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A SIMPLE PROOF THAT DETERMINACY IMPLIES

LEBESGUE MEASURABILITY

Abstract. It is well-known that the Axiom of Determinacy implies that
all sets of reals are Lebesgue measurable and that weaker determinacy hy-
potheses consistent with the Axiom of Choice have corresponding measur-
ability consequences. Here a new and simple proof of these facts, a proof
arising from the author’s work on imperfect information determinacy, is
presented.

Mycielski–Świerczkowski [1] gave the first proof that the Axiom of Determinacy
implies that all sets of reals are Lebesgue measurable. For a very different proof due
to Leo Harrington, see the proof of the first assertion of Theorem 36.20 of Kechris [2].
These proofs are “local”: e.g., they show that projective determinacy implies that all
projective sets are Lebesgue measurable, and—with an extra trick—they show that 61

n
determinacy implies that all 61

n+1 sets are Lebesgue measurable.

Our reduction in [3] of imperfect information determinacy to ordinary determinacy
led to a proof that determinacy implies measurability, a proof unlike either of the two
proofs mentioned above. Vervoort [4] earlier showed that imperfect information de-
terminacy implies Lebesgue measurabilty. By combining his idea with methods of [3]
and then eliminating the imperfect information games, one gets a proof of Lebesgue
measurability that is very natural and is at least as simple as the proofs mentioned
above.

The basic idea of our proof was given in [3]. (See Theorems 8 and 9 of that paper.)
But it seems worthwhile to present the proof in detail, and that is the reason for this
note.

We write ω for the set {0, 1, 2, . . .} of all natural numbers. 2ω is the set of all
functions fromω to {0, 1}, i.e., the set of all infinite sequences of natural numbers. 2<ω

is the set of all finite sequences of natural numbers.

For background information about determinacy, see [2].

For our purposes, let us think of Lebesgue measure as the usual “coin-flipping”
measure µ on 2ω. Let µ∗ and µ∗ be respectively the corresponding inner and outer
measures.

Let A ⊆ 2ω. For each v ∈ (0, 1], we define a game Gv. Play in the game Gv is as
follows:

I h0 h1 h2 . . .

II e0 e1 e2 . . .
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With each postion in Gv of length 2i , we associate inductively vi ∈ (0, 1]. Set v0 = v.
For each i , hi must be a function from {0, 1} to [0, 1] such that

1

2
hi (0)+

1

2
hi (1) ≥ vi .

For each i , ei must be a member of {0, 1} such that h i (ei) 6= 0. Set vi+1 = hi(ei ).

For each position p∗ in Gv, let π(p∗) be the sequence of all the moves made by II
in arriving at p∗. For any play x∗ of Gv, let π(x∗) =

⋃
i π(x

∗ � i), i.e., let π(x∗) be
element of 2ω consisting of the moves made by II in the play x ∗. A play x∗ is a win for
I if and only if

π(x∗) ∈ A.

The idea behind Gv is as follows. Player I is trying to show that µ∗(A) ≥ v. He
begins by asserting lower bounds for µ∗({x | 〈0〉_x ∈ A}) and µ∗({x | 〈1〉_x ∈ A})
which are large enough to imply that µ∗(A) ≥ v. These alleged lower bounds are
the two values of h0. Player II then challenges one of the two by choosing e0. II is
not allowed to challenge a vacuous assertion that a lower bound is 0. I continues by
asserting lower bounds for µ∗({x | 〈e0, 0〉_x ∈ A}) and µ∗({x | 〈e0, 1〉_x ∈ A}); etc.

LEMMA 1. If I has a winning strategy for Gv , then µ∗(A) ≥ v.

Proof. Let σ be a winning strategy for I for Gv.

By induction on the length `h(p) of p, we define the notion of an acceptable p ∈
2<ω, and we associate with each acceptable p a position ψ(p) in Gv that is consistent
with σ and is such that `h(ψ(p)) = 2`h(p) and π(ψ(p)) = p. When p is acceptable
and extends q, then q will be acceptable and ψ(p) will extend ψ(q).

The initial position ∅ is acceptable, and of course ψ(∅) = ∅.

Assume that p is acceptable and that ψ(p) is defined. Let h p be the hi given by σ
at ψ(p). For e ∈ {0, 1}, we declare p_〈e〉 to be acceptable just in case h p(e) 6= 0, in
which case we set

ψ(p_〈e〉) = ψ(p)_〈h p, e〉.

For acceptable p, let v p be the v`h(p) of ψ(p). Define f : 2<ω → [0, 1] by

f (p) =
{
v p if p is acceptable;
0 otherwise.

For p acceptable,

1

2
f (p_〈0〉)+ 1

2
f (p_〈1〉) = 1

2
h p(0)+ 1

2
h p(1)

≥ v p

= f (p).

Note that the inequality 1
2 f (p_〈0〉) + 1

2 f (p_〈1〉) ≥ f (p) trivially holds also for
unacceptable p.
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Say that x ∈ 2ω is acceptable just in case all p ⊆ x are acceptable. For acceptable
x , let ψ(x) be the play of Gv extending all the ψ(x �n). If x is acceptable then x ∈ A,
since ψ(x) is consistent with the winning strategy σ .

The set C of all acceptable x is a closed subset of A. Using the fact that
1
2 f (p_〈0〉)+ 1

2 f (p_〈1〉) ≥ f (p), it is easy to see by induction that, for all n,

6`h(p)=n2−n f (p) ≥ v.

Since f (p) ≤ 1 for all p and f (p) = 0 for unacceptable p, it follows that, for all n,

µ({x | x �n is acceptable}) ≥ v.

But this means that µ(C) ≥ v and so that µ∗(A) ≥ v.

LEMMA 2. If II has a winning strategy for Gv, then µ∗(A) ≤ v.

Proof. Let τ be a winning strategy for II for Gv.

Let δ > 0. We shall prove that µ∗(A) ≤ v + δ.

By induction on `h(p), we define a new notion of an acceptable p ∈ 2<ω, and we
associate with each acceptable p a position ψ(p) in Gv that is consistent with τ and is
such that `h(ψ(p)) = 2`h(p) and π(ψ(p)) = p. When p is acceptable and extends q,
then q will be acceptable and ψ(p) will extend ψ(q).

The initial position ∅ is acceptable, and ψ(∅) = ∅.

Assume that p is acceptable and that ψ(p) is defined. Let v p be the v`h(p) ofψ(p).
For e ∈ {0, 1}, set

u p(e) = inf{h(e) | h is legal at ψ(p) ∧ τ(ψ(p)_〈h〉) = e},

where we adopt the convention that inf ∅ = 1.

We first show that
1

2
u p(0)+ 1

2
u p(1) ≤ v p.

If this is false, then there is an ε > 0 such that the move h given by h(e) = u p(e)− ε

is legal at ψ(p), an impossibility by the definition of u p.

We define p_〈e〉 to be acceptable just in case u p(e) 6= 1. For e such that p_〈e〉 is
acceptable, let h p,e be legal at ψ(p) and such that

h p,e(e) ≤ u p(e)+ 2−(`h(p)+1)δ and τ(ψ(p)_〈h p,e〉) = e.

Then set
ψ(p_〈e〉) = ψ(p)_〈h p,e, e〉.

For e such that p_〈e〉 is not acceptable, let h p,e = 1. Note that the inequality h p,e(e) ≤
u p(e)+ 2−(`h(p)+1)δ holds for these e also.
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Define f : 2<ω → (0, 1] by

f (p) =
{
v p if p is acceptable;
1 otherwise.

For acceptable p with `h(p) = n,

1

2
f (p_〈0〉)+ 1

2
f (p_〈1〉) = 1

2
h p,0(0)+ 1

2
h p,1(1)

≤ 1

2
(u p(0)+ 2−(n+1)δ)+ 1

2
(u p(1)+ 2−(n+1)δ)

≤ v p + 2−(n+1)δ

= f (p)+ 2−(n+1)δ.

Note that the inequality 1
2 f (p_〈0〉) + 1

2 f (p_〈1〉) ≤ f (p)+ 2−(n+1)δ holds trivially
for unacceptable p with `h(p) = n.

As before, say that x ∈ 2ω is acceptable just in case all p ⊆ x are acceptable. For
acceptable x , let ψ(x) be the play of Gv extending all the ψ(x � n). If x is acceptable
then x /∈ A, since ψ(x) is consistent with the winning strategy τ .

The set C of all acceptable x is a closed subset of the complement of A. It is easy
to see by induction that, for all n,

6`h(p)=n2−n f (p) ≤ v + (2n − 1)δ/2n.

Since f (p) ≥ 0 for all p and f (p) = 1 for unacceptable p, it follows that, for all n,

µ({x | x �n is unacceptable}) ≤ v + (2n − 1)δ/2n.

But this means that µ(C) ≥ 1 − v − δ and so that µ∗(A) ≤ v + δ.

Note that the proofs of both our lemmas go through unchanged if we modify Gv so
that the values of the hi are required to be rational.

If all Gv are determined, then the given set A is Lebesgue measurable and

µ(A) = sup{v | I has a winning strategy for Gv}.

Thus our arguments show that AD implies that all sets are Lebesgue measurable. More-
over the complexity of the Gv is essentially the same as that of A, so our proof is “local”
in the sense mentioned earlier.
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