Rend. Sem. Mat. Univ. Pol. Torino
\ol. 61, 4 (2003)

D.A. Martin

A SSIMPLE PROOF THAT DETERMINACY IMPLIES
LEBESGUE MEASURABILITY

Abstract. It is well-known that the Axiom of Determinacy implies that
all sets of reals are Lebesgue measurable and that weaker determinacy hy-
potheses consistent with the Axiom of Choice have corresponding measur-
ability consequences. Here a new and simple proof of these facts, a proof
arising from the author’s work on imperfect information determinacy, is
presented.

Mycielski—éwierczkowski [1] gave the first proof that the Axiom of Determinacy
implies that all sets of reals are Lebesgue measurable. For a very different proof due
to Leo Harrington, see the proof of the first assertion of Theorem 36.20 of Kechris [2].
These proofs are “local”: e.g., they show that projective determinacy implies that all
projective sets are Lebesgue measurable, and—with an extra trick—they show that %}
determinacy implies that all E%Jrl sets are Lebesgue measurable.

Our reduction in [3] of imperfect information determinacy to ordinary determinacy
led to a proof that determinacy implies measurability, a proof unlike either of the two
proofs mentioned above. Vervoort [4] earlier showed that imperfect information de-
terminacy implies Lebesgue measurabilty. By combining his idea with methods of [3]
and then eliminating the imperfect information games, one gets a proof of Lebesgue
measurability that is very natural and is at least as simple as the proofs mentioned
above.

The basic idea of our proof was given in [3]. (See Theorems 8 and 9 of that paper.)
But it seems worthwhile to present the proof in detail, and that is the reason for this
note.

We write w for the set {0, 1, 2, ...} of all natural numbers. 2% is the set of all
functions from w to {0, 1}, i.e., the set of all infinite sequences of natural numbers. 2<®
is the set of all finite sequences of natural numbers.

For background information about determinacy, see [2].

For our purposes, let us think of Lebesgue measure as the usual “coin-flipping”
measure p on 2®. Let u, and u* be respectively the corresponding inner and outer
measures.

Let A C 2. For each v € (0, 1], we define a game G,. Play in the game G, is as
follows:

I ho hy ha
I € €1 €2
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With each postion in G, of length 2i, we associate inductively v € (0, 1]. Set vgp = v.
For each i, h; must be a function from {0, 1} to [0, 1] such that

1 1
Ehi O + Ehi D > v;.

For eachi, g must be a member of {0, 1} such that hj (g) # 0. Set vi+1 = hj(§).

For each position p* in G, let 7 (p*) be the sequence of all the moves made by |1
in arriving at p*. For any play x* of Gy, let w(x*) = |J; w(x* [1), i.e., let w(x*) be
element of 2% consisting of the moves made by Il in the play x*. A play x* is a win for
I if and only if

m(x*) € A.

The idea behind G, is as follows. Player I is trying to show that 14 (A) > v. He
begins by asserting lower bounds for . ({X | (0)~x € A}) and u.({X | (1)~x € A})
which are large enough to imply that u.(A) > v. These alleged lower bounds are
the two values of hg. Player Il then challenges one of the two by choosing eg. Il is
not allowed to challenge a vacuous assertion that a lower bound is 0. | continues by
asserting lower bounds for 1. ({X | (€0, 0)~x € A}) and w.({X | (€p, 1)"X € A}); etc.

LEMMA 1. If I hasawinning strategy for G, then . (A) > v.

Proof. Let o be a winning strategy for | for G,,.

By induction on the length £h(p) of p, we define the notion of an acceptable p
2<¢, and we associate with each acceptable p a position ¢ (p) in G, that is consistent
with o and is such that ¢h(y(p)) = 2¢h(p) and 7 (¥ (p)) = p. When p is acceptable
and extends g, then q will be acceptable and v (p) will extend v (q).

The initial position @ is acceptable, and of course ¥ (7)) = @.

Assume that p is acceptable and that v (p) is defined. Let hP be the h; given by o
at ¥ (p). For e € {0, 1}, we declare p~(e) to be acceptable just in case hP(e) # 0, in
which case we set

Y(p~(e) =y (p)~(hP e).
For acceptable p, let vP be the ven(p) of ¥(p). Define f : 2= — [0, 1] by

| vP if pisacceptable;
Hp = { 0  otherwise.

For p acceptable,

1 1
“hP “hP
2h (0)+2h (1)
vP

= f(p.

Note that the inequality %f(p“(O)) + %f(p“(l)) > f(p) trivially holds also for
unacceptable p.

1 1
Ef(p (0))+§f(p 1)
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Say that x € 2 is acceptablejust in case all p € x are acceptable. For acceptable
X, let ¥ (x) be the play of G, extending all the v (x | n). If x is acceptable then x € A,
since ¥ (x) is consistent with the winning strategy o.

The set C of all acceptable x is a closed subset of A. Using the fact that
% f(p~(0) + % f(p~(1)) > f(p), itiseasy to see by induction that, for all n,

Zehp=n2"" f(p) > v.
Since f(p) < 1forall pand f(p) = 0 for unacceptable p, it follows that, for all n,
w({X | xnisacceptable}) > v.

But this means that ©(C) > v and so that . (A) > v.

LEMMA 2. If Il hasawinning strategy for G, then u*(A) < v.

Proof. Let t be a winning strategy for 11 for G,.
Let 5§ > 0. We shall prove that u*(A) < v + 3.

By induction on ¢h(p), we define a new notion of an acceptable p € 2=, and we
associate with each acceptable p a position v (p) in G, that is consistent with T and is
such that ¢h(y(p)) = 2¢h(p) and = (¥ (p)) = p. When p is acceptable and extends q,
then g will be acceptable and v (p) will extend v (q).

The initial position @ is acceptable, and ¥ (¢) = @.

Assume that p is acceptable and that ¥ (p) is defined. Let vP be the vgn(p) of ¥ (p).
For e € {0, 1}, set

uP(e) = inf{h(e) | hislegal at ' (p) A z(¥(p)~(h)) =€},
where we adopt the convention that infg = 1.
We first show that
1 1
Eup(O) + Eup(l) <P

If this is false, then there is an ¢ > 0 such that the move h given by h(e) = uP(e) — ¢
is legal at v (), an impossibility by the definition of uP.

We define p~(e) to be acceptable just in case uP(e) # 1. For e such that p~(e) is
acceptable, let hP-€ be legal at v (p) and such that

hPee) < uP(e) + 27 “"P+V5 and z(y(p)~(hP®) = e

Then set
Yy(p(e) = ¥ (p)~(hPE e).

For e such that p~(e) is not acceptable, let hP-¢ = 1. Note that the inequality hP-€¢(e) <
uP(e) + 2=M+Dg holds for these e also.
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Define f : 2<“ — (0, 1] by

| vP if pisacceptable;
f(p) = { 1  otherwise.

For acceptable p with £h(p) = n,
1 1 1 1
—_f(p~ —_f ~(1 — _hp-,O _hp.,l 1
> (P <0>)+2 (P~(1) > (0)+2 €y

1 1
=< E(up(O) + 2*(n+1)8) + E(u p(l) + 27(n+1)8)

< P27 s
= f(p+2 "Ds.

Note that the inequality 3 f (p~(0)) + 2 f(p~(1)) < f(p) + 2="+Ds holds trivially
for unacceptable p with £h(p) = n.

As before, say that x € 2 is acceptable just in case all p C x are acceptable. For
acceptable x, let ¥ (x) be the play of G, extending all the ¥+ (x [ n). If x is acceptable
then x ¢ A, since v (X) is consistent with the winning strategy t.

The set C of all acceptable x is a closed subset of the complement of A. It is easy
to see by induction that, for all n,

ehp=n2 " f(p) < v+ @2" - 1)s/2".
Since f(p) > 0 forall pand f (p) = 1 for unacceptable p, it follows that, for all n,
w({X | x[nis unacceptable}) < v + (2" — 1)§/2".

But this means that ©(C) > 1 — v — § and so that u*(A) < v + 4.
O

Note that the proofs of both our lemmas go through unchanged if we modify G, so
that the values of the h; are required to be rational.

If all G, are determined, then the given set A is Lebesgue measurable and
w(A) = supf{v | | has a winning strategy for G,}.

Thus our arguments show that AD implies that all sets are Lebesgue measurable. More-
over the complexity of the G, is essentially the same as that of A, so our proof is “local”
in the sense mentioned earlier.
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