|
SIGMA 1 (2005), 025, 6 pages math-ph/0512029
https://doi.org/10.3842/SIGMA.2005.025
Compact Simple Lie Groups and Their C-, S-, and E-Transforms
Jiri Patera
Centre de Recherches Mathématiques,
Université de Montréal, C.P.6128-Centre ville,
Montréal, H3C 3J7, Québec, Canada
Received December 01, 2005; Published online December 09, 2005
Abstract
New continuous group transforms, together with their
discretization over a lattice of any density and admissible
symmetry, are defined for a general compact simple Lie groups of
rank 2 ≤ n < ∞. Rank 1 transforms are known. Rank 2
exposition of C- and S-transforms is in the literature. The
E-transforms appear here for the first time.
Key words:
compact simple Lie groups; C-, S-, and E-transforms; discretization; fundamental region;
Weyl group; weight lattice.
pdf (250 kb)
ps (391 kb)
tex (332 kb)
References
- Patera J., Invited talk at the Sixth International Conference
"Symmetry in Nonlinear
Mathematical Physics" (June 20-26, 2005, Kyiv).
- Atoyan A., Patera J., Properties of continuous Fourier extension
of the discrete cosine transform and its multidimensional
generalization, J. Math. Phys., 2004, V.45, 2468-2491.
- Wang Zhongde, Interpolation using type I discrete cosine
transform, Electron. Lett., 1990, V.26, 1170-1171.
- Agbinya J.I., Two dimensional interpolation of real
sequences using the DCT, Electron. Lett., 1993, V.29, 204-205.
- Moody R.V., Patera J., Computation of character
decompositions of class functions on compact semisimple Lie
groups, Math. Comp., 1987, V.48, 799-827.
- Moody R.V., Patera J.,
Elements of finite order in Lie groups and their applications,
XIII Int. Colloq. on Group Theoretical Methods in Physics,
Editor W. Zachary, Singapore, World Scientific Publishers, 1984,
308-318.
- McKay W.G., Moody R.V., Patera J.,
Decomposition of tensor products of E8 representations,
Algebras Groups Geom., 1986, V.3, 286-328.
- McKay W.G., Moody R.V., Patera J., Tables of E8
characters and decomposition of plethysms, in Lie Algebras
and Related Topics, Editors D.J. Britten, F.W. Lemire and R.V. Moody,
Providence R.I., Amer. Math. Society, 1985, 227-264.
- Grimm S., Patera J., Decomposition of tensor products of
the fundamental representations of E8, in Advances in
Mathematical Sciences: CRM's 25 Years, Editor L. Vinet, CRM
Proc. Lecture Notes, Providence RI, Amer. Math. Soc., 1997, V.11,
329-355.
- Patera J., Zaratsyan A., Cosine transform generalized to Lie
groups SU(2)×SU(2) and O(5), J. Math. Phys., 2005, V.46,
053514, 25 pages.
- Patera J., Zaratsyan A., Cosine transform generalized to Lie
groups SU(3) and G(2), J. Math. Phys., 2005, V.46, 113506, 17 pages.
- Atoyan A., Patera J., Sahakian V., Akhperjanian A.,
Fourier transform method for imaging atmospheric Cherenkov
telescopes, Astroparticle Phys., 2005, V.23,
79-95.
- Patera J., Orbit functions of compact semisimple Lie groups
as special functions, in Proceedinds of Fifth International Conference "Symmetry in Nonlinear
Mathematical Physics" (June 23-29, 2003, Kyiv),
Editors A.G. Nikitin, V.M. Boyko, R.O. Popovych and I.A. Yehorchenko, Proceedings of Institute
of Mathematics, Kyiv, 2004, V.50, Part 3, 1152-1160.
- Patera J., Algebraic solutions of the Neumann boundary value
problems on fundamental region of a compact semisimple Lie
group, talk given at the Workshop on Group Theory and
Numerical Methods (May 26-31, 2003, Montreal).
- Atoyan A., Patera J., Continuous extension of the discrete
cosine transform, and its applications to data processing,
Proceedings of the Workshop on Group Theory and Numerical Methods
(May 26-31, 2003, Montreal).
- Klimyk A., Patera J., Orbit functions, in preparation.
- Patera J., Zaratsyan A., The sine transform generalized to
semisimple Lie groups rank 2, Preprint, 2005.
- Kashuba I., Patera J., Zaratsyan A., The E-functions of
compact semisimple Lie groups and their discretization, in
preparation.
- Bremner M.R., Moody R.V., Patera J., Tables of dominant weight
multiplicities for representations of simple Lie algebras, New
York, Marcel Dekker, 1985, 340 pages.
- Moody R.V., Patera J., Discrete and continuous orthogonality
of C-, S-, and E-functions of a compact semisimple Lie
group, in preparation.
|
|