Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 2 (2006), 087, 8 pages      hep-th/0609217      https://doi.org/10.3842/SIGMA.2006.087
Contribution to the Proceedings of the O'Raifeartaigh Symposium

Para-Grassmann Variables and Coherent States

Daniel C. Cabra a, b, c, Enrique F. Moreno c, d and Adrian Tanasă e
a) Laboratoire de Physique Théorique, CNRS UMR 7085, Université L. Pasteur, 3 rue de l'Université, F-67084 Strasbourg Cedex, France
b) Facultad de Inginería, Universidad Nacional de lomas de Zamora, Cno. de Cintura y Juan XXIII, (1832) Lomas de Zamora, Argentina
c) Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 67, 1900 La Plata, Argentina
d) Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315, USA
e) Laboratoire de Physique Théorique, Bât. 210, CNRS UMR 8627, Université Paris XI, F-91405 Orsay Cedex, France

Received September 29, 2006, in final form November 22, 2006; Published online December 07, 2006

Abstract
The definitions of para-Grassmann variables and q-oscillator algebras are recalled. Some new properties are given. We then introduce appropriate coherent states as well as their dual states. This allows us to obtain a formula for the trace of a operator expressed as a function of the creation and annihilation operators.

Key words: para-Grassmann variables; q-oscillator algebra; coherent states.

pdf (181 kb)   ps (132 kb)   tex (11 kb)

References

  1. Ohnuki Y., Kamefuchi S., Quantum field theory and parastatistics, New York, Springer-Verlag, 1982.
  2. Polychronakos A.P., A classical realization of quantum algebras, Modern Phys. Lett. A, 1990, V.5, 2325-2334.
  3. Baulieu L., Floratos E.G., Path integral on the quantum plane, Phys. Lett. B, 1991, V.258, 171-178.
  4. Filippov A.T., Isaev A.P., Kurdikov A.B., ParaGrassmann analysis and quantum groups, Modern Phys. Lett. A, 1992, V.7, 2129-2142, gr-qc/9204089.
  5. Filippov A.T., Isaev A.P. , Kurdikov A.B., ParaGrassmann differential calculus, Theor. Math. Phys., 1993, V.94, 150-165, hep-th/9210075.
  6. Chaichian M., Demichev A.P., q-deformed path integral, Phys. Lett. B, 1994, V.320, 273-280, hep-th/9310001.
  7. Isaev A.P., Paragrassmann integral, discrete systems and quantum groups, Internat. J. Modern Phys. A, 1997, V.12, 201-206, q-alg/9609030.
  8. Chaichian M., Demichev A.P., Path integrals with generalized Grassmann variables, q-alg/9504016.
  9. Ilinski K.N., Kalinin G.V., Stepanenko A.S., q-functional field theory for particles with exotic statistics, Phys. Lett. A, 1997, V.232, 399-408, hep-th/9705086.
  10. Ilinski K.N., Kalinin G.V., Stepanenko A.S., q-functional Wick's theorems for particles with exotic statistics, J. Phys. A: Math. Gen., 1997, V.30, 5299-5310, hep-th/9704181.
  11. Rausch de Traubenberg M., Clifford algebras, supersymmetry and Z(n) symmetries: applications in field theory, hep-th/9802141 (in French).
  12. Daoud M., Hassouni Y., Kibler M., Generalized supercoherent states, Phys. Atomic Nuclei, 1998, V.61, 1821-1864, quant-ph/9804046.
  13. Daoud M., Kibler M., A fractional supersymmetric oscillator and its coherent states, math-ph/9912024.
  14. Cugliandolo L.F., Lozano G.S., Moreno E.F., Schaposnik F.A., A note on Gaussian integrals over paragrassmann variables, Internat. J. Modern Phys. A, 2004, V.19, 1705-1714, hep-th/0209172.
  15. Biedenharn L.C., The quatum group SU(2)-q and a q analog of the boson operators, J. Phys. A: Math. Gen., 1989, V.22, 873-878.
  16. Macfarlane A.J., On q analogs of the quantum harmonic oscillator and the quatum group SU(2)-q, J. Phys. A: Math. Gen., 1989, V.22, 4581-4588.
  17. Karabali D., Nair V.P., Many body states and operator algebra for exclusion statistics, Nuclear Phys. B, 1995, V.438, 551-560.
  18. Negele J.W., Orland H., Quantum many-particle systems, Cambridge, Perseus, 1988.
  19. Cabra D., Moreno E., Tanasă A., Para-Grassmann variables and coherent states for multi-particle states, in progress.
  20. Rausch de Traubenberg M., Fleury N., Beyond spinors, in Leite Lopes Festschrift, Editors N. Fleury et al., Singapore, World Scientific, 1988, 79-101.
  21. Hayashi T., Q-analogues of Clifford and Weyl algebras - spinor and oscillator reoresentations of quantum enveloping algebras, Comm. Math. Phys., 1990, V.127, 129-144.
  22. Chaichian M., Kulish P., Quantum Lie superalgebras and q oscillators, Phys. Lett. B, 1990, V.234, 72-80.
  23. Fivel D., Interpolation between Fermi and Bose statistics using generalized commutators, Phys. Rev. Lett., 1990, V.65, 3361-3364.
  24. Greenberg O.W., Quon statistics, Phys. Rev. D, 1991, V.43, 4111-4120.
  25. Klauder J.R., Skagerstam B., Coherent states: applications in physics and mathematical physics, World Scientific, 1985.

Previous article   Next article   Contents of Volume 2 (2006)