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ON THE DISCRETE WAVELET TRANSFORM OF

STOCHASTIC PROCESSES

Abstract. We improve a result of Averkamp and Houndré concerning the
characterization of second order processes with stationary increments via
the discrete wavelet transform. Our result holds for a class of processes
with a correlation function which is not twice continuously differentiable.
Several examples are studied.

1. Introduction

The purpose of this paper is to continue the study of the stationarity of second–order
processes via their discrete wavelet transform begun in [2]. We focuse our attention on
irregular processes, i.e., on a class of processes with a correlation function which is not
twice continuously differentiable.

In the literature several papers ([1], [2], [4]) have been devoted to the analysis of
stationarity of stochastic processes by using wavelets. The main result of [4] was the
characterization of the second-order properties of a process via the corresponding prop-
erties of its continuous wavelet transform (CWT). In particular, in the case where the
correlation function ρX is of polynomial growth and ψ is rapidly decreasing at infinity
with exactly one vanishing moment, the authors showed that a process has (weakly)
stationary increments if and only if its CWT is (weakly) stationary at all scales. Under
stronger requirements on the analyzing wavelet, they also showed that a process has
(weakly) stationary increments if and only if its CWT is (weakly) stationary at any
fixed scales. These results were extended in [1] to random processes with polynomial
growth and without any finite moments.

In the applications it is often convenient to use the discrete wavelet transform
(DWT) instead of the CWT. In this direction Averkamp and Houndré ([2]) proved a
version of the above results by using the DWT, under the hypothesis that the correlation
function ρX of the process {X t}t∈R is of class C2(R2). This requirement appear to be
fairly restrictive; for istance, the correlation function of the Brownian motion (or, more
generally, of the fractional Brownian motion) and of the Ornstein–Uhlenbeck process
are just continuous functions of R2. Finally, many authors show that the wavelets are a
very interesting method to investigate an important and particular case of nonstationary
processes as the fractional Brownian process (see [8], [11]).

In this paper we extend the main result of [2]. Our aim is twofold: on one hand,
we give a theoretical basis to the study of the stationarity of irregular processes, i.e.,
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of processes such that their covariance function E(Xr Xs) 6∈ C2(R2), via the discrete
wavelet transform. On the other hand, we shall make use of generic wavelets with
vanishing zero order moment; in particular, our results hold for wavelets that are not
associated with a Multiresolution Analysis (MRA). Let us give some details.

An orthonormal wavelet is a function ψ ∈ L2(R) such that the set
{
ψ j,k(x) ≡ 2 j/2ψ(2 j x − k) : j, k ∈ Z}

is an orthonormal basis for L2(R). Two equations (see (2) below) characterize the set of
the wavelets: it is well known that such set clearly includes the MRA wavelets properly.
Given a generic wavelet ψ, the Discrete Wavelet Transform (DWT) of X = {X t}t∈R

with respect toψ is defined to be the discrete random field W = {W ( j, k)} j,k∈Z, where
W ( j, k) is defined by

W ( j, k) =
∫

R

X t ψ j,k(t) dt,(1)

provided the path integral in (1) is defined with probability one.

We study the (weak) stationarity of X via its discrete wavelet transform W. In
particular we prove, under mild conditions on ρX , that X has weakly stationary incre-
ments if and only if W is weakly stationary at every scale. In our result a crucial role
is played by a closed subspace W of L2(R2) constructed from the particular wavelet
ψ chosen to investigate the process. An orthonormal basis of W is given by the family
{2 jψ(2 j x − k1)ψ(2 j y − k2) : j, k1, k2 ∈ Z} and the projection of the covariance
function on W characterizes the weak stationarity of the discrete wavelet transform of
the process.

2. Notation and terminology

It is well known that ψ is a wavelet if and only if
∑

j∈Z

|ψ̂(2 jξ)|2 = 1 a.e. ξ ∈ R,

∞∑

j=0

ψ̂(2 jξ) ψ̂(2 j(ξ + 2kπ)) = 0 a.e. ξ ∈ R, k ∈ 2Z + 1,
(2)

and ‖ψ‖2 ≥ 1, where ψ̂ denotes the Fourier transform of ψ defined by

ψ̂(ξ) =
∫

R

ψ(x)e−ixξ dx .

See [7] for a general treatment on wavelets. We assume that ψ is a generic wavelet,
possibly not associated with a multiresolution analysis. An example of such type of
wavelet is given by the Journé wavelet ψ , whose Fourier transform is given by ψ̂(ξ) =
χI (|ξ |) where I = [ 4π

7 , π) ∪ [4π, 32π
7 ) (see [9]).
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A mild condition on the wavelet ψ that we shall use in the sequel is the vanishing of
its zero moment, i.e.,

ψ̂(0) = 0.(3)

Let (�,B, P) be a probability space and let X = {X t }t∈R be a second–order pro-
cess, i.e. X is jointly measurable and X t is square integrable for each t ∈ R. The
discrete wavelet transform of X , which is defined in (1) above, is a random field on
(�,B, P) that depends on ψ. Clearly, by the definition of DWT, we need that

∫

R

|X t(ω)ψ j,k(t)| dt < ∞ for a.e. ω ∈ �.

Since X has finite second order moments, a generic condition which ensures that (1) is
well defined and is also a second-order sequence is that

∫

R

√
ρX (u, u)

∣∣ψ
(
2 j u − k

)∣∣ du < ∞,(4)

for all j, k ∈ Z where ρX (r, s) = E(Xr Xs), r, s ∈ R. We assume throughout that
(4) holds. Some authors often write Wψ to emphasize the fact the wavelet transform is
taken with rispect to ψ . In the following, we denote by W the DWT of a given process
X using a wavelet ψ.

An easy computation shows that the second moment function of W is given by

ρW ( j, k; l,m) = E
(
W ( j, k)W (l,m)

)
=
∫

R2
ρX (u, v)ψ j,k(u)ψl,m(v) du dv.

A second-order process {X t}t∈R is said to be (weakly) stationary if for all t, s, u ∈ R

E
(
X t+u Xs+u

)
= E

(
X t Xs

)
.

We say that the process {X t}t∈R has stationary increments if E
(
|X t −Xs|2

)
is finite and

depends only on t − s. An elementary calculation shows that {X t }t∈R has stationary
increments if and only if

E
(
(X t+u − X t ′+u)(Xs+u − Xs ′+u)

)
= E

(
(X t − X t ′)(Xs − Xs ′)

)
,(5)

for all t, s, t ′, s′, u ∈ R. Hence we may use (5) as definition of second–order process
with stationary increments. Moreover, it is obvious that a weakly stationary process
has stationary increments.

For discrete random processes {X j } j∈Z, the definitions of (weakly) stationary random
process and of random process with stationary increments are obtained from the corre-
sponding definitions in the continuous case by obvious modifications. See [6] for more
general information on stochastic processes.

Let us recall the main result of Averkamp and Houndré concerning the character-
ization of second order processes with stationary increments via the discrete wavelet
transform ([2]).
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THEOREM 1. Let {X t }t∈R be a second-order process with ρX twice continuously
differentiable on R2, and such that its partial derivatives of order at most two have
polynomial growth.

Let ψ ∈ L1(R) be a wavelet such that (3) holds,
∫
R

xψ(x) dx = 1 and ψ(x)(1 +
|x |)N ∈ L1(R), for all N ∈ N.

Let also W ( j, k) be almost surely defined for all j, k ∈ Z.

Then {X t }t∈R has weakly stationary increments if and only if, for all j ∈
Z, {W ( j, k)}k∈Z is weakly stationary.

Now, let us consider the following example.

EXAMPLE 1. The DWT of a fractional Brownian motion.

The fractional Brownian motion (fBm) process offers a convenient tool for modelling
non stationary stochastic phenomena with long–term dependencies and 1/ f -type spec-
tral behaviour over ranges of frequencies. We say that {B H

t }t≥0 is a fBm if it is a
Gaussian, zero–mean, non stationary process such that

B H
0 = 0, B H

t+h − B H
t ∼ N(0, σ 2

H |h|2H ).

The parameter H, 0 < H < 1, is called the “Hurst exponent”; if H = 1/2, then
{B H

t }t≥0 is the classical Brownian motion. It is well known that

E
(
B H

t B H
s

)
= σ 2

H

2

(
|t|2H + |s|2H − |t − s|2H ),

E
(
(B H

t+u − B H
t ′+u)(B

H
s+u − B H

s ′+u)
)

=

=
σ 2

H

2

(
|t − s ′|2H + |t ′ − s|2H − |t − s|2H − |t ′ − s ′|2H ).

Hence {B H
t } has stationary increments but is not stationary. Note that E(B H

t B H
s ) is

not of class C2(R2) and that its degree of smothness decreases as H tends to 0+.
Nevertheless, we show that, in this case, {W ( j, k)}k∈Z is weakly stationary, for all
j ∈ Z. Let ψ be a wavelet that satisfies (3) and let {B H

t }t≥0 be a fBm. In order to do
this, let us compute the autocorrelation function of the DWT of {B H

t } at every level j :

E
(
W ( j, k)W ( j, k ′)

)
= σ 2

H

2

∫

R2

(
|u|2H + |v|2H − |u − v|2H )ψ j,k(u)ψ j,k′(v) du dv

= −σ
2
H

2

∫

R2
|u − v|2Hψ j,k(u)ψ j,k′(v) du dv

= −2 j (3−2H)−1 σ 2
H

∫

R

|t|2H
∫

R

ψ(s)ψ(s − t + k − k ′) ds dt,

for every k, k ′ ∈ Z. Therefore, it is clear that

E
(
W ( j, k)W ( j, k ′)

)
= E

(
W ( j, k + n)W ( j, k ′ + n)

)
,

for every n ∈ N, so that {W ( j, k)}k∈Z is weakly stationary, for every scale j.
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We note that the previous calculation (and hence the same result) holds for every
wavelet ψ satisfying (3). Moreover, it is obvious that the fBm processes do not sat-
isfy the regularity conditions of the previous theorem. This is our starting point.

3. Discrete Wavelet Transform and stationarity

Let ψ be a wavelet. For every j ∈ Z, let W j be defined by

W j = span {ψ j,k : k ∈ Z}.

Set

W j = W j ⊗ W j = span { f (x, y) = f1(x) f2(y) : f1, f2 ∈ W j }.

We know that {ψ j,k : k ∈ Z} and {9 j,k,k′ : j, k, k ′ ∈ Z} are orthonormal bases for
W j and W j respectively, where 9 j,k,k′(x, y) = ψ j,k(x)ψ j,k′(y). Moreover, let W be
defined by

W =
⊕

j∈Z

W j = span {9 j,k,k′ : j, k, k ′ ∈ Z} ⊆ L2(R2).

We recall that ifψ is a wavelet, i.e., {ψ j,k : j, k ∈ Z} is an orthonormal basis of L2(R),
then {9 j,k,k′ : j, k, k ′ ∈ Z} in an orthonormal system of L2(R2) but it is not a basis,
i.e., the function90,0,0 is not a wavelet. Hence W is properly included in L2(R2).

In many cases the correlation function ρX 6∈ L2(R2). However, there are some
cases in which ρX ∈ L2(R2). Now we make a digression and show how to characterize
the weakly stationarity of the DWT of second order process in terms of ρX in the case
that ρX ∈ L2(R2).

In order to complete the system {9 j,k,k′ : j, k, k ′ ∈ Z}, let us suppose that ψ is a
MRA wavelet, i.e. there exists a Multiresolution Analysis {V j : j ∈ Z} of L2(R) with
scaling function ϕ that generates ψ. For every j, k, k ′ ∈ Z, let 81

j,k,k′ and 82
j,k,k′ be

defined by

81
j,k,k′ (x, y) = ϕ j,k(x)ψ j,k′(y) and 82

j,k,k′ (x, y) = ψ j,k(x)ϕ j,k′(y), ∀x, y ∈ R.

It is known that {
9 j,k,k′ , 81

j,k,k′ , 8
2
j,k,k′ : j, k, k ′ ∈ Z

}

is a basis of L2(R2) (see [5]).

PROPOSITION 1. Let ψ be a real, MRA wavelet that satisfies (3). Let {X t}t∈R be
a second order process with a correlation function ρX ∈ L2(R2) and assume that (4)
holds.

Then {W ( j, k)}k∈Z is weakly stationary for all j ∈ Z if and only if ρX ∈ W⊥.
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Proof. Let ϕ be the scaling function of the MRA that generatesψ. Since ρX ∈ L2(R2)

we may write

ρX =
∑

i,l,l′∈Z

(
c1

i,l,l′8
1
i,l,l′ + c2

i,l,l′8
2
i,l,l′ + di,l,l′9i,l,l′

)
,

for some constants c1
i,l,l′ , c2

i,l,l′ , di,l,l′ . Hence

E
(
W ( j, k)W ( j, k ′)

)
=

∑

i,l,l′∈Z

(
c1

i,l,l′

∫

R

ϕi,l (u)ψ j,k(u) du
∫

R

ψi,l′ (v)ψ j,k′ (v) dv

+c2
i,l,l′

∫

R

ψi,l (u)ψ j,k(u) du
∫

R

ϕi,l′ (v)ψ j,k′ (v) dv

+di,l,l′

∫

R

ψi,l (u)ψ j,k(u) du
∫

R

ψi,l′ (v)ψ j,k′ (v) dv
)

= d j,k,k′ ,(6)

for all integers j, k, k ′.
If {W ( j, k)}k∈Z is weakly stationary, then for all integers j, k, k ′, h, with h 6= 0,

we have, by (6),

0 = E
(
W ( j, k)W ( j, k ′)

)
− E

(
W ( j, k + h)W ( j, k ′ + h)

)

= d j,k,k′ − d j,k+h,k′+h .(7)

We recall that ρX ∈ L2(R2) implies that
∑

j,k,k′ |d j,k,k′ |2 < ∞. Clearly from (7) we

deduce that d j,k,k′ = 0, whence ρX ∈ W⊥.
The converse in obvious. If ρX ∈ W⊥, then d j,k,k′ = 0. Hence, for every integers

j, k, k ′, we have E
(
W ( j, k)W ( j, k ′)

)
= 0.

We remark that if ρX ∈ L2(R2) ∩ W⊥ and ρX 6= 0, then in order that {X t}t∈R has
weakly stationary increments we need more information about ρX .

We remark that it is not trivial to remove the hypothesis that ψ be real in Proposition 1.
Observe that if ψ is complex valued, then

∫
R
ψi,l (u)ψ j,k(u) du it is not necessarily

equal to δi, j · δl,k . Observe also that the naive idea of defining 9̃ = ψ ·ψ, 8̃1 = ϕ ·ψ
and 8̃2 = ψ · ϕ, does not lead to a basis of L2(R2).

A similar remark applies also to the case where ρX 6∈ L2(R2).

Now we consider the general case where we do not assume that ρX ∈ L2(R2).

LEMMA 1. Let ψ be a wavelet that satisfies (3) and let {X t }t∈R be a second order
process with a correlation function ρX and assume that (4) holds.

Then, for a fixed integer j, {W ( j, k)}k∈Z is weakly stationary if and only if
∫

R2

(
ρX (t, s)− ρX (t + 2− j h, s + 2− j h)

)
·

·ψ j,l(t)ψ j,l′ (s) dt ds = 0, ∀h, l, l ′ ∈ Z.

(8)
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Proof. Since, for all j, k, k ′, h ∈ Z,

E
(
W ( j, k)W ( j, k ′)

)
− E

(
W ( j, k + h)W ( j, k ′ + h)

)

=
∫

R2

[
ρX (t, s)− ρX (t + 2− j h, s + 2− j h)

]
ψ j,k(t)ψ j,k′ (s) dt ds,

the proof of the lemma is obvious.

We remark that (8) tell us that for every fixed level j the projection of the function
ρX (·, ·)− ρX (· + 2− j h, · + 2− j h) on the space W j is zero, for every integer h.

REMARK 1. Let ψ and X be as in Lemma 1. A sufficient (but not necessary)
condition such that {W ( j, k)}k∈Z is weakly stationary at every level j is given by

ρX (·, ·)− ρX (· + 2− j h, · + 2− j h) 6∈
(
W \ {0}

)
∀ j, h ∈ Z.(9)

The proof is an easy exercise. In the following example we apply Lemma 1 and show
that (9) is not a necessary condition.

EXAMPLE 2. Let ψ be a real valued wavelet and let

X t =
∑

n∈Z

Znψ(t − n),

where the Zn are i.i.d. random variables with mean 0 and variance 1. It is easy to show
that the correlation function ρX is given by

ρX (t, s) =
∑

n∈Z

ψ(t − n)ψ(s − n).

Hence, without other conditions, {X t} has not weakly stationary increments (see [2]).
In order to show that the discrete wavelet transform is weakly stationary, let us prove
(8). For every non positive integer j and for all integers h, n and l, we have that

∫

R

ψ(t − n + 2− j h) ψ j,l(t) dt

= 2− j/2

2π

∫

R

ψ̂(ξ) ψ̂(2− jξ)e−i(n−2− j (h+l))ξ dξ

= 2− j/2

2π

∫ 2π

0

(∑

s∈Z

ψ̂(ξ + 2sπ) ψ̂(2− j (ξ + 2sπ))

)
e−i(n−2− j (h+l))ξ dξ

= δ j,0δ0,n−h−l ,(10)

because ψ is a wavelet (see [7]). A similar computation shows that (10) holds for all
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positive integers j. Hence, by (10) we have that
∫

R2

(
ρX (t, s)− ρX (t + 2− j h, s + 2− j h)

)
ψ j,l(t) ψ j,l′ (s) dt ds

=
∑

n∈Z

(∫

R

ψ(t − n)ψ j,l(t) dt
∫

R

ψ(s − n)ψ j,l′ (s) ds+

−
∫

R

ψ(t + 2− j h − n)ψ j,l(t) dt
∫

R

ψ(s + 2− j h − n)ψ j,l′ (s) ds

)

= δ j,0

∑

n∈Z

(
δ0,n−l δ0,n−l′ − δ0,n−h−l δ0,n−h−l′

)

= 0,

for every j, l, l ′ ∈ Z. Hence condition (8) is satisfied.

Now we show that (9) is not a necessary condition for the weak stationarity of the DWT
of X at a fixed level. Let ψ be the Haar wavelet and let j = h = 1 in (9). An easy
computation gives that

∫

R2

(
ρX (t, s)− ρX (t + 2−1, s + 2−1)

)
ψ0,l(t)ψ0,l(s) dt ds

=
∑

n∈Z

(∫

R

ψ(t − n)ψ0,l(t) dt
∫

R

ψ(s − n)ψ0,l(s) ds+

−
∫

R

ψ(t + 2−1 − n)ψ0,l(t) dt
∫

R

ψ(s + 2−1 − n)ψ0,l(s) ds

)

= 1

2
,

for every integer l. Hence the projection of the function ρX (·, ·)−ρX (·+2−1, ·+2−1)

on W0 is not zero. This implies that ρX (·, ·)− ρX (· + 2−1, · + 2−1) 6∈
(
W \ {0}

)
is not

true.

EXAMPLE 3. The Ornstein–Uhlenbeck process.

Let {Bt}t∈R be a Brownian motion process and let us define the process {Z t}t∈R as

Z t = e−t Be2t ,

for every real t; {Z t}t∈R is called the Ornstein–Uhlenbeck process and it is an impor-
tant stochastic process in many areas, including statistical mechanics and mathematical
finance (see for example [3]).

By definition, Z t has normal (0, 1) distribution, for each t . Moreover, {Z t} is stationary,
and its correlation function is given by ρZ (t, s) = e|t−s|, for every t, s ∈ R. Clearly
ρZ (·, ·) − ρZ (· + 2− j h, · + 2− j h) = 0 for every j, h ∈ Z; hence the discrete wavelet
transform of {Z t} is weakly stationary, at every level j.

We remark that in Examples 1–3 the correlation function of the process is not twice
continuously differentiable. The same is true for the continuous time fractional Gaus-
sian noise (see [10]).
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In order to give a charaterization and for the sake of completeness, we give the
following well-known result.

LEMMA 2. Let ψ be a wavelet that satisfies (3). Let {X t}t∈R be a second order
process with a correlation function ρX and assume that (4) holds.

If {X t}t∈R has weakly stationary increments, then {W ( j, k)}k∈Z is weakly stationary
for all j ∈ Z.

Proof. Since, by (3), we have

E
(
W ( j, k)W ( j, k ′)

)

=
∫

R2
ρX (t, s)ψ j,k(t) ψ j,k′ (s) dt ds

=
∫

R2

(
ρX (t, s)− ρX (t

′, s)− ρX (t, s′)+ ρX (t
′, s′)

)
ψ j,k(t) ψ j,k′ (s) dt ds,

the thesis is obvious.

Let L be the space of the functions f : R2 → R, such that there exist two functions
h1 and h2, with h1, h2 : R → R, such that

f (x, y) = h1(x)+ h2(y), ∀(x, y) ∈ R
2.

Note that W ∩L = {0}. The following result is a consequence of the previous lemmas.

THEOREM 2. Let ψ be a wavelet that satisfies (3). Let {X t}t∈R be a second order
process with a correlation function ρX and assume that (4) holds. Suppose that there
exist two functions ρW and ρL that satisfy the following properties:

(i) ρX = ρW + ρL;

(ii) for every u ∈ R, ρL(·, ·)− ρL(· + u, · + u) ∈ L

(iii) ρW (t +u, s +u)−ρW (t +u, s ′ +u)−ρW(t ′ +u, s +u)+ρW (t ′ +u, s ′ +u) =
ρW (t, s)− ρW (t ′, s)− ρW (t, s′)+ ρW (t ′, s′), ∀t, s, t ′, s′, u ∈ R.

The following properties are equivalent:

(j) {X t}t∈R has weakly stationary increments;

(jj) for all j ∈ Z, {W ( j, k)}k∈Z is weakly stationary;

(jjj)
∫

R2

(
ρW (t, s)− ρW (t + 2− j h, s + 2− j h)

)
ψ j,l(t)ψ j,l′ (s) dt ds = 0,

∀ j, h, l, l ′ ∈ Z.

Proof. As in Lemma 2 (jj) ⇒ (j). In order to prove the converse implication, let
{W ( j, k)}k∈Z be weakly stationary, for every j ∈ Z. By (ii), for every u ∈ R there exist
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two function hu
1 and hu

2 such that ρL(t +u, s+u) = ρL(t, s)+hu
1(t)+hu

2(s), ∀(t, s) ∈
R2. Hence, (i)–(iii) give us that

(
(X t+u − X t ′+u)(Xs+u − Xs ′+u)

)

= ρW (t + u, s + u)− ρW (t + u, s ′ + u)− ρW (t
′ + u, s + u)+

+ρW (t ′ + u, s ′ + u)+ ρL(t + u, s + u)− ρL(t + u, s ′ + u)−
+ρL(t ′ + u, s + u)+ ρL(t

′ + u, s ′ + u)

= ρW (t, s)− ρW (t, s′)− ρW (t
′, s)+ ρW (t

′, s′)+ ρL(t, s)+
+hu

1(t)+ hu
2(s)− ρL(t, s′)− hu

1(t)− hu
2(s

′)− ρL(t
′, s)

−hu
1(t

′)+ hu
2(s)+ ρL(t

′, s′)+ hu
1(t

′)+ hu
2(s

′)+
= E

(
(X t − X t ′)(Xs − Xs ′)

)
.

Therefore (j) ⇒ (jj).

Since, by (3) and (i)–(ii), for every j, k, k ′, h ∈ Z we have that

E
(
W ( j, k)W ( j, k ′)

)
− E

(
W ( j, k + h)W ( j, k ′ + h)

)

=
∫

R2

[
h2− j h

1 (t)+ h2− j h
2 (s)+ ρW (t, s)− ρW (t + 2− j h, s + 2− jh)

]

ψ j,k(t) ψ j,k′(s) dt ds

=
∫

R2

[
ρW (t, s)− ρW (t + 2− j h, s + 2− jh)

]
ψ j,k(t) ψ j,k′ (s) dt ds

the implication (jj) ⇔ (jjj) is obvious.

We remark that the decomposition (i) of the correlation function depends on the
choice of the wavelet ψ. Moreover, we remark that if ρX ∈ C2(R2), then conditions (i)
and (iii) of the Theorem 2 imply that

∂2

∂x∂y

(
ρX (x, y)− ρX (x + s, y + s)

)
= 0 ∀x, y, s ∈ R.

This relation plays a crucial role in the proof of the characterization in Theorem 1 and
follows from the weak stationarity of {W ( j, k)}k∈Z.

EXAMPLE 4. The DWT of a fBm: 2nd part.

Let us go back to the case of the discrete wavelet transform of a fBm studied in Exam-
ple 1. Let ψ be the Haar wavelet and let {B H

t }t≥0 be a fBm. It is clear that in this case
the decomposition (i) of Theorem 2 of the function ρB H is given by

ρL(t, s) = σ 2
H

2

(
|t|2H + |s|2H − |t − s|2H ) and ρW = 0.

Since,

ρL(t, s)−ρL(t+u, s+u) = σ 2
H

2

(
|t|2H −|t+u|2H)+ σ

2
H

2

(
|s|2H −|s+u|2H), ∀u ∈ R
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condition (ii) and (iii) are clearly satisfied. Hence, for all j ∈ Z, {W ( j, k)}k∈Z is
weakly stationary.

Stronger conditions on ψ give us further results.

REMARK 2. Let r be positive integer and let ψr be a wavelet with r + 1 vanishing
moments, i.e. such that

∫

R

x sψr (x) dx = 0, ∀s ∈ [0, r ] ∩ N.

Let Lr be defined as

Lr =
{

f : R
2 → R, f (x, y) =

r∑

i=0

yih1,i(x)+ x ih2,i(y), ∀(x, y) ∈ R
2}.

If in the statement of Theorem 2 we replace ψ with ψr and L with Lr , then the new
theorem is true.

We note that in the definition of the space Lr on the function we need no assumptions
on the functions hd,i, with d = 1, 2, 1 ≤ i ≤ r, hd,i : R → R. Hence, they can be
very irregular. We leave the easy proof to the interested reader.
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