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ON SOME CLASSES OF WEAKLY KODAIRA

SINGULARITIES
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Tadashi Tomaru

Abstract. — In this paper, we prove some relations between surface singularities and
pencils of compact complex algebraic curves. Let (X, o) be a complex normal surface
singularity. Let pf (X, o) be the arithmetic genus of the fundamental cycle associated
to (X, o). If there is a pencil of curves of genus pf (X, o) (i.e., Φ: S → ∆, where Φ is
a proper holomorphic map between a non-singular complex surface and a small open
disc in C1 around the origin {0} and the fiber St = Φ−1(t) is a smooth compact

algebraic curve of genus pf (X, o) for any t 6= 0) and a resolution ( eX, E) → (X, o)

such that (S, supp(So)) ⊃ ( eX, E), then we call (X, o) a weakly Kodaira singularity.
Any Kodaira singularity in the sense of Karras is a weakly Kodaira singularity. In
this paper we show some sufficient conditions for surface singularities of some classes
to be weakly Kodaira singularities.

Résumé(Sur certaines classes de singularités faiblement Kodaira). — Dans cet article,
nous montrons certaines relations entre les singularités de surfaces et les pinceaux
de courbes algébriques complexes compactes. Soit (X, o) une singularité de surface
complexe normale. Soit pf (X, o) le genre arithmétique du cycle fondamental associé
à (X, o). S’il existe un pinceau de courbes de genre pf (X, o) (i.e., s’il existe une
application holomorphe propre Φ: S → ∆, entre une surface complexe non-singulière

et un petit disque ouvert dans C1 autour de l’origine {0} tels que la fibre St = Φ−1(t)
soit une courbe algébrique lisse compacte de genre pf (X, o) pour tout t 6= 0) et une

résolution ( eX, E) → (X, o) telle que (S, supp(So)) ⊃ ( eX, E), alors on dit que (X, o) est
une singularité faiblement Kodaira. Toute singularité Kodaira dans le sens de Karras
est une singularité faiblement Kodaira. Dans cet article, nous montrons certaines
conditions suffisantes pour que les singularités de surface de certaines classes soient
des singularités faiblement Kodaira.

1. Introduction

After Kulikov’s work ([4]) on Arnold’s uni- and bi-modal singularities, U.Karras

([3]) introduced the notion of Kodaira singularities, which was defined by pencils
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c© Séminaires et Congrès 10, SMF 2005



324 T. TOMARU

of curves (i.e., one parameter families of compact complex algebraic curves). Also,

J. Stevens [8] studied a subclass of Kodaira singularities (called Kulikov singularities).

They applied them to deformation theory of singularities. In this paper, we also con-

sider normal surface singularities associated to pencils of curves (i.e., weakly Kodaira

singularities).

In [13], the author introduced an invariant for normal surface singularities, which

is associated to pencils of curves, and proved some results. We explain the definition.

Let S be a complex surface and ∆ a small open disk in the complex line C1 around

the origin. A holomorphic mapping Φ: S → ∆ is called a pencil of curves of genus g

if Φ is proper and surjective and the fiber St = Φ−1(t) is a smooth compact complex

curve of genus g for any t with t 6= 0. Let (X, o) be a normal surface singularity. We

consider the following property:

(1.1) There exists a good resolution π : (X̃, E) → (X, o) and a pencil of curves

Φ: S → ∆ such that (S, supp(So)) ⊃ (X̃, E) (i.e., S ⊃ X̃ and supp(So) ⊃ E).

Definition 1.1

(i) Let us define

pe(X, o) := min{the genus of a pencil of curves satisfying (1.1)},

and call it the pencil genus of (X, o).

(ii) Let h be an element of mX,o such that the divisor of red(h ◦ π) eX
is simple

normal crossing. Consider pencils of curves Φ: S → ∆ satisfying (1.1) and h ◦ π = Φ.

Let us define

pe(X, o, h) := min{genus of such a pencil of curves},

and call it pe(X, o, h) the pencil genus of a pair of (X, o) and h.

For X̃ and h as above, the author constructed a pencil of curves of genus pe(X, o, h)

that satisfy (1.1) and h ◦ π = Φ ([13], Theorem 2.2). The surface S of Definition 1.1

is constructed by glueing X̃ and suitable resolution spaces of some cyclic quotient

singularities. In [13], he also proved some results for pe(X, o) and pe(X, o, h). For ex-

ample, Kodaira and Kulikov singularities are characterized by using them. Moreover,

the author [13] proved an estimate of (1.2) on pe(X, o). Let (X, o) be a normal surface

singularity and σ : (X̃, E)→ (X, o) a resolution and ZE the fundamental cycle on E.

Since the arithmetic genus pa(ZE) of ZE is independent of the choice of a resolution,

pa(ZE) is an invariant of (X, o) ([14]). Then we define it as pf (X, o) and call it the

fundamental genus of (X, o). Also, pf (X, o) is a topological invariant of (X, o) and it

is useful for a rough classification of normal surface singularities. In [13], the author

proved that

(1.2) pf (X, o) 6 pe(X, o) 6 pa(MX) + mult(X, o)− 1,
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ON SOME CLASSES OF WEAKLY KODAIRA SINGULARITIES 325

where mult(X, o) is the multiplicity of (X, o) and MX is the maximal ideal cycle on

the minimal resolution of (X, o). From Karras’s result [3], if (X, o) is a Kodaira

singularity, we have pe(X, o) = pf (X, o). Therefore we give the following definition.

Definition 1.2. — If pf (X, o) = pe(X, o) = g, then we call (X, o) a weakly Kodaira

singularity of genus g.

Though any Kodaira singularity is a weakly Kodaira singularity, the converse is

not necessarily true. For rational double points, every An-singularity is a Kodaira

singularity and every Dn-singularity (n > 4) is a weakly Kodaira singularity but not

a Kodaira singularity. Since rational double points of E6, E7 and E8 have pe(X, o) = 1

([13]), they are not weakly Kodaira singularities.

In this paper, we give some conditions to be weakly Kodaira singularities for normal

surface singularities. In section 2, we consider normal surface singularities obtained

through some procedures for pencils of curves, and prove a sufficient condition for

them to be weakly Kodaira singularities. From this results, we can see that the class

of weakly Kodaira singularities is fairly bigger than the class of Kodaira singularities.

Also we prove some results on elliptic (i.e., pf(X, o) = 1) weakly Kodaira singularities.

In section 3, we prove a sufficient condition for some cyclic coverings of normal surface

singularities to be weakly Kodaira singularities. As a corollary, we obtain a class of

weakly Kodaira hypersurface singularities which contains rational double points of

Dn-type.

Notation and terminology. — Let M be a complex surface and E =
⋃r
j=1 Ej ⊂

M a 1-dimensional compact analytic subspace, where E1, . . . , Er are all irreducible

components of E. Suppose that E =
∑r
j=1 Ej is a simple normal crossing divisor

on M with E2
i 6 0. For (M,E), the weighted dual graph (=w.d.graph) ΓE of E is a

graph such that each vertex of ΓE represents an irreducible component Ej weighted by

E2
j and g(Ej) (=genus), while each edge connecting to Ei and Ej , i 6= j, corresponds

to the point Ei ∩ Ej . For example, if E2
i = −bi and g(Ei) = gi > 0 (resp. gi = 0),

then Ei corresponds to a vertex which is figured as follows:

-bi

[gi]

-bi ) -2means, and .(resp.

Moreover, if D =
∑r
i=1 diEi is a cycle on E, then we denote by CoeffEi

D the coeffi-

cient di. If Ei is a P1 (i.e., non-singular rational curve) with E2
i = −1, then we call

it a (−1)-curve. If Ei is a (−1)-curve in E which intersects with only one component

of E, we call it a (−1)-edge curve of E. For a resolution π : (X̃, E) → (X, o) and an

element h ∈ OX,o, let (h ◦ π) eX
be the divisor defined by h ◦ π on X̃. Also let E(h ◦ π)

(resp. ∆(h ◦ π)) be the exceptional part (resp. the non-exceptional part) of (h ◦ π) eX
.

Namely, we have E(h ◦ π) =
∑r
i=1 vEi

(h ◦ π)Ei and ∆(h ◦ π) =
∑s
j=1 vCj

(h ◦ π)Cj
if supp(∆(h ◦ π)) =

⋃s
j=1 Cj , and so (h ◦ π) eX

= E(h ◦ π) + ∆(h ◦ π). For any real

number a ∈ R, we denote by {a} the least number greater than, or equal to a.
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326 T. TOMARU

2. Weakly Kodaira singularities obtained by Kulikov process

for pencils of curves

In this section we consider a procedure to obtain normal surface singularities from

pencils of curves (originally introduced by Kulikov [4]). We give conditions for such

singularities to be weakly Kodaira singularities. Also we prove a formula of the

geometric genus when such singularities are elliptic.

Let E be the exceptional set of a resolution of a normal surface singularity or

supp(So) for a pencil of curves Φ: S → ∆. Let F =
⋃r
i=1 Fi and A be two 1-

dimensional analytic subsets of E such that Fi 6⊂ A for i = 1, . . . , r. Let us consider

the following three conditions:

(i) Fi ' P1 and A · F1 = F1 · F2 = · · · = Fr−1 · Fr = 1,

(ii) F intersects A only at F1 ∩A,

(iii)
⋃r
i=2 Fi does not contain any (−1) curve.

If F satisfies (i) and (ii), then we call it a P1-chain (of length r) started from A. If

bi = −F 2
i for any i, then we call it a P1-chain of type (b1, . . . , br) started from A. If

a P1-chain F satisfies (iii), then we call it a minimal P1-chain started from A.

Let Φ: S → ∆ be a pencil of curves and let So = Φ
−1

(o) =
∑r
j=1 ajAj be the

singular fiber. If gcd(a1, . . . , ar) > 1 (resp. = 1), then we say that the pencil is

multiple (resp. non-multiple).

Definition 2.1

(i) Let Φ: S → ∆ be a non-multiple pencil of curves without any (−1)-edge curve.

Let S(0) = S
σ1←− S(1) be blow-ups at non-singular points P

(1)
1 , . . . , P

(1)
t1

of red(S
(0)
o ).

As next step, let P
(2)
1 , . . . , P

(2)
t2
∈

⋃t1
j=1 σ

−1
1 (P

(1)
j ) be non-singular points of red(S

(1)
o )

and let S(1) σ2←− S(2) be blow-ups at these points. After continuing this process m

times, we get S(0) = S
σ1←− S(1) σ2←− · · ·

σm←− S(m) = S and put σ = σ1 ◦ · · · ◦ σm.

Hence we get a new pencil Φ = Φ◦σ : S → ∆ and call this procedure Kulikov process

of type I started from P1, . . . , Pk (or I-process started from P1, . . . , Pk).

(ii) In I-process of (i), if a component Akj
of supp(So) contains P

(1)
j (j = 1, . . . , t1)

and Akj
= σ−1

∗ (Akj
) (i.e., the strict transform of Akj

by σ), then we call Akj
a

root component of this I-process. Let B1, . . . , Bt1 be connected components of B :=

supp(So)rsupp(σ−1
∗ (So). Each Bj (j = 1, . . . , t1) is constructed from all components

which are infinitesimally near to P
(1)
j . We call such Bj a branch of supp(So) by this

I-process.

(iii) For each branch Bj (j = 1, . . . , t1), we denote a partial order between all

irreducible components of Bj and the root component. First we denote Akj
=

σ−1
∗ (Akj

) � F
(1)
j1

:= (σ2 ◦ · · · ◦ σm)−1
∗ (σ−1

1 (P
(1)
j1

)) where P
(1)
j1
∈ Akj

. Second, we

denote F
(1)
j1
� F

(2)
j2

:= (σ3 ◦ · · · ◦ σm)−1
∗ (σ−1

2 (P
(2)
j2

)) if P
(2)
j2
∈ σ−1

1 (P
(1)
j1

). We continue

this for σ3, . . . , σm−1 and σm.
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(iv) For any component F
(i)
j of a branch Bj , let `(F

(i)
j ) be the number of blow-ups

to produce F
(i)
j from the root component Aj , and we call it the length of F

(i)
j . Also we

define `(Ak) = 0 for any component Ak of the strict transform of supp(So) through

σ. Further, let cR(F
(i)
j ) = CoeffAkj

So (i.e., coefficient of the root of F
(i)
j ) if Akj

is

the root of F
(i)
j .

We explain these terminologies and the situation through the following example:

(2.1) -3
-1

-1

3 2 121

2

1

-3

F7

F4F1 F2 F3

F8

F5F6

-1

-3

-3

G1G2

G3

G4

G5

A7

A6

A1 A2
A3 A4 A5 F9 F10

-1

-3 -1

where F1, . . . , F10, G1, . . . , G5 are produced through I-process. There are three

branches whose root components are A3, A5 and A6. The order between them are

given as follows: A3 � F1 � F2 � F3 � F4 � F5 � G1, F1 � F6 � G2, F4 � G3, A6 �

F7 � F8 � G4 and A5 � F9 � F10 � G5. Also we have `(F1) = 1, `(F8) = 2, `(G1) = 6

and `(G3) = 5.

Definition 2.2. — Let Φ: S → ∆ be a non-multiple pencil of curves and Q1, . . . , Q`
non-singular points in So. Namely, they are contained in reduced components (i.e., the

coefficient of So on the component equals one) and non-singular points of supp(So).

For each point Qj (j = 1, . . . , `), let’s blow-up sj times at same point Qj , where

sj > 2 for any i. Let S
ψ
←− S be a birational map obtained by these blow-ups. If

Qj ∈ Aj1 , then any connected component of supp(So) r supp(ψ−1
∗ (So)) is a P1-chain

of type (1, 2, . . . , 2) started from Aj1 = σ−1
∗ (Aj1). We call this Kulikov process of type

II started from Q1, . . . , Qk (or II-process started from Q1, . . . , Q`).

Definition 2.3. — Let Φ: S → ∆ be a non-multiple pencil of curves without any (−1)-

edge curve. Let P1, . . . , Pk (resp. Q1, . . . , Q`) be non-singular points of So (resp.

red(So)), and assume they are different k + ` points. Let S
σ
←− S be a birational

map given by I-processes started from P1, . . . , Pk, and let S
σ
←− S be a birational

map given by II-processes started from Q1, . . . , Q`. We put σ = σ ◦ σ. Let A be the

union of all components of the strict transform of supp(So) by σ, and let F be the

union of all components in branches by the I-process except for (−1)-edge curves. Let

X̃ be a small neighborhood of A ∪ F and let (X, o) be a normal surface singularity

obtained by contracting A ∪ F in X̃. We call such (X, o) a singularity obtained from

Kulikov-process.
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328 T. TOMARU

In Definition 2.3, let G be the union of all (−1) edge curves by I-process and H

the union of all exceptional components by II-process. Then there is a decomposition

supp(So) = A ∪ F ∪G ∪H and B = F ∪G.

Now let’s prepare some notations to compute the fundamental cycle ZE . For

any component Fj of F and any (−1)-edge curve Gk with Fj � Gk, let `(Fj , Gk) =

`(Gk)−`(Fj) and call it the length between Fj and Gk. Also we denote a non-negative

integer ε(Fj) as follow:

ε(Fj) := min
j,k
{`(Fj, Gk) | Fj � Gk}.

Furthermore we define positive integers {λ(Fj)} inductively as follows:

λ(Fj) :=

{
min{cR(Fj), ε(Fj)}, if Fj · A 6= 0

min{λ(Fi), ε(Fj)}, if Fi · Fj 6= 0 and Fi � Fj .

Then we have λ(Fk) > λ(Fj) if Fk � Fj . In the example of (2.1), we have ε(F1) = 2,

ε(F2) = 3, ε(F3) = 2, ε(F4) = 1, ε(F5) = 1, ε(F6) = 1 and λ(F1)=λ(F2)=λ(F3)=2,

λ(F4) = λ(F5) = λ(F6) = 1.

Lemma 2.4. — Under the condition of Definition 2.3, suppose `(Gj) > cR(Gj) for

any (−1) edge curve Gi. Then the fundamental cycle ZE is equal to σ−1
∗ (So) +∑

Fj⊂F
λ(Fj)Fj.

Proof. — For any branch by a I-process, we consider a following canonical reconstruc-

tion of Bj . Let Akj
be a root component of Bj . Let Gi1 , . . . , Gis be all (−1)-edge

curves in Bj , and let’s assume that `1 = `(Gi1) 6 `2 = `(Gi2 ) 6 · · · 6 `s = `(Gis).

First let S
σ1←− S1 be `1 successive blow-ups which make a P1-chain from Akj

to

Gi1 , and we put it {Akj
, F

(1)
1 , . . . , F

(1)
`1−1, Gi1}. Let E(1) be the union of

⋃`1−1
i=1 F

(1)
i

and the strict transform of supp(So) by σ1. From `1 > cR(Gi1 ), we can easily check

that the coefficients on F
(1)
1 , . . . , F

(1)
`1−1 of the fundamental cycle ZE(1) are given by

λ(F
(1)
1 ), . . . , λ(F

(1)
`1−1) respectively. Second, let S1 σ2←− S2 be `2 blow-ups which pro-

duce a P1-chain from F
(1)
j1

to Gi2 and put it {F
(1)
j1
, F

(2)
1 , . . . , F

(2)
`2−1, Gi2}. Let E(2) be

the union of
⋃`2−1
i=1 F

(2)
i and the strict transform of E(1) by σ2 . From the assumption

`2 > `1, we have `2 − j1 > Coeff
F

(1)
j1

ZE(1) . Then the coefficients of F
(2)
1 , . . . , F

(2)
`2−1

of the fundamental cycle ZE(2) are given by λ(F
(2)
1 ), . . . , λ(F

(2)
`2−1) respectively. Con-

tinuing this procedure s times, we can reconstruct the branch Bj and so we have

CoeffFi
ZE = λ(Fi) for any Fi in Bj .
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The following figure shows the canonical reconstruction of a branch starting from

A3 in (2.1):

(2.2)

13

-3 -1

-3 -1

-1

2 12

3 2

-3 -1

-1

-3

G1

3 2

-3

-3

1

F
(3)
1

G2

F
(2)
1 F

(2)
2

F
(2)
3

G3

F
(1)
1 F

(1)
2

A3

-1

Let (X̃, E) → (X, o) be a resolution of a normal surface singularity of pf (X, o) > 1.

Let consider a cycle Do such that 0 < Do 6 ZE and pa(Do) = pf (X, o) and pa(D) <

pf (X, o) for any cycle D with D < Do. Such Do is always exists and we call it the

minimal cycle on E and write it Zmin(E) ([11], Definition 1.2 and Proposition 1.3). A

resolution is called a good resolution if the exceptional set is a simple normal crossing

divisor in the resolution space.

Theorem 2.5. — Let Φ: S → ∆ be a non-multiple pencil of curves of genus g > 1

without any (−1)-edge curve. Let (X, o) be a normal surface singularity obtained

from Kulikov-process S
σ
←− S and (X̃, E) ⊂ (S, supp(So)) the associated good res-

olution, where E = A ∪ F and supp(So) = E ∪ G ∪ H as in 2.3. Also we put

F ′ =
⋃
`(Fj)<cR(Fj)

Fj and E′ = A ∪ F ′.

(i) Assume `(Gi) > cR(Gi) for any (−1) edge curve Gi. Then (X, o) is a weakly

Kodaira singularity of genus g. Furthermore, assume S is minimal (i.e., S doesn’t con-

tain any (−1) curve). Then ZE′ = Zmin(E) = σ−1
∗ (So) +

∑
Fi⊂F ′(cR(Fi)− `(Fi))Fi.

(ii) Conversely, if (X, o) is a weakly Kodaira singularity of genus g and S is min-

imal, then `(Gi) > cR(Gi) for any (−1) edge curve Gi.

(iii) Suppose that S is minimal. Then (X, o) is a weakly Kodaira singularity satis-

fying the minimality condition ZE = Zmin(E) if and only if `(Gi) = cR(Gi) for any

(−1) edge curve Gi.

Proof

(i) From Lemma 2.4, we can easily see that

ZE′ = σ−1
∗ (So) +

∑

Fj⊂F ′

λ(Fj)Fj = σ−1
∗ (So) +

∑

Fj⊂F ′

{cR(Fj)− `(Fj)}Fj .

From this we can easily check that pa(ZE′) = g. Since E′ ⊂ E, we have

g = pa(ZE′) 6 pa(ZE) = pf (X, o) 6 pe(X, o) 6 g.

Then (X, o) is a weakly Kodaira singularity.

Now let’s assume that S is minimal. From the above, we have

ZE′ = σ−1
∗ (So) +

∑

Fi⊂F ′

(cR(Fi)− `(Fi))Fi
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330 T. TOMARU

and pa(ZE′) = g. It is easy to see the following:

(2.3) ZE′ · Fi = 0 for any Fi ⊂ F
′ with F 2

i = −2.

From now on we prove that ZE′ = Zmin(E). Assume that Zmin(E) < ZE′ . There is

a computation sequence (see p. 273 in [11]) from Zmin(E) to ZE′ as follows:

Zo := Zmin(E), Z1 = Zo + Ei1 , . . . , Zs = ZE′ = Zs−1 + Eis ,

where Zj−1 ·Eij > 0 for j = 1, . . . , s. Then we have

pa(Zo) = · · · = pa(Zs) = g.

Then (ZE′ − Eis) · Eis = 1 (Lemma 1.4 in [11]) and so ZE′ · Eis < 0. Since S is

minimal, we can easily check that Eis is a component of F with E2
is

6 −3 or the root

of a branch from (2.3). In the former case, a part of ZE′ near by Eis is written as

follows:

−b− 2*

*

*

a+ 1 a
a− 1

b+ 1

Eis

.

Then we have (ZE′ − Eis) · Eis = 2. In the later case we have (ZE′ − Eis) · Eis =

−σ(Eis)
2 > 1 similarly. They contradict the above. Therefore we proved that ZE′ =

Zmin(E).

(ii) Assume that there is a (−1) edge Gi with `(Gi) < cR(Gi). Let S
σ′

←− S̃

be an iteration of blow-ups at some points on those (−1) edge curves such that

S
σ◦σ′

←− S̃ is a I-process and `(Ki) > cR(Ki) for any (−1) edge curve Ki in S̃o.

Let F̃ be the union of all components in branches which are not (−1) edge curves

in S̃o. Also let A′ be the strict transform of A by σ′ and put Ẽ = A′ ∪ F̃ . We

put E′′ = A′ ∪ (
⋃
`( eFj)<cR( eFj)

F̃j). From Lemma 2.4 and Theorem 2.5, we have

ZE′′ = Zmin(Ẽ) = (σ ◦ σ′)−1
∗ (So) +

∑
`( eFj)<cR( eFj)

λ(F̃j) · F̃j and pa(ZE′′) = g. If

we put D1 = (σ′)−1
∗ (ZE), then pa(D1) = pa(ZE) since σ′ is isomorphic near by

supp(D1). Let D2 = min{D1, ZE′′} =
∑
E′′

j
⊆E′′ min{CoeffE′′

j
D1,CoeffE′′

j
ZE′′}E′′

j .

Then D2 < ZE′′ = Zmin(Ẽ) and pa(D1) = pa(ZE) = pf (X, o) = g and pa(ZE′′) = g.

Hence pa(D2) = g and D2 < Zmin(Ẽ), and so yields a contradiction.

(iii) is obvious from (i), (ii).

Definition 2.6([15], Definition 3.3 and 3.10). — Let π : (X̃, E) → (X, o) be the mini-

mal good resolution of an elliptic singularity. If ZE · Zmin(E) < 0, we say that the

elliptic sequence is {ZE} and the length of elliptic sequence is equal to one. Sup-

pose ZE · Zmin(E) = 0. Let B(1)($ E) be the maximal connected subvariety of

E such that B(1) ⊃ supp(Zmin(E)) and ZE · Ei = 0 for any Ei ⊂ B(1). Sup-

pose ZB(1) · Zmin(E) = 0. Let B(2)($ B(1)) be the maximal connected subvariety
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of B(1) such that B(2) ⊃ supp(Zmin(E)) and ZB(1) · Ei = 0 for any Ei ⊂ B(2).

Continuing this process, we finally obtain B(m) with ZB(m) · Zmin(E) < 0. We call

{ZB(0) = ZE , ZB(1), . . . , ZB(m)} the elliptic sequence and length of elliptic sequence is

m+ 1. Further, if (X, o) is a numerically Gorenstein singularity and pg(X, o) equals

the length of elliptic sequence, then we call (X, o) a maximally elliptic singularity.

If pf (X, o) = 1, then we call (X, o) an elliptic singularity. The following result

generalizes results by Karras [2] and Stevens [7] on the geometric genus pg(X, o)

(= dimC H
1(X̃,O eX

)) for elliptic Kulikov singularities. They proved this result under

the condition of CoeffEj
So = 1 for any root component Ej .

Proposition 2.7. — Let Φ: S → ∆ be a minimal non-multiple pencil of genus 1. Let

(X, o) be a normal surface singularity obtained by a Kulikov process for S as in 2.3.

Then we have the following.

(i) pg(X, o) = min
{[ `(Gj)

cR(Gj)

]
| Gj is any (−1) edge curve

}
, where [a] =

max{n ∈ Z | n 6 a} for any a ∈ R. Further, if (X, o) is an elliptic singular-

ity, then pg(X, o) equals the length of the elliptic sequence.

(ii) Suppose that `(Gj) > cR(Gj) for any (−1) edge curve Gj. Then the following

four conditions are equivalent.

(a) There is a constant integer k such that `(Gj) = k · cR(Gi) for any (−1)

edge curve Gj.

(b) (X, o) is a numerically Gorenstein singularity.

(c) (X, o) is a Gorenstein singularity.

(d) (X, o) is a maximally elliptic singularity.

(iii) (X, o) is a minimally elliptic singularity (i.e., pg(X, o) = 1 and (X, o) is a

Gorenstein singularity) if and only if `(Gj) = cR(Gj) for any (−1) edge curve Gj .

Proof. — Let S
σ
←− S be a pencil of curves obtained from a Kulikov process as in 2.3

and also (X̃, E) a good resolution space with (S, supp(So)) ⊃ (X̃, E).

(i) From Theorem 2.5, (X, o) is a weakly Kodaira singularity of genus 1 if and only

if `(Gj) > cR(Gj) for any (−1) edge Gj . Hence, (X, o) is a rational singularity (i.e.,⇔

pf (X, o) = 0⇔ pg(X, o) = 0: [14]) if and only if `(Gio ) < cR(Gio) for a (−1) edgeGio .

Then we may assume that (X, o) is an elliptic singularity (i.e., pf (X, o) = 1) to prove

(i). Let us consider the elliptic sequence for (X̃, E). If ZE ·Zmin(E) = 0, then we can

easily check that B(k) j A∪(
⋃
ε(Fi)>kcR(Fi)

Fi) and B(k) 6⊂ A∪(∪ε(Fi)>(k+1)cR(Fi) Fi)

for k = 1, 2, . . . Then the length of the elliptic sequence is equal to

L := min
{[ `(Gj)

cR(Gj)

]
| Gj is a (−1) edge curve

}
.

We have pg(X, o) 6 L by Theorem 3.9 in [15]. On the other hand, there exists

a nowhere zero holomorphic 2-form ω on S since S is the total space of an elliptic
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pencil. Let Ei be an irreducible component of supp(So) and P a non-singular point of

Ei. Let make a branch
⋃s
j=1 Fij started from Ei through a I-process started from P ,

where Ei = σ−1
∗ (Ei). Let (x, y) be a local coordinate near P such that Ei = {y = 0}

and ω is represented by dx ∧ dy. Let us consider the blow-up σ1(u, v) = (uv, v) =

(u′, u′v′) = (x, y) at P . Then we have σ∗
1(dx ∧ dy) = vdu ∧ dv = v′du′ ∧ dv′. Then

σ∗
1(ω) has a zero of order 1 along a (−1) curve σ−1

1 (P ). Continuing this argument

we can say that ω̃ = σ∗(ω) is a holomorphic 2-form on S which has a zero of order

`(Fi) along a component Fi in a branch. Further, f := Φ ◦ σ has a zero of order

CoeffEi
So (= cR(Fi) for any i) along any component of the branch started from Ei.

Then we can see that f−1 · ω̃, f−2 · ω̃, . . . , f−L · ω̃ are 2-forms which are meromorphic

on S and also holomorphic on S r
⋃s
j=1 Fij . They make a basis of a C-vector space

Ho(X̃rE,O(K eX
))/Ho(X̃,O(K eX

)) (' H1(X̃,O eX
)) by Laufer’s result ([5], Theorem

3.4). Then pg(X, o) > L and completes the proof of (i).

(ii) If we assume (a), then we can easily see that the length of the elliptic se-

quence is equal to k. Then (X, o) is a Gorenstein singularity because f−k · ω̃ is a

nowhere zero holomorphic 2-form on X̃ r E and so (a) ⇒ (c). Since (c) ⇒ (b)

is obvious, we prove (b) ⇒ (a). Now assume that (a) doesn’t hold. Let ZB(0) =

ZE , ZB(1), . . . , ZB(m) be the elliptic sequence, where B(0) = E % B(1) % · · · % B(m).

Let E′ =
⋃
`(Ei)<CR(Ei)

Ei be the subset of E and so ZE′ = Zmin(E) from (i) of The-

orem 2.5. Then we can easily check that E′ $ B(m) since (a) doesn’t hold. Hence

we have Zmin(E) = ZE′ � ZB(m). However we have ZE′ = ZB(m) from Theorem 3.7

in [15]. This is a contradiction. Therefore we have (a) ⇔ (b) ⇔ (c). Further, we

have (b)⇒ (d) from (i) and the definition of maximally elliptic singularities, and also

(d)⇒ (c) from Theorem 3.11 in [15].

Remark 2.8. — Let (X, o) be a weakly Kodaira singularity obtained as in 2.7 and

assume conditions (a)-(d). Then, from Némethi and Tomari’s results ([6], [9]), we can

get the value of mult(X, o) and embedding dimension of (X, o). Moreover, Némethi

[6] proved that if (X, o) is a Gorenstein elliptic singularity and H1(A,Z) = 0 (A is the

exceptional set of the minimal resolution), then (X, o) is a maximal elliptic singularity.

Then, when (X, o) is a Gorenstein singularity and any component of E is a smooth

rational curve, the formula of pg of Proposition 2.7 (i) is also obtained from his result.

3. Weakly Kodaira singularities given by cyclic coverings of normal

surface singularities

Let (Y, o) be a normal surface singularity and h ∈ mY,o ⊂ OY,o. If h defines a

reduced curve on Y , then h is called a reduced element. Let I be the defining ideal

of (Y, o) and so I ⊂ C{y1, . . . , yN}, where N is the embedding dimension of (Y, o).

Let J be the ideal generated by zn − h and I in C{y1, . . . , yN , z}. Let (X, o) be the
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surface singularity defined by J . Then h is a reduced element if and only if (X, o) is

normal (Theorem 3.2 in [10]).

In this section, we prove some sufficient conditions for normal surface singularities

given by cyclic coverings to be weakly Kodaira singularities.

Definition 3.1([2], [3]). — Let Φ: S → ∆ be a non-multiple pencil of curves of genus g

and let S
σ
←− S′ be finite number of blow-ups at finite non-singular points of So.

Let X̃ be an open neighborhood of the proper transform E of supp(So) in S′. By

contracting E in X̃ , we obtain a normal surface singularity (X, o). Then ϕ : (X̃, E)→

(X, o) is a resolution of (X, o). If a normal surface singularity is obtained in this way,

then it is called a Kodaira singularity of genus g. Also, if σ is just one blow-up at

every center in the above construction, then (X, o) is called a Kulikov singularity of

genus g ([7], [8]). Moreover, if h ∈ mX,o satisfies h ◦ ϕ = Φ ◦ σ| eX
, then we call h

(or h ◦ ϕ) a projection function of a Kodaira singularity (X, o).

Theorem 3.2. — Let (Y, o) be a Kulikov singularity of genus go and h ∈ mY,o its

projection function and f a reduced element of mY,o with f 6= h. Let σ : (Ỹ , E) →

(Y, o) be a good resolution such that supp(∆(f ◦ σ)) ∩ supp(∆(h ◦ σ)) = ∅ on Ỹ .

Suppose that n divides vEj
(f ◦ σ) for any Ej with ZE ·Ej < 0. Let (X, o) be the n-th

cyclic covering defined by zn = fh over (Y, o) for n > 2. Let γ = −ZE ·E(f ◦ σ) and

g1 = ngo + (n− 1)(γ − 2)/2. Then we have the following.

(i) There is a pencil Φ: S → ∆ of genus pe(X, o, h ◦ψ) = g1 and a good resolution

π : (X̃, Ẽ) → (X, o) such that (X̃, Ẽ) ⊂ (S, supp(So)) and Φ| eX
= h ◦ ψ ◦ π and any

connected component of supp(So)rẼ is a minimal P1-chain, where ψ : (X, o)→ (Y, o)

is the covering map.

(ii) Let ZX (resp. MX) be the fundamental (resp. maximal ideal) cycle on the

minimal resolution of (X, o). Let Φ̂ : Ŝ → ∆ be any pencil of curves satisfying the

condition of (i). Then MX = ZX if and only if Φ̂ is a non-multiple pencil.

Further, if MX = ZX , then (X, o) is a weakly Kodaira singularity of genus g1 and

Z2
X = nZ2

Y .

Proof

(i) For σ and ψ, let’s consider the following diagram:

(3.1)

(X, o)

ψ
��

X ′
φ1

oo

ψ′

��

X ′′
φ2

oo (X̃, Ẽ)
φ3

oo

δ

ttiiiiiiiiiiiiiiiiiiii

(Y, 0) (Ỹ , E)
σoo ⊂(S, supp(So)),

where X ′ = X×Y Ỹ and φ2 is the normalization of X ′ (so X ′ has only cyclic quotient

singularities) and φ3 is the minimal resolution of X ′′. Then φ := φ1◦φ2◦φ3 : (X̃, Ẽ)→

(X, o) is a good resolution such that (f ◦ ψ ◦ φ) eX
and (h ◦ ψ ◦ φ) eX

are simple normal
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crossing. Also Φ: S → ∆ is an associated pencil of curves to (Y, o) such that (Ỹ , E) ⊂

(S, supp(So)) and Φ|eY = h◦σ. Let Φ: S → ∆ be a pencil of curves constructed from X̃

and h ◦ ψ ◦ φ as in Theorem 2.2 in [13]. Hence, the genus of Φ is pe(X, o, h ◦ ψ) and

Φ| eX
= h ◦ ψ ◦ φ. Then we need to show that pe(X, o, h ◦ ψ) is g1 to prove (i). Since

0 ∼ (f ◦σ)eY
= E(f ◦σ)+∆(f ◦σ), we have ZE ·∆(f ◦σ) = −ZE ·E(f ◦σ). If we put

` = −Z2
Y , there are just ` irreducible curves C1, . . . , C` satisfying Cj ∩ E 6= ∅. Let

Ei1 , . . . , Ei` be (not necessarily different) irreducible components of E with Eij ∩Cj 6=

∅ respectively for j = 1, . . . , `. If we put αj = vEij
(f ◦ σ), then αj is divided by n

from the assumption. Since vEij
(h ◦ σ) = vCj

(h ◦ σ) = 1, X ′ is locally represented by

zn = uvαj+1 over an open neighborhood Uj of Eij ∩Cj in Ỹ , where Eij = {v = o} and

Cj = {u = 0}. By Lemma 2.5 in [12], the normalization of zn = uvαj+1 is isomorphic

to Ak-singularity. Then the following figure shows the exceptional set of δ−1(Uj):

(3.2)

n n n n n
...

...

Ẽij Fj,1 Fj,2 ... Fj,n−1

∗ ∗

C̃j

.

The integers at the top of components indicate the coefficients of the divisor (h◦σ◦δ)eY

from Lemma 3.1 in [12]. Since S (resp. S) is constructed from Ỹ (resp. X̃) by glueing

some open neighborhoods of (−1) curves, we can say that St ∩ Ỹ (resp. St ∩ X̃) is

an open Riemann surface St r
⋃`
j=1Dj (resp. St r

⋃`
j=1

⋃n
k=1Dj,k), where each Dj

and Dj,k are isomorphic to a closed disc in C and the boundary ∂Dj,k corresponds

∂Dj by δ. If |t| is sufficiently small, then St intersects ∆(f ◦ σ) transversally. From

the assumption of ∆(f ◦ σ) ∩∆(h ◦ σ) = ∅, we have Dj ∩ ∆(f ◦ σ) = ∅. Hence a

holomorphic map δt : = δ|
S∩ eX

: St ∩ X̃ → St ∩ Ỹ is a branched covering map which

has γ branch points at δ−1
t (St∩∆(f ◦σ)) of ramification indices n. It can be extended

to a continuous finite covering map δ̃t : St → St which is unramified outside of X̃. By

the Riemann-Hurwitz formula for finite covering maps between two compact oriented

real surfaces, we have n(2− 2go)− (n− 1)γ = 2− 2g1. This gives the formula of g1.

(ii) If g1 = 0, then any pencil of (i) is non-multiple and (X, o) is a rational sin-

gularity and so MX = ZX . Hence we may assume g1 > 1. Now we prove “only if

part”. Let φ : (X̃, Ẽ) → (X, o) be the resolution and Φ: S → ∆ the pencil of curves

constructed in (i). Then there is a following diagram:

(3.3)

(X̂, Ê)

δ̂zzvvv
vv

vv
vvφ̂

tthhhhhhhhhhhhhhhhhhhhhhhh
⊂(Ŝ, supp(Ŝo))

(X, o) (X,E)
φ

oo

(X̃, Ẽ)

δ̃
ddHHHHHHHHHφ

jjVVVVVVVVVVVVVVVVVVVVVVVV

⊂ (S, supp(So))
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where φ is the minimal resolution and φ is the good resolution in (3.1), and also δ̂ and

δ̃ are iterations of blow-ups fromX. Let Eij be a component of E ⊂ Ỹ with Eij∩Cj 6=

∅. Then there is a P1-chain of type (2, . . . , 2) between Ẽij and C̃j as in (3.2). By

considering the P1-chain of (3.2), we can see that Ẽij isn’t contracted to a point by δ̃.

In fact, if it is true, then Ẽij doesn’t intersect other components except for Fj,1 and so

Φ is a rational pencil and so g1 = 0. This contradicts the assumption g1 > 1. Hence,

Eij : = δ̃(Ẽij ) is an irreducible component of E and vEij
(h ◦ψ ◦φ) = n. If Êij is the

strict transform of Eij by δ̂, then v bEij

(h◦ψ◦ φ̂) = n. On the other hand, from Lemma

3.1 in [12] and gcd(n, αj + 1) = 1, we have v eEij

(z ◦ φ) =
αj + 1

gcd(n, αj + 1)
= αj + 1

and v eEij

(yi ◦ ψ ◦ φ) > n for any generator yi of mY,o and v eEij

(h ◦ σ ◦ δ) = n. Then

Coeff bEij

Z bX
= CoeffEij

ZX = CoeffEij
MX = CoeffEij

M eX
= n and Coeff bEij

Ŝo =

v bEij

(h ◦ ψ ◦ φ̂) = n. Since Coeff bEij

Ŝo = Coeff bEij

Z bX
= n, Φ̂ is a non-multiple pencil.

Now we prove“if part”. Since Φ̂ is non-multiple, we can easily check that Φ: S → ∆

constructed in (i) is also non-multiple by the construction in Theorem 2.2 in [13]. By

the construction of S, each C̃j is contained in a (−1) curve Gj ⊂ supp(So)r Ẽ. From

(3.2), we can consider the following diagram:

S
ϕ

//

Φ
$$IIIIIIIIIII Š

Φ̌zzuuuuuuuuuuu

∆

where ϕ is the contraction map of (
⋃r
j=1

⋃n−1
k=1 Fj,k) ∪ (

⋃r
j=1Gj). We put Ẽ′ =

Ẽ r (
⋃r
j=1

⋃n−1
k=1 Fj,k). Since Coeff eEij

(So) = Coeff
ϕ( eEij

)(Šo) = n from (3.2), we have

(3.4) Z eE
= So| eE′

+

r∑

j=1

n−1∑

k=1

(n− k)Fj,k

from Theorem 2.5 (i). Let y1, . . . , ym be generators of mY,o, where m is the embedding

dimension of (Y, o). Then an element g := β1y1 + · · · + βmym ∈ mY,o for general

elements β1, . . . , βm ∈ C satisfies E(g ◦ σ) = ZE and supp(∆(g ◦ σ)) ∩ supp(∆(h ◦

σ)) = ∅ and supp(∆(g ◦ σ)) ∩ supp(∆(f ◦ σ)) = ∅. Hence we can easily see that

E(g◦σ◦δ) is equal to the right hand side of (3.4) from Coeff eEij

E(g◦σ◦δ) = n. Then

E(g◦σ◦δ) = Z eE
and so M eE

= Z eE
. Therefore, we have Z2

X > M2
X > M2

eE
= Z2

eE
= Z2

X

and then M2
X = Z2

X . Hence MX = ZX from the result in p. 426 of [14].

Theorem 3.3. — Let n be the maximal ideal (x, y) of OC2,o = C{x, y} and h ∈ n r n
2

and f ∈ n. Suppose (X, o) = {zn = fh} is a normal surface singularity and n

(> 2) divides ord(f) and To(h) 6⊂ To(f), where To(f) is the tangent cone of a curve

singularity ({f = 0}, o) at {o} and so on. Then we have the following.
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(i) pe(X, o) = pe(X, o, h) = pa(MX) = (n− 1)(ord(f)− 2)/2.

(ii) If ZX = MX , then (X, o) is a weakly Kodaira singularity of genus pe(X, o, h).

(iii) If ZX 6= MX , then there exists a multiple pencil of curves Φ: S → ∆ of genus

pe(X, o) and multiplicity −n/Z2
X and exists a good resolution π : (X̃, E)→ (X, o) such

that (X̃, E) ⊂ (S, supp(So)) and Φ| eX
= h ◦ π.

Proof

(i) Let (Y, o) = (C2, o) and (C2, o)
σ1←− V1

σ2←− · · ·
σs←− Vs = (Ỹ , E) be an embedded

resolution of the curve singularity {fh = 0} ⊂ (C2, o), where each σi is a blow-up at a

point. For σ := σ1 ◦ · · · ◦σs : (Ỹ , E)→ (Y, o) and the covering map ψ : (X, o)→ (Y, o)

given by the projection (x, y, z) 7→ (x, y), let’s consider the diagram (3.1) and put φ =

φ1◦φ2◦φ3. Since fh defines a reduced curve, we have supp ∆(f◦σ)∩supp ∆(h◦σ) = ∅.

Let E1 ⊂ E be the strict transform of σ−1
1 (o) by σ2 ◦ · · · ◦σs. Then ZE ·E1 = −1 and

ZE · Ei = 0 if i 6= 1. Also we have vE1(f ◦ σ) = ord(f). Hence (X, o), (Y, o), f and

h satisfy the condition of Theorem 3.2. Let put ` := (αx + βy) ◦ σ, where α, β are

general elements of C. We have M eX
= E(` ◦ δ) and M2

eX
= −n from Proposition 3.3

in [12]. We may assume that E1 ∩ supp ∆(` ◦ σ) 6= ∅. As in the proof of (3.2), there

is a P1-chain
⋃n−1
i=1 Fi ⊂ Ẽ such that Ẽ1 · F1 = F1 · F2 = · · · = Fn−1 · ∆(` ◦ δ) = 1,

where Ẽ1 = δ−1
∗ (E1). Since v eE1

(` ◦ φ) = n and v∆(h◦φ)(` ◦ φ) = 0, then we have

vFi
(` ◦ φ) = n − i for i = 1, 2, . . . , n − 1. Let Φ: S → ∆ be a pencil constructed

by glueing X̃ and a neighborhood of (−1) curve Fn as in Theorem 3.2 such that

Φ| eX
= h ◦ φ (and so ∆(h ◦ φ) ⊂ Fn). Then CoeffFi

So = n for i = 1, 2, . . . , n and

v eEi
(h ◦ φ) = Coeff eEi

So for any component Ẽi ⊂ Ẽ. Therefore we have pa(M eX
) =

pa(Ẽ(` ◦ δ)) = pa(So) = pe(X, o, h) = (n− 1)(ord(f)− 2)/2 from Theorem 3.2 (i).

By using Lemma 1.4 in [11], we can easily check that pa(MX) 6 pe(X, o). Also we

have pe(X, o) 6 pa(So) = pa(M eX
) 6 pa(MX) ([14]). Then pe(X, o) = pa(MX) =

pe(X, o, h) = (n− 1)(ord(f)− 2)/2 and we complete the proof of (i).

(ii) is obvious from Theorem 3.2 (ii).

(iii) Assume MX 6= ZX . The pencil Φ: S → ∆ of (i) is multiple from Theorem

3.2 (ii) and its genus is equal to pe(X, o). Let m be the multiplicity of the pencil.

Then m divides n from Coeff eE1
So = n and we have Z2

X = −n/m since Z eE
· Ẽ1 < 0

and Z eE
· Ẽj = 0 for any component Ẽj ⊂ Ẽ except for Ẽ1. Hence m = −n/Z2

X .

We have already remarked that any Dn-singularity (n > 4) is a weakly Kodaira

singularity. We can check this from Theorem 3.3 since it has a defining equation

z2 = y(x2 + yn).

Example 3.4

(i) Let (X, o) = {z3 = y(x3 + x2yn+1 + y3n+4)} (n > 0). This is a weakly Kodaira

elliptic singularity from Theorem 3.3. The w.d.graph of the minimal resolution and

the singular fiber of an associated pencil with the projection function y is given as
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follows:

A7A8

A9

-3
A1 A2 A3 A4

A5 A6

F1 F2

-1...
... G1F3n+2

If we put D = 6A1 + 5A2 + 4A3 + 3A4 + 2A5 + A6 + 4A7 + 2A8 + 3A9, then the

fundamental cycle equals D + 3(F1 + · · · + F3n) + 2F3n+1 + F3n+2 and the singular

fiber of the pencil equals D+3(F1 + · · ·+3F3n+2 +G1). From Proposition 2.7, (X, o)

is a maximally elliptic singularity of pg(X, o) = n+ 1.

(ii) Let (X, o) = {z2 = y(x4 + y4n+2)}. This is an elliptic singularity and it was

treated in some papers ([2], [15]) when n = 1. We can check that the minimal

resolution is contained in a multiple pencil of multiplicity 2 which is determined by y

as follows:
-1 -1

[1]
E0

E1 E2

...
... E2n−1 E2n G1

Then So = 2(Eo +
∑2n
j=1 Ej + G1), ZX = Eo +

∑2n
j=1 Ej and MX = E(αx + βy) =

2(Eo +
∑2n−1
j=1 Ej) + E2n, where α and β are general elements of C. We put P :=

Eo ∩E1, and if R ∈ Eo is a point such that OEo
(−R) corresponds the normal bundle

of Eo in X̃, then 2P ∼ 2R but 2P 6∼ 2R on Eo. Further, pg(X, o) = n + 1 from

Theorem 2.7 (i).

(iii) Let (X, o) = {z3 = y(x9 + yn)} (n > 9). From Theorem 3.3 (i), pe(X, o) = 7

for any n > 9. The author checked the following. If n ≡ 0, 2, 5 or 8 (mod 9), then

(X, o) is a weakly Kodaira singularity with pf (X, o) = 7 and Z2
X = −3. For other

cases, we have Z2
X = −1 and any resolution space of (X, o) is contained in a multiple

pencil of genus 7 and multiplicity 3. For example, if n ≡ 0 or 1 (mod 9), then the

associated pencil are given as follows:

3
-1 ... -7 9
3 3 3 3

2 1

...-1 -4 -1

[1]

3 3 3 36 9

(n− 4)/3(n− 3)/3

n ≡ 0 mod 9 : n ≡ 1 mod 9 :

The following is a slight modification of a result by Karras [3].

Example 3.5. — Let (X, o) be a normal surface singularity. Then (X, o) is a Kodaira

(resp. a Kulikov) singularity if and only if there is an element (resp. a reduced

element) h ∈ mX,o and a resolution π : (X̃, E) → (X, o) such that red((h ◦ π) eX
) is a

simple normal crossing divisor and vEi
(h ◦ π) = 1 for any component Ei ⊂ E with

Ei · E(h ◦ π) < 0. In this case, a pencil of curves of genus pe(X, o, h) associated to

(X, o) is constructed from X̃ and h.
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Proof. — Suppose (X, o) is a Kodaira singularity. Then there is a pencil Φ: S → ∆

containing a good resolution π : (X̃, E) → (X, o) and satisfying CoeffEi
So = 1 for

any i with ZE · Ei < 0. Let h ∈ mX,o be an element with Φ| eX
= h ◦ π. Then h

satisfies conditions to be desired. Now let’s consider “if part”. As in Theorem 2.2 in

[13], we can construct a pencil Φ: S → ∆ extending h ◦ π with So|E = E(h ◦ π). If

Ei ·∆(h ◦ π) 6= 0, then vEi
(h ◦ π) = 1. Then the pencil above is non-multiple. After

suitable contractions of (−1)-curves, we may assume that any connected component

of supp(So) r E is a (−1)-curve or a P1-chain of type (1, 2, . . . , 2). Therefore, by

contraction of all components of supp(So) r E, we get a pencil Φ′ : S′ → ∆ such

that (X, o) is a Kodaira singularity associated to the pencil. The case of Kulikov

singularities is obvious from Kodaira’s case.

In [13], the author proved that if (X, o = {zn = f(x, y)} ⊂ (C3, o) is a normal

surface singularity and n|ord(f), then (X, o) is a Kodaira singularity. We generalize

this in the following.

Let (Y, o) be a Kodaira singularity of genus go whose projection function is h ∈ mY,o

and Φ: S → ∆ is an associated pencil. Then we have a following diagram:

(Y, o)

h
((QQQQQQQQQQQQQQQ (Ỹ , E)

σoo S⊂

Φ
��

∆

where h ◦ σ = Φ|eY (so supp(So) ⊃ E) and ZE = E(h ◦ σ).

Theorem 3.6. — Under the situation above, let f ∈ mY,o be a reduced element such that

red(f◦σ)eY
is a simple normal crossing divisor and supp((f◦σ)eY

)∩supp((h◦σ)eY
) = ∅.

Let (X, o) be the n-th cyclic covering over (Y, o) given by zn = f (n > 2). If n divides

vEj
(f ◦σ) for any component Ej with ZE ·Ej < 0, then (X, o) is a Kodaira singularity

of genus ngo+(n− 1)(co − 2)/2 and Z2
X = n ·Z2

Y and whose projection function is f ,

where co = ZE ·∆(f ◦ σ). Further, if (Y, o) is a Kulikov singularity, then (X, o) is so.

Proof. — Let us consider the same diagram as (3.1). Then φ := φ1 ◦ φ2 ◦ φ3 is a

good resolution and we put h̃ = h ◦ ψ ◦ φ = h ◦ σ ◦ δ. Let Ẽi be any component

of Ẽ with Ẽ(h̃) · Ẽi < 0. Then there exists a component C̃ji of supp(∆(h̃)) such that

Ẽi · C̃ji 6= 0. We put Cji = δ(C̃ji). Hence there is a component Ek of E such that

Ek · Cji 6= 0 and so ZE · Ek < 0. Let U be a small neighborhood of Ek ∩ Cji in Ỹ

and (u, v) a local coordinate on U . such that Cji = {u = 0} and Ek = {v = 0},

and let fk = vEk
(f ◦ σ). Then ψ′−1

(U) is represented by zn = uvfk since f is a

reduced element, and so vCji
(f ◦ σ) = 1. From the assumption of n | vEk

(f ◦ σ) and

Lemma 2.4 in [12], X ′ is resolved by the normalization φ2. Then Ek = δ(Ẽi). Since

vEk
(h ◦ σ) = 1, we have v eEi

(h ◦ σ ◦ δ) = 1 from Lemma 3.1 in [12]. Then (X, o) is a

Kodaira singularity whose projection function is h ◦φ from Lemma 3.5. Also if (Y, o)
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ON SOME CLASSES OF WEAKLY KODAIRA SINGULARITIES 339

is a Kulikov singularity, then vCji
(h ◦ σ) = 1 and so v eCji

(h̃) = 1. Hence (X, o) is a

Kulikov singularity.

Now let’s consider the genus of a pencil associated to (X, o) and consider Z2
X . Let

Ek, Cji and U be as in above. Since supp((f ◦ σ)eY
) ∩ supp((h ◦ σ)eY

) = ∅, δ is an

unramified covering map. Then δ−1(U) = Ũ1 ∪ · · · ∪ Ũn (disjoint union). By suitably

glueing of neighborhoods of (−1)-curves onto U and onto Ũ1, . . . , Ũn respectively, we

can construct pencils S → ∆ and S̃ → ∆ from h ◦ σ and h ◦ σ ◦ δ respectively. Also

there is a continuous finite covering map δ̃ : S̃ → S such that δ̃| eX
= δ, and so there

exist Ek ∩Cji the following diagram:

S
∪

S̃
δ̃oo

∪

Ỹ X̃
δoo

A finite covering map δ̃t : = δ̃eSt
: S̃t → St is ramified at points of

δ̃−1
t (St ∩ supp(∆(f ◦ σ))).

The ramification indices are equal to n for every such point. From the Riemann-

Hurwitz formula and St · ∆(f ◦ σ) = So · ∆(f ◦ σ) = ZE · ∆(f ◦ σ) = co, we have

the formula for the genus. Since ZE = E(h ◦ σ) and Z eE
= Ẽ(h ◦ σ ◦ δ), we have

Z eE
= δ∗(ZE) and so Z2

X = Z2
eE

= nZ2
E = nZ2

Y (see [1], Proposition 8.2).

Example 3.7. — Let (Y, o) = {x2 + y3 + z8 = 0}. It is an elliptic Kulikov singularity

of Z2
Y = −1 and h = x3 + y2 is a reduced element of OY,o. The fundamental cycle ZE

and a cycle (h ◦ π)eY
on the minimal good resolution π : (X̃, E)→ (X, o) are given as

follows:

3

-1-3 -3

-4

-1-3 -3

-4

11

1

16 66

4

andZE : E(h ◦ π) :

From Theorem 3.6, if n = 2 or 4, then the n-th cyclic covering of (Y, o) defined by

un = h is a Kulikov singularity of genus 3 and 7 and Z2
Y = −n respectively. Their

configurations of singular fibers and resolutions are given as follows:

{
x2 + y3 = z8

u2 = x3 + y2

-1

-1

-6

-6

-6

-6

1
111

3 3

2 22

4-1-1

-4 -4

-4-4
3 31

1 1 1 1

1

-1 -1

-1

-1

-1

-1

1 1

1
1

-4 -4

-4

-4

-4

-4

-1

-1

-6

-6

-6

-6

1
111

3 3

2 22

4-1-1

-4 -4

-4-4
3 31

1 1 1 1

1

-1 -1

-1

-1

-1

-1

1 1

1
1

-4 -4

-4

-4

-4

-4

{
x2 + y3 = z8

u4 = x3 + y2

Since (C2, o) is a Kulikov singularity, we have the following.
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Corollary 3.8([12], Theorem 4.1). — Let (X, o) = {zn = h(x, y)} be a normal hy-

persurface singularity with n > 1, where h ∈ C{x, y}. If ord(h) is divided by

n, then (X, o) is a Kulikov singularity associated to a pencil of curves of genus

(n− 1)(ord(h)− 2)/2 and −Z2
X = n and the projection function is αx+ βy, where α

and β are general elements of C.
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SÉMINAIRES & CONGRÈS 10


