|
SIGMA 1 (2005), 009, 7 pages nlin.SI/0510003
https://doi.org/10.3842/SIGMA.2005.009
Group Classification of the General Evolution Equation: Local and Quasilocal Symmetries
Renat Zhdanov a and Victor Lahno b
a) Institute of Mathematics, 3 Tereshchenkivs'ka Str., Kyiv 4, 01601 Ukraine
b) State Pedagogical University, 2 Ostrogradskogo Str., Poltava, 36003 Ukraine
Received September 04, 2005, in final form October 19, 2005; Published online October 25, 2005
Abstract
We give a review of our recent results on group
classification of the most general nonlinear evolution equation in
one spatial variable. The method applied relies heavily on the
results of our paper Acta Appl. Math., 69, 2001, in
which we obtain the complete solution of group classification
problem for general quasilinear evolution equation.
Key words:
group classification; symmetry; second order nonlinear evolution equation.
pdf (181 kb)
ps (136 kb)
tex (10 kb)
References
- Ovsiannikov L.V., Group analysis of differential
equations, New York, Academic Press, 1982.
- Bluman G., Cole J., Similarity methods for
differential equations, Berlin, Springer, 1974.
- Olver P., Applications of Lie groups to differential
equations, New York, Springer, 1986.
- Fushchych W., Zhdanov R., Symmetries and exact
solutions of nonlinear spinor equations, Kyiv, Mathematical Ukraina
Publisher, 1997.
- Ovsiannikov L.V., Group properties of nonlinear heat
equation, Dokl. AN SSSR, 1959, V.125, 492-495 (in Russian).
- Dorodnitsyn V.A., On invariant solutions of non-linear heat
equation with a source, Zhurn. Vych. Matem. Matem. Fiziki,
1982, V.22, 1393-1400 (in Russian).
- Oron A., Rosenau Ph., Some symmetries of the nonlinear heat
and wave equations, Phys. Lett. A, 1986, V.118, 172-176.
- Akhatov I.Sh., Gazizov R.K., Ibragimov N.H., Group
classification of equations of nonlinear filtration, Dokl. AN
SSSR, 1987, V.293, 1033-1035.
- Edwards M.P., Classical symmetry reductions of nonlinear
diffusion-convection equations, Phys. Lett. A, 1994, V.190,
149-154.
- Yung C.M., Verburg K., Baveye P., Group classification
and symmetry reductions of the non-linear diffusion-convection
equation ut = (D(u)ux)x-K'(u) ux, Int. J. Non-Linear
Mech., 1994, V.29, 273-278.
- Pallikaros C., Sophocleous C., On point transformations of
generalized nonlinear diffusion equations, J. Phys. A: Math.
Gen., 1995, V.28, 6459-6465.
- Gandarias M.L., Classical point symmetries of a porous
medium equation, J. Phys. A: Math. Gen., 1996, V.29,
607-633.
- Cherniha R., Serov M., Symmetries, ansätze and exact
solutions of nonlinear second-order evolutions equations with
convection terms, European J. Appl. Math., 1998, V.9,
527-542.
- El-labany S.K., Elhanbaly A.M., Sabry R., Group
classification and symmetry reduction of variable coefficient
nonlinear diffusion-convection equation, J. Phys A: Math.
Gen., 2002, V.35, 8055-8063.
- Güngör F., Group classification and exact solutions of a
radially symmetric porous-medium equation, Int. J. Non-Linear
Mech., 2002, V.37, 245-255.
- Reid G.J., Finding abstract Lie symmetry algebras
of differential equations without integrating determining equations,
European J. Appl. Math., 1991, V.2, 319-340.
- Mubarakzjanov G.M.,
On solvable Lie
algebras, Izv. Vyssh. Uchebn. Zaved. Matematika, 1963, N 1 (32), 114-123 (in Russian).
- Mubarakzjanov G.M., The classification of the real
structure of five-dimensional Lie algebras, Izv. Vyssh. Uchebn.
Zaved. Matematika, 1963, N 3 (34), 99-105 (in Russian).
- Fushchych W.I., Symmetry in mathematical physics problems,
in Algebraic-Theoretical Studies in Mathematical Physics, Kyiv, Inst. of
Math. Acad. of Sci. Ukraine, 1981, 6-28.
- Gagnon L., Winternitz P., Symmetry classes of variable
coefficient nonlinear Schrödinger equations, J. Phys. A:
Math. Gen., 1993, V.26, 7061-7076.
- Zhdanov R.Z., Roman O.V., On preliminary symmetry
classification of nonlinear Schrödinger equation with some
applications of Doebner-Goldin models, Rep. Math. Phys.,
2000, V.45, 273-291.
- Zhdanov R.Z., Lahno V.I., Group classification of
heat conductivity equations with a nonlinear source, J. Phys. A:
Math. Gen., 1999, V.32, 7405-7418.
- Basarab-Horwath P., Lahno V., Zhdanov R., The structure
of Lie algebras and the classification problem for partial
differential equations, Acta Appl. Math., 2001, V.69,
43-94.
- Güngör F., Lagno V.I., Zhdanov R.Z., Symmetry
classification of KdV-type nonlinear evolution equations, J.
Math. Phys., 2004, V.45, 2280-2313.
- Lahno V., Zhdanov R., Group classification of nonlinear
wave equations, J. Math. Phys., 2005, V.46,
053301, 37 pages.
- Lie S., On integration of a class of
linear differential equations by means of definite integrals,
Arch. Math., 1981, V.6, 328-368 (in German).
- Akhatov I.S., Gazizov R.K., Ibragimov N.K., Nonlocal
symmetries: A heuristic approach, J. Soviet Math., 1991, V.55, 1401-1450.
- Meirmanov A.M., Pukhnachov V.M., Shmarev S.I.,
Evolution equations and Lagrangian coordinates, Berlin, Walter de Gruyter, 1997.
|
|