Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 1 (2005), 021, 7 pages      math.GT/0510095      https://doi.org/10.3842/SIGMA.2005.021

Pachner Move 3 –> 3 and Affine Volume-Preserving Geometry in R3

Igor G. Korepanov
South Ural State University, 76 Lenin Ave., 454080 Chelyabinsk, Russia

Received October 06, 2005, in final form November 21, 2005; Published online November 24, 2005

Abstract
Pachner move 3 –> 3 deals with triangulations of four-dimensional manifolds. We present an algebraic relation corresponding in a natural way to this move and based, a bit paradoxically, on three-dimensional geometry.

Key words: piecewise-linear topology; Pachner move; algebraic relation; three-dimensional affine geometry.

pdf (175 kb)   ps (133 kb)   tex (12 kb)

References

  1. Lickorish W.B.R., Simplicial moves on complexes and manifolds, Geom. Topol. Monographs, 1999, Vol. 2, Proceedings of the Kirbyfest, 299-320, math.GT/9911256.
  2. Diatta A., Medina A., Classical Yang-Baxter equation and left invariant affine geometry on Lie groups. Manuscripta mathematica, 2004, V.114, N 4, 477-486, math.DG/0203198.
  3. Korepanov I.G., A formula with volumes of five tetrahedra and discrete curvature, nlin.SI/0003001.
  4. Korepanov I.G., A formula with hypervolumes of six 4-simplices and two discrete curvatures, nlin.SI/0003024.
  5. Korepanov I.G., Invariants of PL manifolds from metrized simplicial complexes. Three-dimensional case, J. Nonlinear Math. Phys., 2001, V.8, N 2, 196-210, math.GT/0009225.
  6. Korepanov I.G., Martyushev E.V., A classical solution of the pentagon equation related to the group SL(2), Theor. Math. Phys., 2001, V.129, N 1, 1320-1324.
  7. Ponzano G., Regge T., Semi-classical limit of Racah coefficients, in "Spectroscopic and Group Theoretical Methods in Physics", Editor F. Bloch, North-Holland, 1968, 1-58.
  8. Roberts J., Classical 6j-symbols and the tetrahedron, Geom. Topol., 1999, V.3, 21-66, math-ph/9812013.
  9. Taylor Y., Woodward C., Spherical tetrahedra and invariants of 3-manifolds, math.GT/0406228.
  10. Korepanov I.G., SL(2)-Solution of the pentagon equation and invariants of three-dimensional manifolds, Theor. Math. Phys., 2004, V.138, N 1, 18-27, math.AT/0304149.
  11. Korepanov I.G., Euclidean 4-simplices and invariants of four-dimensional manifolds: I. Moves 3® 3, Theor. Math. Phys., 2002, V.131, N 3, 765-774, math.GT/0211165.
  12. Korepanov I.G., Euclidean 4-simplices and invariants of four-dimensional manifolds: II. An algebraic complex and moves 2" 4, Theor. Math. Phys., 2002, V.133, N 1, 1338-1347, math.GT/0211166.
  13. Korepanov I.G., Euclidean 4-simplices and invariants of four-dimensional manifolds: III. Moves 1" 5 and related structures, Theor. Math. Phys., 2003, V.135, N 2, 601-613, math.GT/0211167.
  14. Atiyah M.F., Topological quantum field theory, Publications Mathématiques de l'IHÉS, 1988, V.68, 175-186.

Previous article   Next article   Contents of Volume 1 (2005)