|
SIGMA 1 (2005), 001, 12 pages math-ph/0510068
https://doi.org/10.3842/SIGMA.2005.001
The Differential Form Method for Finding Symmetries
B. Kent Harrison
Physics and Astronomy Department, Brigham Young University, Provo, Utah 84602, USA
Received July 20, 2005; Published online August 03, 2005
Abstract
This article reviews the use of differential forms
and Lie derivatives to find symmetries of differential equations, as originally
presented in Harrison and Estabrook, J. Math. Phys., 12 (1971), 653. An outline of
the method is given, followed by examples and references to recent papers
using the method.
Key words:
symmetries; differential equations; differential forms.
pdf (200 kb)
ps (144 kb)
tex (16 kb)
References
- Harrison B.K., Estabrook F.B.,
Geometric approach to invariance groups and solution of partial differential systems,
J. Math. Phys., 1971, V.12, 653-666 (Paper I).
- Harrison B.K., Differential form symmetry analysis
of two equations cited by Fushchych, in Proceedings of Second International Conference
"Symmetry in Nonlinear Mathematical Physics" (July 7-13, 1997, Kyiv),
Editors M.I. Shkil, A.G. Nikitin and V.M. Boyko, V.1, 21-33 (Paper II).
- Edelen D.G.B., Programs for calculation of
isovector fields in the REDUCE.2 environment,
Center for the Application of Mathematics, Lehigh University, 1981.
- Gragert P.K.H., Symbolic
computations in prolongation theory, Ph.D. Thesis, Twente University of Technology,
Enschede, The Netherlands, 1981.
- Kersten P.H.M., Gragert P.K.H., Symbolic integration
of overdetermined systems of partial differential equations,
Memorandum 430, Twente University of Technology, Enschede, The Netherlands, 1983.
- Gragert P.K.H., Kersten P.H.M., Martini A., Symbolic
computations in applied differential geometry, Acta Appl. Math., 1983, V.1, 43-77.
- Kersten P.H.M., Infinitesimal symmetries:
a computational approach, Ph.D. Thesis, Twente University of Technology,
Enschede, The Netherlands, 1985.
- Kersten P.H.M., Software to compute
infinitesimal symmetries of exterior differential systems, with applications,
Acta Appl. Math., 1989, V.16, 207-229.
- Gragert P.K.H., Kersten P.H.M., Differential
geometric computations and computer algebra, Math. Comp. Modelling, 1997, V.25, 11-24.
- Kersten P.H.M., Gragert P.K.H., The Lie algebra
of infinitesimal symmetries of nonlinear diffusion equation, J. Phys. A: Math. Gen.,
1983, V.16, L685-L688.
- Kersten P.H.M., Martini R., Lie-Bäcklund
transformations for the massive Thirring model, J. Math. Phys., 1985, V.26, 822-825.
- Kersten P.H.M., Creating and annihilating Lie-Bäcklund
transformations of the Federbush model, J. Math. Phys., 1986, V.27, 1139-1144.
- Langton B.T., Lie symmetry techniques for
exact interior solutions of the Einstein field equations
for axially symmetric, stationary, rigidly rotating perfect fluids, Ph.D. Thesis,
University of Sydney, Australia, 1997.
- Carminati J., Devitt J.S., Fee G.J., Isogroups
of differential-equations using algebraic computing, J. Symbolic Comp.,
1992, V.14, 103-120.
- Heck A., Introduction to Maple, Springer, New York, 1993, 413-417.
- Char B.W., Geddes K.O., Gonnet G.H., Leong B.L., Monagan M.B., Watt S.M.,
Maple V library reference manual, New York, Springer, 1991, 540-560.
- Neilsen D.W., A search for an interior solution
in general relativity using Lie-Bäcklund symmetries, M.S. Thesis,
Provo (Utah, USA), Brigham Young University, 1995.
- Hereman W., Review of symbolic software for Lie symmetry analysis,
Math. Comp. Modelling, 1997, V.25, 115-132.
- Steeb W.H., Symmetries and vacuum Maxwell's equations,
J. Math. Phys., 1980, V.21, 1656-1680.
- Steeb W.H., Erig W., Strampp W., Symmetries
and the Dirac equation, J. Math. Phys., 1981, V.22, 970-973.
- Satir A., Duff-Inami-Pope-Sezgin-Stelle bosonic membrane
equations as an involutory system, Progr. Theoret. Phys., 1998, V.100, 1273-1280.
- Bluman G.W., Cole J.D., The general similarity
solution of the heat equation, J. Math. Mech., 1969, V.18, 1025-1042.
- Webb G.M., Lie symmetries of a coupled
nonlinear Burgers heat-equation system, J. Phys. A: Math. Gen., 1990, V.23, 3885-3894.
- Stephani H., Differential equations.
Their solution using symmetries, Cambridge, Cambridge University Press, 1989, 28.
- Papachristou C.J., Harrison B.K., Isogroups
of differential ideals of vector-valued differential forms:
application to partial differential equations, Acta Appl. Math., 1988, V.11, 155-175.
- Papachristou C.J., Harrison B.K., Symmetry groups
of partial differential equations associated with vector-valued differential forms,
in Proceedings of the XV International Colloquium in Group Theoretical Methods
in Physics, Editor R. Gilmore, Singapore, World Scientific, 1987, 440-445.
- Papachristou C.J., Harrison B.K., Some aspects
of the isogroup of the self-dual Yang-Mills system, J. Math. Phys., 1987, V.28,
1261-1264.
- Papachristou C.J., Harrison B.K., Nonlocal symmetries
and Bäcklund transformations for the self-dual Yang-Mills system,
J. Math. Phys., 1988, V.29, 238-243.
- Waller S.M., A three-parameter group similarity solution
for a one dimensional nonlinear diffusion equation, Phys. Scripta,
1990, V.41, 193-196.
- Waller S.M., Isogroup and general similarity
solution of a nonlinear diffusion equation, J. Phys. A: Math. Gen., 1990,
V.23, 1035-1040.
- Waller S.M., Invariant group similarity
solution for a class of reaction-diffusion-equations, Phys. Scripta,
1990, V.42, 385-388.
- Edelen D.G.B.,
Isovector methods for equations of balance. With
programs for computer assistance in operator calculations and
an exposition of practical topics of the exterior calculus,
Monographs and Textbooks on Mechanics
of Solids and Fluids, Mechanics: Analysis, The Hague, Martinus Nijhoff Publishers, 1980.
- Edelen D.G.B., Applied exterior calculus, New York, John Wiley and Sons,
1985, Chap. 6.
- Edelen D.G.B., Isovector fields for problems
in the mechanics of solids and fluids, Internat. J. Engrg. Sci., 1982, V.20, 803-815.
- Edelen D.G.B., On solving problems in the mechanics
of solids and fluids by a generalized method of characteristics, Internat. J. Engrg. Sci.,
1988, V.26, 361-372.
- Edelen D.G.B., Order-independent method of characteristics,
Internat. J. Theoret. Phys., 1989, V.28, 303-333.
- Edelen D.G.B., Implicit similarities
and inverse isovector methods, Arch. Rat. Mech. and Anal., 1983, V.82, 181-189.
- Webb G.M., Brio M., Zank G.P., Symmetries
of the triple degenerate DNLS equations for weakly nonlinear dispersive MHD waves,
J. Plasma Phys., 1995, V.54, 201-244.
- Webb G.M., Similarity considerations
and conservation laws for magneto-static atmospheres, Solar Phys., 1986, V.106, 287-313.
- Pakdemirli M., Yürüsoy M., Küçükbursa A., Symmetry groups
of boundary layer equations of a class of non-Newtonian fluids,
Internat. J. Non-Linear Mech., 1996, V.31, 267-276.
- Pakdemirli M., Yürüsoy M., Equivalence
transformations applied to exterior calculus approach for finding symmetries:
an example of non-Newtonian fluid flow, Internat. J. Engrg. Sci., 1999, V.37, 25-32.
- Suhubi E.S., Chowdhury K.L., Isovectors
and similarity solutions for nonlinear reaction-diffusion equations,
Internat. J. Engrg. Sci., 1988, V.26, 1027-1041.
- Suhubi E.S., Bakkaloglu A., Group properties
and similarity solutions for a quasi-linear wave-equation in the
plane, Internat. J. Non-Linear Mech., 1991, V.26, 567-584.
- Suhubi E.S., Isovector fields
and similarity solutions for general balance-equations, Internat. J. Engrg. Sci., 1991,
V.29, 133-150.
- Pakdemirli M., Suhubi E.S., Similarity solutions
of boundary-layer equations for second-order fluids, Internat. J. Engrg. Sci.,
1992, V. 30, 611-629.
- Suhubi E.S., Equivalence groups for second order balance equations,
Internat. J. Engrg. Sci., 1999, V.37, 1901-1925.
- Ozer S., Suhubi E.S., Equivalence transformations
for first order balance equations, Internat. J. Engrg. Sci., 2004, V.42, 1305-1324.
- Suhubi E.S., Equivalence groups for
balance equations of arbitrary order, Part I, Internat. J. Engrg. Sci., 2004, V.42, 1729-1751.
- Bhutani O.P., Bhattacharya L., Isogroups
and exact-solutions for some Klein-Gordon and Liouville-type equations in
n-dimensional Euclidean space, J. Math. Phys., 1995, V.36, 3759-3770.
- Bhutani O.P., Vijayakumar K., On the isogroups
of the generalized diffusion equation, Internat. J. Engrg. Sci., 1990, V.28, 375-387.
- Bhutani O.P., Singh K., On certain
exact solutions of a generalized K-dV-Burger type equation via isovector method-I,
Internat. J. Engrg. Sci., 2000, V.38, 1741-1753.
- Chowdhury K.L., On the isovectors of a class
of nonlinear diffusion-equations, Internat. J. Engrg. Sci., 1986, V.24, 1597-1605.
- Chowdhury K.L., A note on the isovector of rate-type materials,
Internat. J. Engrg. Sci., 1986, V.24, 819-826.
- Delph T.J., Isovector fields and self-similar solutions
for power law creep, Internat. J. Engrg. Sci., 1983, V.21, 1061-1067.
- Vijayakumar K., Isogroup classification
of equations of meteorology, Internat. J. Engrg. Sci., 1996, V.34, 1157-1164.
- Hu Z-J., On the isovectors of the principal chiral model,
J. Math. Phys., 1991, V.32, 2540-2542.
- Barco M.A., An application of solvable structures
to classical and nonclassical similarity solutions, J. Math. Phys.,
2001, V.42, 3714-3734.
- Kalpakides V.K., Isovector fields and similarity
solutions of nonlinear thermoelasticity, Internat. J. Engrg. Sci., 1998, V.36, 1103-1126.
- Harnad J., Winternitz P., Pseudopotentials
and Lie symmetries for the generalized nonlinear Schrödinger equation,
J. Math. Phys., 1982, V.23, 517-525.
|
|