|
SIGMA 1 (2005), 008, 17 pages math-ph/0508032
https://doi.org/10.3842/SIGMA.2005.008
Spectra of Observables in the q-Oscillator and q-Analogue of the Fourier Transform
Anatoliy U. Klimyk
Bogolyubov Institute for Theoretical Physics, 14-b Metrologichna Str., 03143 Kyiv, Ukraine
Received August 26, 2005, in final form October 19, 2005; Published online October 21, 2005
Abstract
Spectra of the position and momentum operators of the
Biedenharn-Macfarlane q-oscillator (with the main relation
aa+ - qa+a = 1)
are studied when q > 1. These operators are
symmetric but not self-adjoint. They have a one-parameter family
of self-adjoint extensions. These extensions are derived
explicitly. Their spectra and eigenfunctions are given. Spectra of
different extensions do not intersect. The results show that the
creation and annihilation operators a+ and a of the
q-oscillator for q > 1 cannot determine a physical system
without further more precise definition. In order to determine a
physical system we have to choose appropriate self-adjoint
extensions of the position and momentum operators.
Key words:
Biedenharn-Macfarlane q-oscillator; position operator; momentum operator;
spectra; continuous q-1-Hermite polynomials; Fourier transform.
pdf (276 kb)
ps (193 kb)
tex (18 kb)
References
- Biedenharn L.C., The quantum group SUq(2) and
a q-analogue of the boson operators, J. Phys. A: Math.
Gen., 1989, V.22, L873-L879.
- Macfarlane A.J., On q-analogues of the quantum harmonic
oscillator and the quantum group SUq(2), J. Phys. A: Math.
Gen., 1989, V.22, 4581-4588.
- Damaskinsky E.V., Kulish P.P., Deformed oscillators and
their applications, Zap. Nauch. Sem. LOMI, 1991, V.189,
37-74.
- Klimyk A., Schmüdgen K., Quantum groups and their
representations, Berlin, Springer, 1997.
- Klimyk A.U., Schempp W., Classical and quantum
Heisenberg groups, their representations and applications,
Acta Appl. Math., 1986, V.45, 143-194.
- Burban I.M., Klimyk A.U., Representations of the quantum
algebra Uq(su1,1), J. Phys. A: Math. Gen., 1993,
V.26, 2139-2151.
- Burban I.M., Klimyk A.U., On spectral properties of
q-oscillator operators, Lett. Math. Phys., 1993, V.29,
13-18.
- Chung W.-S., Klimyk A.U., On position and momentum operators
in the q-oscillator, J. Math. Phys., 1996, V.37, 917-932.
- Borzov V.V., Damaskinsky E.V., Kulish P.P., On position
operator spectral measure for deformed oscillator in the case of
indetermine Hamburger moment problem, Rev. Math. Phys.,
2001, V.12, 691-710.
- Askey R., Continuous q-Hermite polynomials when q > 1,
in q-Series and Partitions, Editor D. Stanton, Berlin,
Springer, 1998, 151-158.
- Klimyk A.U., On position and momentum operators in the
q-oscillator, J. Phys. A: Math. Gen., 2005, V.38,
4447-4458.
- Gasper G., Rahman M., Basic hypergeometric functions,
Cambridge, Cambridge University Press, 1990.
- Berezanskii Yu.M., Expansions in eigenfunctions of
selfadjoint operators, Providence, R.I., American Mathematical
Society, 1969.
- Shohat J., Tamarkin J.D., The
problem of moments, Providence, R.I., American Mathematical
Society, 1943.
- Simon B., The classical moment problem as
a self-adjoint finite difference operator, Adv. Math., 1998,
V.137, 82-203.
- Akhiezer N.I., The classical moment
problem, New York, NY, Hafner, 1965.
- Akhiezer N.I., Glazman I.M., The theory
of linear operators in Hilbert spaces, New York, NY, Ungar, 1961.
- Ciccoli N., Koelink E., Koornwinder T.H.,
q-Laguerre polynomials and big q-Bessel functions and their
orthogonality relations, Methods of Applied Analysis, 1999,
V.6, 109-127.
- Ismail M.E.R., Masson D.R., q-Hermite
polynomials, biorthogonal functions, and q-beta integrals,
Trans. Amer. Math. Soc., 1994, V.346, 63-116.
- Koekoek R., Swarttouw R.F., The Askey-scheme of
hypergeometric orthogonal polynomials and its q-analogue, Delft
University of Technology Report 98-17; available from ftp.tudelft.nl.
- Santilli R.M., Imbedding of Lie algebras in
nonassociative structures, Nuovo Cim. A, 1967, V.51,
570-576.
- Askey R., Atakishiyev N.M., Suslov S.K., An analog
of the Fourier transformation for a q-harmonic oscillator, in
Symmetries in Science VI, Editor B. Gruber, New York, Plenum
Press, 1993, 57-64.
|
|