmetric) polynomials or a set of symmetric (antisymmetric)
functions. Such sets of polynomials and functions are a subject of investigation in this section.

13.1 Symmetrization and antisymmetrization
by (anti)symmetric orbit functions

Symmetric and antisymmetric orbit functions can be used for symmetrization and antisym-
metrization of functions. Let w,,(x), m = 0,1,2,..., be a set of continuous functions of one
variables. We create functions of n variables

uil,i%,_,in (a;l, T, ... ,$n) = Uy, (xl)um (xg) s Uy, (l’n), ik = O, 1, 2, e

Then the functions

ail,ig,...,in(A17 )\2, Ce ,)\n) = / ui17i27_._7in (1'1, Ly e vy xn)gb)\(arl, Loy ... ,xn)dx, (13.1)
F
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where A = (A1, A2, ..., \n), da(2) is a symmetric orbit function, and dx is the Euclidean measure
on E, (that is, dx = dx1 - - - dx,), is symmetric with respect to the action of the Weyl group W.
Indeed, for w € W we have

ail,ig,...,in(W)\):/Uil,ig,...,in(mlaw%---amn)QSw)\(xl,va-'-axn)dX
F

= / Wit sig,in (T1, T2, « o, T )OA(T1, X2, - o+, Tn)dX = Uy iy, i (A).
F

Similarly, the functions

Wiy g, oig (A1, A2y oy Ap) = / Wiy g, i (T1, X2, - o, Tn) oA (T1, X2, . . ., Ty )dX, (13.2)
F

where @) (z) is an antisymmetric orbit function, are antisymmetric with respect to the action of
the Weyl group W. In particular, the functions @;, j, . ;. (\) vanish on Weyl chambers.

Formulas (13.1) and (13.2) are used for obtaining symmetric and antisymmetric functions or
polynomials.

13.2 Eigenfunctions of (anti)symmetric orbit function transform for W (A,,)

Let Hy(xz), n = 0,1,2,..., be the well-known Hermite polynomials. They are defined by the
formula

[n/2] 2
2.@)” m
—
- Z m‘ (n —2m)!

where [n/2] is an integral part of the number n/2. These polynomials obey the difference
equation

e o0 Hy) =0 (13.3)
dx? dx - )

They satisfy the relation

1 o0 3 2 2
— P e P2 (p)dp =i Me ™ 2H, (x
=/ () (@)

(see, for example, Subsection 12.2.4 in [36]), which can be written in the form
o
/ 20 e~ L (V2mp)dp = i"e ™ H,p (v 272). (13.4)
—o0

Using the Hermite polynomials we create polynomials of many variables

Hm(x) = Hpy g, (@1, T2, .« o, Tp) = Hpy (1) Hppy (2) - - - Hp,, (T20). (13.5)

The functions
e XPRHL(x),  mi=0,1,2,..., i=12,...,n, (13.6)
form an orthogonal basis of the Hilbert space L?(R") with the scalar product

(f1, f2) == o f1(x) fa(x)dx

where dx = dx1 dxs - - - dz,.
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The polynomials Hy,(x) satisfy the differential equation
( —22% +2|m\) m(x) =0, (13.7)

where A is the Laplace operator A = Z 8 92z and |m| = m1 +mg + -+ + my,.

We make symmetrization and antlsymmetrlzatlon of the functions
Hen(x) := e " Hp, (V27x)

(obtained from (13.6) by replacing x by v/27x) by means of orbit functions of A,,_1:
. or(x)e X Ho (V2rx) = i~ mle= AP gsym(/ary), (13.8)
[ or)e X i (VBm) = 7l V), (15.9)

where ¢ (x) is a symmetric orbit function of A,_j, given by formula (6.2) in [1], ¢x(x) is an
antisymmetric orbit function of A,,_1, and A = (A1, A2, ..., \p).

The polynomials Hp™ and H2'" are symmetric and antisymmetric, respectively, with respect
to the Weyl group W = S, of A,_1:

HE™(w)) = HZ™(V),  HE(w)) = (detw) HR9(),  w e S,

For this reason, Hy, " (A\) are uniquely determined by their values of A = (A1, Aa, ..., \,) such
that Ay > Ay > --- > \,, and H2()) by their values of A such that A\; > Ay > --- > \,. (Note
that H3M(\) = 0 if \; = \j41 for some i = 1,2,...,n — 1.)

The polynomials Hpy™ are of the form

HZ™(N) = > Hum(N), (13.10)
wWE Sy

where the polynomials Hm()\) are of the form (13.5). The polynomials H2 are of the form

HZ(A) = > (detw) Hym(N), (13.11)
wESn
that is,
HEM(A) = det (Hom, 0))7_y -
Moreover, H2%()\) = 0 if m; = m;yq for some i = 1,2,...,n — 1. For this reason, we may
consider the polynomials Hrsrylm()\) for n-tuples m such that mq > my > --- > m, and the

polynomials H2()\) for n-tuples m such that m; > mg > -+ > m,,.
Let us apply symmetric orbit function transform (8.10) of [1] to the symmetric function
(13.10). Taking into account formula (13.8) we obtain

§ (e Hm (Vamx)) = Or(x)e " H™ (Vorx)dx

1
[Sul Jrn
=i ‘m|e_7r|’\‘2Hfﬁ'm(\/27r)\),

where |S,,| is an order of the permutation group S, that is, functions (13.10) are eigenfunctions
of the symmetric orbit function transform §. Since the functions (13.10) for m; = 0,1,2,...,
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i=1,2,...,n, my > mg > --- > my, form an orthogonal basis of the Hilbert space Lgym(R”)
of functions from L?(R™) symmetric with respect to W, then they constitute a complete set of
eigenfunctions of this transform. Thus, this transform has only four eigenvalues i, —i, 1, —1 in
Lgym(R”). This means that, as in the case of the usual Fourier transform, we have

Ft=1.

Now we apply antisymmetric orbit function transform (10.12) to the antisymmetric func-
tion (13.11). Taking into account formula (13.9) we obtain

5 (e_wlx‘QHﬁ?ti(\/%XD : (x)e~™* H2 (\/2rx ) dx

1
=T A
|Sn| IR"QO
— i*\m|e*ﬂ'|’\‘2Hg‘ti(\/%)\), myp >mg >+ >my >0,

that is, functions (13.11) are eigenfunctions of the symmetric orbit function transform §. Since
the functions (13.11) for m; = 0,1,2,...; i = 1,2,...,n, my > mg > --- > m, > 0, form an
orthogonal basis of the Hilbert space L2 .(R™) of functions from L?*(R") antisymmetric with
respect to W, then they constitute a complete set of eigenfunctions of this transform. Thus, this
transform has only four eigenvalues i, —i, 1, —1. This means that, as in the case of the usual

Fourier transform, we have
=1

13.3 Symmetric and antisymmetric sets of polynomials

In the previous subsection we constructed symmetric and antisymmetric sets of functions con-
nected with Hermite polynomials. Similarly other sets of orthogonal polynomials can be con-
structed (see [37, 38] and [39)]).

Let pp,(x), m =0,1,2,..., be the set of orthogonal polynomials in one variable such that

/pm($)pm’ (:c)da(a:) = Omm/
R

where do(z) is some orthogonality measure, which may be finite or discrete.
We create a set of symmetric polynomials of n variables as follows:

P (x) = Z Py (wl)pmw@) (x2) - P (n) (zn), (13.12)
’wESn/Sm
m; =0,1,2,..., 1=1,2,...,n,
where m = (mqy,ma,...,my), my > mg > -+ >my >0, x = (x1,22,...,Ty,), and w(l),w(2),
..,w(n) is a set of numbers 1,2, ..., n transformed by the permutation w € S,,/Sm, where Sp,

is the subgroup of .S, consisting of elements leaving m invariant.
We also create the set of polynomials

pati(x) = Z (det w)pmy, ) (£1)Pmy ) (€2) -+ Py (T0) = det (P (7)) 521 (13.13)
wWESy
m; =0,1,2,..., 1=1,2,...,n,
where notations are the same as in (13.12) and the condition m; > mg > -+ > m, > 0 is

satisfied.
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It is easy to check that the polynomials py  (x) are symmetric with respect to transformations
of Sp:

sym

P (wx) = p™(x), w € Sp.

anti

antl(x) are antisymmetric with respect to transformations of S,:

Similarly, the polynomials p

Pt (wx) = (det w)pin(x),  w € Sp.
Thus, we may consider the polynomials (13.12) and (13.13) on the closure of the fundamental
domain of the transformation group W (A, —1) = S,,. This closure (we denote it by D) coincides
with the set of points x = (x1,x2,...,x,) for which

Ty >x9 2> 2> x> 0.

The polynomials (13.13) vanish if for some i, i = 1,2,...,n — 1, we have z; = z;41.
The set of polynomials (13.12), as well as the set of the polynomials (13.13), is orthogonal
with respect to the product measure do(x) = do(x1) do(z2) - - - do(x,). Indeed, we have

“Sym;_\ |O(m)| 1
pzm X pnyl/ x)do(x) = Omm’ = o Omm’»
/D+ (e (X)) = g S

/ DI () PP () dor (%) = by

Dy

where O(m) is the S,-orbit of the point m.
Note that each polynomial pit(x) vanishes at x; = x; for any admitted ¢ and j. This means

that paiti(x) can be divided by z; — ;. Therefore, the functions

Panti(x) _ p%lti(x)
" I (zi— )
1<i<j<n
are polynomials in x;, ¢ = 1,2,...,n. These polynomials are also orthogonal and the orthogo-

nality relation is of the form

/ P&nti<x)%5(x)da(x) = (Smmh

Dy

where 2(x) = [ (i —25)%
1<i<j<n
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