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GENERALIZED GEVREY CLASSES AND
MULTI-QUASI-HYPERBOLIC OPERATORS

Abstract. In this paper we consider generalized Gevrey classes défined
terms of Newton polyhedra. In such functional frame we prateeorem
of solvability of the Cauchy Problem for a class of partidfetiential op-
erators, called multi-quasi-hyperbolic. We then give ailtasf regularity

of the solution with respect to the space variables and firzadblyze the
regularity with respect to the time variable.

Introduction

It is well known from the Cauchy-Kovalevsky theorem that @&uchy Problem for
partial differential equations with constant coefficieot@nalytic coefficients, and an-
alytic data admits a unique, analytic solution.

But there are problems that are @*° well-posed, i.e. starting witE> data, there is
not aC® solution. In these cases it is natural to consider the bebawif the operator
in the Gevrey classe&®,1 < s < oo (for definition and properties see for example
Rodino [11]). Solvability of the Cauchy Problem in Gevreyasps has been obtained
for a class of partial differential operators with consteoefficients, the so called s-
hyperbolic operators.

More precisely, we recall the following definition and theresponding result, for the
proof see Cattabriga [3], Hormander [9], Rodino [11].

DEFINITION 1. Let's consider partial differential operators iR"*! = R; x RY,
non-characteristic with respect of the t-hyperplanes, dgerators that can be written
in the form:

m—1
(1) P(Dt, Dx) = D{" +  _ aj(Dx) D}
j=1

with order(aj(Dx)) <m— j.

We say that D) is s-hyperbolic (with respect to the t variabld),< s < oo, if its
symbol satisfies for a suitable € 0 the condition:

it ama ZT;Ol aj(&)xl =0 for(r,£) e Cy xR}, then I > -C(1+ |§|%)-
In the casexx > —C we say that PD) is hyperbolic.
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THEOREM1. Let P(D) be a differential operator ifR; x R} of the form(1) and
let P be s-hyperbolic with respect to t, with< s < co. Letl < r < s and assume
fk(x) € GHRY) fork = 0,1,...,m — 1. Then there exists a Gevrey functioneu
G' (R"+1) satisfying the Cauchy Problem:

) P(D)u = Df'u+ Y13 8 (Dx)D{u =0

DKu(0,x) = fx(x) Vx eR",Vk=0,1,...,m—1
In the case RD) is hyperbolic , we have the corresponding result of existéndhe
C®° class.

The previous Theorem 1 can be extended to operators withhlarcoefficients,
for example we refer to the important contribution of Brais{2].
Here, remaining in the frame of constant coefficients, wetw@extend the previous
theorem in order to assure the solvability of the Cauchy rabor a larger class of
data.
To this end, we define generalized Gevrey clagg®8, 1 < s < oo, based on a
complete polyhedro®, following Zanghirati [13], Corli [6], and give equivaledefi-
nitions of these classes (for details see Section 1).
Let us observe tha®s ¢ GSP. The classe&SF allow to express a precise result of
regularity for the so called multi-quasi-elliptic equat®) defined in terms of the norm
|&|p associated t®, see Cattabriga [4], Hakobyan-Margaryan [8], Boggiattez&no-
Rodino [1] and the subsequent Section 1.
We then introduce a class of differential operators withstant coefficients, modelled
on a complete polyhedrdh, that is natural to name as multi-quasi-hyperbolic opera-
tors.

DEFINITION 2. Letl < s < oo and letP be a complete polyhedron. We say that
a differential operator with constant coefficientsi®] x Ry of the form(1) is multi-
quasi-hyperbolic of order s with respect®if there exists a constant € 0 such that
for (1, &) € C x R" the condition:

m—1
PO & =2"+ ) aj@nl =0
j=0
implies:
1
Sh = —Clélp

where|&|p is the weight associated 8 as in Section 1.

The algebraic properties of the symbol of multi-quasi-hippdic operators will be
studied in Section 2, where we shall also give some examples.
Since|é|p < const(1+ |£]), the previous definition implies s-hyperbolicity; thenefo
we may apply td? (D) the previous Theorem 1 and conclude the well-posednes3 of (2
in G" with r < s. However, for multi-quasi-hyperbolic operators of ordexe have
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the well-posedness of the Cauchy Problem in the largeresa@®s”, r < s. More
precisely, in Section 3 we will prove the following theorem:

THEOREM2. Let P(D) be a differential operator ifR; x R} as in(1)and let P be
multi-quasi-hyperbolic of order s with respect to a comgleslyhedrorP in R", with
1 <s<oo. Letl <r < s and assumegfe GBP(RQ) fork=0,1,...,m—1. Then

there exists t, -) € G'7(RD) for t € R satisfying the Cauchy Proble().

This gives a regularity of the solutianwith respect to the space variables. To test
the regularity with respect to the time variable, we needdfing a new polyhedron
P’ that extends the polyhedrdd to R™1. We shall then be able to concludee
G'P'(R"1), see to Section 4 for details.

1. Complete polyhedra and generalized Gevrey classes

A convex polyhedrorP in R" is the convex hull of a finite set of points &". There
is univocally determined b a finite setV(P) of linearly independent points, called
the set of vertices dP, as the smallest set whose convex hutpis

Moreover, if P has non-empty interior, there exists a finite set:

N(P) = No(P) UN1(P)

such that :

lv| =1,Vv € Mp(P) and

P={zeR"W-z>0,Vv e No(P) Av-Zz<1VveNi(P)}.

The boundary of° is made of faces, of equation:

v-z=0 ifveNg(P)
v-z=1 ifveN(P).

We now introduce a class of polyhedra that will be very usiftthe following.
DEFINITION 3. A complete polyhedron is a convex polyhedforr R!} such that:
1. V(P) c N" (i.e. all vertices have integer coordinates);

2. the origin(0, 0, . .., 0) belongs taP;

3. dim(P) =n;
4. No(P) = {er, e, ...,en}, withe = (0,0,...,0,1j_th,0,...,0) € R" for
i=1...,n

5. N1(P) C R

We note that 5. means that the s€(x) = {y e R"0O<y <x}CP ifxeP
and ifs belongs to a face gP andr > sthenr ¢ P.
We can consider also polyhedra with rational vertices abtef integer vertices, as in
Zanghirati (see [13]); the properties below remain valid.



76 D. Calvo

PROPOSITIONL. LetP be a complete polyhedron " with natural (or rational)

vertices§ = (8, ...,9), | =1,...,n(P), where (P) is the number of the vertices
of P, then:
1. forevery j=1,2,...,n, thereis a vertex's of P such that:
(0,...,0,s|jj,0,...,0) =s|jjej, sljj = maxsj =: m;(P).
seP

2. there is a finite non-empty s&f(P) c Q7 \{0} such that:

P= () (seRl:v-s<1y

veN1(P)
3. forevery j=1,...,n thereis at least one € N1(P) such that:
mj = m;(P) = v;';

4, ifse P, then:
n(P) | n
.
e <> e (e=T1¢" |-
=1 j=1

The proof is trivial and we need only to point out that 4. is aseguence of the
following lemma, for whose proof we refer to Boggiatto-BapaRodino [1], Lemma
1.1.

LEMMA 1. Given a subset AC (Rg)” and a linear convex combinatiofi =
Y wea Catt, then for any xe (Rar)” the following inequality is satisfied:

(3) X<y ex®

acA

We now give some notations related to a complete polyhefron
Let's denote byZ(P) the cardinality of the smallest s@t1(P) that satisfies 2. of
Proposition 1.

We denote:

Fo(Py={seP:v-s=1}, Vv e N1(P) aface ofP;

F = Uyenyp) Fv(P) the boundary of;

V(P) the set of vertices dP;

SP={seR:61seP}, §>0;

ks, P) =inf{t > 0:t7Is e P} = maxenypyv-s. seRL.
Now let’P be a complete polyhedron, we say:

i (P) = Max,eny ) vi s

n=pn(P)=maxj—1, nuj theformalorderofP,

1@ (P) = min,cypy o) Iyl the minimum order of;
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n®P(P) = max,cpp) ly|  the maximum order oP;
_ (#™P w(P) \.
aP) = (m(P)’ " P )
1
&lp = (Zsev(P) £%)2 Ve e R"  the weight of¢ associated to the polyhedréh
Considering a polynomial with complex coefficients, we cagard it as the symbol of
a differential operator, and associate a polyhedron tsiin @éhe following.

DEFINITION 4. Let P(D) = ngmca D%, ¢, € C be a differential operator
with complex coefficients iR" and P(§) = stm C.£%, & € R" its characteristic
polynomial. The Newton polyhedron or characteristic pelgton associated to )
is the convex hull of the set:

0} Jlw ez 1cy #0).
There follow some examples of Newton polyhedra relatedfterdintial operators:

1. If P(¢) is an elliptic operator of orden, then its Newton polyhedron is complete
and is the polyhedron of vertic¢8, mej, j =1,...,n}andsoP = {§ e R" :
£>0 YL & <m}.

The setV1(P) is reduced to a point:
=m1 ij=1 ej =m....,mY,
mj(P) = uj(P) = QO P)=puPP)=pnP)=m, j=12...n
qgP)=({1,1,...,1; )
ks, P)=mts|=m 3" ;sj, seR].

2. If P(¢) is a quasi-elliptic polynomial of orden (see for example Hormander
[9], Rodino [11], Zanghirati [12]), its characteristic gbledronP is complete
and has vertice), mjej, j =1,...,n} wheremj = m;(P) are fixed integers.
The set\1(P) is again reduced to a point:
v=3Y]_,me.

{seR“-s>OZJ 1m g <1y
HJ (P) = mj, i=1,.
pO(P) = minj_y,__,
u(P) = uD(P) = maxj—1,
Q(P):(mﬂl,-.-,mﬂn
k(s,P) = u(P)~1q-s, seR.
In this case the unique face Bfis defined by the equation:

1 1

—X1+...+—Xn=1
m]_ mn

We note in general thatbelongs to the boundary &fs, P)P andk(s, P) is univocally

determined for complete polyhedra.

k(s, P) satisfies the following inequality that will be very usefnlthe following:

n
(4) F k(s P) < | (0) < |S|, Vs e R_,’_ .
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We remember (see [1]) that the polyhedron of a hypoelliptilypomial is complete,
but the converse is not true in general.

We now introduce a class of generalized Gevrey functionscésted to a complete
polyhedron, as in Corli[6], Zanghirati [13].

They can be regarded as a particular case of inhomogenests/Gasses with weight
A(§) = |&]p, in the sense of the definition of Liess-Rodino [11], and carxpressed
also by means of the derivativesiof

Following Corli [6] we give the following definition:

DEFINITION 5. Let’P be a complete polyhedronR". Let$2 be an open set iR"
andse R, s> 1. We denote by & () the set of all ue C*®(2) such that:

) VK ccQ, 3C>0:
IDYU(x)| < CleHl(uk(a, P)K@P) | vo e 77, Vx € K.

We also define:
G (@) = GSP(2) NCF(Q).

The space&S” () can be endowed with a natural topology. Namely, we denote by
C*®(P, s, K, C) the space of funcions € C*(£2) such that:

supp C K
lullk.c = SURyezn SUBck C 1! (1k(a, P)) =P D*u(x)| < oo

(6)
With such a normC>° (P, s, K, C) is a Banach space. Then:

@)= [ [Jc®®P.sK.C

KccQC>0

endowed with the topology of projective limit of inductivienit.

REMARK 1. If P is the Newton polyhedron of an elliptic operator, tHe#" (2)
coincides withG3(£2), the set of the standard s-Gevrey functionfin

REMARK 2. If P is the Newton polyhedron of a quasi-elliptic operator, then

GP(Q) = G34Q), whereq = (ﬂ, e ﬂ)
ml mn

the set of the anisotropic Gevrey functions, for definitiee $iérmander [9], Rodino
[11], Zanghirati [12].

REMARK 3. We have the following inclusion:
s—L- P sS4
G cG” cGH?, Vs>1 VP

as follows immediately from Definition 5 and the inequaliy.(
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We give now equivalent definitions of generalized Gevregsias.
The arguments are similar to those in Corli [6], Zanghira8][ but simpler, since for
our purposes we need to consider only classes for1; to be definite, we prefer to
give here self-contained proofs.
Let P be a complete polyhedron " and let K be a compact set R".

DEFINITION 6. If v € N1(P), let:
Cwv)y={ae Z:‘_ “K(a, P) = a - v}
C(v) is acone ofZ!} and C(v) (| F = F,. This means that(k, P) Lo e F,.

LEMMA 2. Lets> 1, there is a functiory € C3°(R") such that:

o x(X)=1 xeKkK,
ID*x| < C(CNS™*V if-v <N, YN=1,2,..., Yv e N1(P).

Proof. Everyu € G3(R") satisfies the conditions 7. In fact, everye G§(R") satis-
fies:
[IDu(x)| < cCl*l|g sl < cclINSlif |o| < N.
Infact,asO<vj <L Vj=1,...,n, Vv € Ni(P) anda - v < ||, we get:
| < « - vmax(vj)*l =a-vu

le] < N=a-v<N.

So, takingR = C#u#*, we obtain:

ID¥u(x)| < C(RN*)*Y vy e N1(P), Va i a-v < N.

Then we can proceed as in tA&° case to construgt € G3(R") such thaty = 1 in
K.
O

LEMMA 3. With the previous notations, if & GSP(R"), then takingy as in
Lemma 2, we obtain the estimate:

CNs N
8 XU <C|— N=12,...
® 7)1 = (7 ) 2
Proof. By Leibniz formula we can write:
o _
ID*(xwl < Y (ﬁ>|D°‘ P xIIDPul
B=<a

Let's choose any < «, thenp € C(v) for somev € N1(P) (not necessarily unique)
and for thatv we get:

sup |DP x(x)| < C(CN)P
xeSUPx
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and by Lemma 2:

sup |D*x(x)| < C(CN¥)@F
xeSUppx
ifa-v<N, N=1,2,...
So we get:

sup . 1D~ x 001IDPu(x)| < CCN) =Pk, pyysik B
Xe

< C(C NS @=B)vCy (Coupk(B, P))SHKE-P)

1

as|B| < uk(B, P), taking C; = C;.

But we have supposed thiat, P) = 8- v andf < «, moreoverr - v < N implies
B -v < N. We now proceed to estimate:

sup DY Py (x)||DPu(x)| < C'(CNSH)©@=Pv(C NSy~
xeSUPx
S C/(C// NS,LL)O(-])

Va, ifa-v < N, Vv e N1(P), N =1,2,.... TakingC” = maxXC, C;}, using the
linearity of scalar product and observing that:

(@=B)-v+B-v=a-v,
k(a, P) = maX{e - v, v € N1(P)}

we get the inequality:
D% (xu)| =< C'(C"N%KP).

On the other hand we have:
D% (xw)| =| f e 5D (yu)|
< [ DGl =C sup D)
SUpp SUppx
asy has compact support. Using the properties of the Fouriastoam we conclude:

ID¥ (xU)| = [E%XT] < C sup |D*(xu)| < C(CNS)»kP),
SUpx

Let nowa = vN, for anyv € V(P), the set of vertices P, summing up the previous
inequalities fowx = 0, @ = vN, Vv € V(P), we obtain:

IXUEIN¥N + Y xu@eN| < c(CNHN.
veV(P)
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Using the following inequality:
3 NNt < gt < 20PIN=D NN
veV(P) veV(P)

wheren(P) denotes the number of vertices®fdifferent from the origin.
So we can conclude that:

C(CNs)~#N
NN + 3 sevp) 85N

IXu®| =<

C(CNS uN C’/NS uN
= ( )‘s‘N“' < /(m) ) N :1, 2, .
NSsiN WEN&) P

O

THEOREM 3. Let Q be an open set ilR", xop € Q, u € D'(Q), then u is of
class G7 in a neighborhood of if and only if there is a neighborhood U of and
ve&(Q)orve S (R such that:

1.v=uinU

2. v satisfies:

CNS uN C’'N suN
(©) Iﬁ(s)lsc<|§| ) =C|— ., N=12....
P 3

REMARK 4. The previous Theorem 3 admits the more general formulatio
LetK cc Q,u e D'(RQ), thenu is of classGS” in a neighborhoot of K if and only
if there isv € £'(Q) orv € S'(R™), v = uin U such that) satisfies the estimate (9).
The proof is analogous to that of Theorem 3.

Proof. Proof of necessity: Lat € G intheset{x : [x —x% <3r}, 0<r <1, X
asin Lemma 3, withK = {x : [Xx — Xg| <r}and supp C {X:|X — Xp| < 2r}. Then
the functionv = yu satisfies conditions 1.,2. of the theorem.
Proof of sufficiency:
Letv € £'(Q) satisfy the conditions 1.,2.. Then there are two constittsC > 0
such that:
19&)] < C@+ [5)Mo.

So:

D& < CIElp, M= puMo
Let's fix @ € Z, the integral( |£%0(&)|dé converges by condition 2..
By 1.,ifx € U, then:

DYU(x) = (zn)—“/eixfgaﬁ(s)dg .
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Now we use the property:
ki
(10) 691 < |1

In fact, givena: € Z1, then% € F and so, by the definition of convex hull, told
I | ; ' : .
s1, ..., s" the vertices of the face wheﬁ%ff—m lies, we have:

)
a=k@P)d xs', Y a=1 =0,

i=1 i=1

and hence by Lemma 1:

n r n | ke, P)
) ']
g =[T1E"1=d s ]1®
j=1 i=1 j=1
(11) n | %k(a,P)
25 K(a, P
<| > Jler™ < gl

devP) j=1

Now, splitting the integral into the two regions:

l5lp < N°  |&lp > N°

we get:

IDYu(x)| < 27) "1+ NS)M+Suk(o:,73)/ de
|Elp <NS

FOCNYN [ et PN

&1p>NS

The first integral is limited for aIN and the second converges for lafgenamely we
setN = k(a, P) + Rfor R depending only of® andM. Then:

ID*u(x)| < C'(C'uk(a, P) + R)SHK@P)+R)
implies:

IDaU(X)| < C‘a|+l(/1¢k(0l, P))S;Lk(a,'P)'

O

We now give a characterization of generalized Gevrey fonstby means of expo-
nential estimates for the Fourier transform, that is pdesits > 1 and will be of main
interest in the proof of Theorem 2.
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THEOREMA4. 1. Letue GEP(R”), then there exist two constants0, ¢ >
0 such that:

1
(12) la(§)] < Cexp(—elélp);

2. if the Fourier transform of ue &'(R™), or u € §’'(R") satisfieg(12), then ue
GS’P(RH)_

In the proof of Theorem 4 we shall use the following lemma:

LEMMA 4. The estimates:

N
(13) la) <c T ., N=12
1§15
are equivalent to the following:
N
(14) @) < CNTINNELS, N=1.2,...

for suitable different constants € 0 independent of N.

The proof of the lemma is trivial and based on the inequalitié! < NN WN =
1,2,... andNN < eNN!I. Now we prove Theorem 4.

Proof. Let's suppose thall € GSP(R“), then taking supp C K in Remark 4, we

obtain:
N

oL
lagss <C

i , N=12 ...
€13,

Then by the previous lemma,satisfies for a suitable consta®t > 0:
e AN+ -5
lag)|s < (CH™* NIElp®

and fixinge = »& we get:

N
1y lEls
1] S < ——.
jace) N < ooy

SummingupfolN =1,2,...:

ot Foleh 251

N=0



84 D. Calvo

and hence: )
s oL i
[G&) [ expelélp) <

So we obtain for a suitable constait> O:

L

1 1
|0(§)| < Cexp—esulé|3) = Cexp—€'§]3)
lettinge’ = esu.
If u e & (R") satisfies:

N 1 € 1\\*®
la)| < Cexp(—el§lp) =C (exp(—Elél%))

then:
. 1 € i Ci
us — < Cuns
[I63] exp(us|s|p>_

Hence, by expanding the exponential into Taylor series we:ha
~ 1
1 S
> |0(s>|~—s(e’>N'il—'{’ <cC
N=0 '

i r—cl o _ e
with C _CMS, € =5

This implies:

wlz

NER _ o
=P <

A~ 1 /
A1) ™=

and hence for a new constadt> 0:

suN
CN
a@)| <’ ( )
€15,

that means that € GSP(R") as the conditions of Theorem 4 are satisfied in a neigh-
borhood of anyp € R".

O

2. Multi-quasi-hyperbolic operators

For any complete polyhedrof we define the corresponding class of multi-quasi-
hyperbolic operators, according to Definition 2. For sherg denote multi-quasi-
hyperbolic operators of ordemwith respect tdP by (s, P)-hyperbolic.

Obviously, if P(D) is multi-quasi-hyperbolic of ordes > 1 with respect td?, P(D)

is also multi-quasi-hyperbolic of order Vr, 1 < r < swith respect tdP.

We now prove some properties for this class of operators.
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PrRoOPOSITION 2. If P(D) is (s, P)-hyperbolic forl < s < oo, then for any
(A, &) € C x R"such that RA, £) = 0, there is C> 0 such that:

1
(15) 30] < CIEIS.

Proof. The coefficient ofA™=1 in P(1, &) is a linear function of. If the zeros of
P(x, &) are denoted by, it follows thatzgnzl)\,j is a linear function of. Then also

ij=1 JAj is alinear combination df, and if P(D) is (s, P)-hyperbolic, then:

1
J4j = —mCig[5,

m
=0

J

implies ZT‘:O JAj = Cp for a suitable constar@y. So we obtain for alky root of
P, 8): . .
Shk=Co— ) ij < Co+C(m—1§|3 < ClEl5 -
j#k
That completes the inequality:
|| < C|s|§>

for all rootsiy of P(4, &).
O

PropPOSITIONS. If P(D) is (s, P)-hyperbolic forl < s < oo, then the princi-
pal part Ry(D) of P(D) is hyperbolic, i.e. the homogeneous polynomigl(B &)
satisfies:

(16) Pn(h,£) =0 (1, &) e CxR"= J1=0.
Proof. Takingo > 0, A € C, £ € R", we get:
Pn(A,€) = lim P(oA,08) -0 ™
o —>0Q

From Proposition 2 the zeros 8f(o A, 0&) must satisfy:

1

log |3

|3k < C—F
o

Sofore — oo, 31 = Oforallthe roots. € C of Pn(2, &), thatisPyn(D) is hyperbolic.
O

PrRopPoOsSITION4. Foradifferential operator R (D) associated to an homogeneous
polynomial B, (%, &), the notion of hyperbolicity an¢s, P)-hyperbolicity coincide.

The proof follows easily from Proposition 3.
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PrRoOPOSITIONS. Let P(D) be a differential operator of the form:

m—-1
(17) P(D) = Pn(D) + Y _ aj(Dx)D{
j=0
with homogeneous principal part:
m—1 )
(18) Pm(D) = D{" + ) bj(Dx)D{,
j=0
with:
order(bj(Dy)) =m— j
order(@j(Dy)) <m—j—1
and assume:
(19) Pn(x, ) =0 forreC, & € R" impliesSA =0
laj (&) < CEIp A+ &p~ for j=1,....m—1
(foraC > 0).
Then RD) is (721, P) hyperbolic.

Proof. By definition, the termsij (Dx), bj(Dy) satisfy for a suitabl€ > 0:

[bj (€)| < Cl&|™]

20 i

(20) 2y (6)| = Clé ™I,

In the region{e|A| > |&|} (for ¢ > O sufficiently small), the following inequality is
satisfied:

m-1 o m
P _m m=J ) __
IP(A,8) — 4 |5C§ ST <
j=0
that implies:

)\m

PO, —

PG O > =

and consequentl? (A, £) can’t have roots in this region and the roots must so satisfy
fore > 0:

(21) Al < e gl

On the other hand, fai, &) such thatP (A, &) = 0:

m-1
Pn(%, &) = —(P — Pm) (A, £) = — Y aj(é)rl.
j=0
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In view of the estimates (21) and (19), we obtain:

m—1 m—1
P, ) < Y laj@lall <C Y 55 A+ gD~ Al
j=0 j=0

m-1
<C Y ERTA+iEp g < cglpt
j=0
In view of the hyperbolicity o, we can write:
m
Pn(x.8) = [[(—2j). &) eR.
j=0

Hence:
3™ < |Pn(x, £) < Cjgl5 T

m-—1
~ Myis1 m
354 < C" |2

i.e. P(D) is (=2, P) hyperbolic.

m—1>
O

. -PROPOSITIO-N.G. Any differential operator PD) = D" + ZT;ol a; (Dx)Dtj sat-
isfying the condition:

(22) laj&l<Clefn '™ j=01...,m-1forC>0

m

is (=1, P) hyperbolic.

We note that the principal part is on{" and is obviously hyperbolic; Proposition
6 states that in this particular case we may replace (19) thighveaker assumption
(22).

Proof. By the estimates (22) we have:

A

m-1
PO E)—AM <C m=i=4
IPGL.&) =AM =C Y lelp A < =

j=0

in the region{(A, £) € C x R" : |§|p < €|A|} for a sufficiently smalk > 0.
ConsequentlyP (A, &)| > % andP (A, &) can't have roots in this region and so they
must satisfy:

(23) Al < e HElp.
For(x, &) such thatP(), &) = 0, we write:

m-1
M= —(P(,£) — 2™ =) ajEnl .

j=0
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In view of the estimate (23) for and (22) fora; (£):
m-1 ] .
™ < > lElp Tl < cjglpt
j=0

Hence:
~1q (m /e m=1
3™ < C”g IR
" m-1
~ m
I3 < C”[€l g

i.e. P(D) is (==, P) hyperbolic.

m-—1°

O

REMARK 5. A more general version of Proposition 6 is easily obtaibgdas-
suming as in Proposition 5 th&(D) has hyperbolic homogeneous principal part
Pm(D) = Y_]"5 bj (Dx) D{ with:

(24) lbj@®l<Cllp ', j=01,....m-1

and keeping condition (22) for the lower order terms.
Observe however that (24) implieg(é) = 0, but in the quasi-homogeneous case.

There follow some examples of multi-quasi-hyperbolic @pers, that follow from
the previous propositions.

1. If P(D) is a differential operator ifR" with symbolP(¢) and Newton polyhe-
dronP of formal orderu, then the differential operator R+

Q(D) = D" + P(Dx),

with m > u, is multi-quasi-hyperbolic of ordé}j with respect taP.
In fact, the roots of the symbol & (D) satisfy:

M
34| < ClLn.

2. A particular case of Proposition 5 is the following:
if P is the polyhedron ifR? of vertices(0, 0), (0, 2), (1, 0), thenu = 2 and the
following operator:

P(Dx, Dt) = P3(Dx, Dy) + C1D, + C2Dy,; + C3Dy, + C4D; + Cs

where P3(Dy, Dt) is an hyperbolic homogeneous operator of order 3 and
Ci, ..., Cs € C, is multi-quasi-hyperbolic of orde? with respect tdP.
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3. Another particular case of Proposition 5 is the following
if P is the polyhedron ifR? of vertices(0, 0), (0,3), (1,2), (2,0), then the
formal orderu = 4 and the operator of order 4:

P(Dy. Dx) = Ps4(Dt, Dx) + €1D, + C2Dx, D, + 3Dx, Dt
+ €4Dy; + c5Dy, 4+ CsD¢ + C7

where P4(Dy, Dt) is an hyperbolic homogeneous operator of order 4 and
Ci, ..., C7 € C, is multi-quasi-hyperbolic of ord%’ with respect tdP.

4. Let P(D) be a differential operator iiR" with symbol P(¢), then we consider
the differential operator ilR"+1:

Q(D) = (D? + Ax)™ — P(Dy)

with order P(D) < 2m.
The roots of the symbol o (D) satisfy:

(A2 — DM - PE) =0
and then, denoting by(g)% the generian — th root of P(§):
~ 2 11
L=+ P()m|2sem
where forg > 0:
~ye2 1 1
JE“+PE)m) - [P(&)[m
RE2+PE)m) €12

We consider the first term of the Taylor expansion to estiraate:

tg20 =

IP(&)|m
212
1
P)m
B

serd <C

IJAl < C

Let P’ be a given complete polyhedron. If for some< 1 we have:

P@)Im <CIElh 18] el

(25) 7
IP©)| < CIs5 €™

then Q(D) is multi-quasi-hyperbolic of orde} with respect toP’. If we con-
sider in particular the Newton polyhedron associatel By ) with formal order
w < 2m, thenQ(D) is multi-quasi-hyperbolic of orde, but we can consider
also a larger class of polyhedra satisfying condition (5591 in any case stronger
with respect to what we may deduce from Proposition 5.
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3. Proof of Theorem 2

Now we prove Theorem 2.
Proof. We try to satisfy the Cauchy Problem:

P(D)u = Df'u + Y p5- a(Dx) Dfu = 0
DKu(0,x) = fu(x) Vx eR",Vk=0,1,...,m—1

by a functionu(t, x) such thau(t, x) € S(RY) for any fixedt € R.
We apply partial Fourier transform with respectdoconsidering as a parameter, so
the Cauchy Problem admits the following equivalent forrtiata
(26) P(Dr. £)0 = D"+ Y1 a(6)D{ 0 = 0

DKQ(0, &) = f(6) VEeR", k=0,1,...,m—1
This makes sense dghave compactsuppokk = 0,1, ..., m—1andu € S(R"), vt
fixed.
Now we consider the Cauchy Problem (26) as an ordinary éiffiasl problem int,
depending on the parametgerA solution to problem (26) is given by:

m—1
(27) at,&) =Y fi@&F &),
j=0

whereFj(t,&), j = 0,1....,m — 1, satisfy the ordinary Cauchy Problem pude-
pending on the parametgre R":

P(D, £)Fj =0

(28) ke A
Dt FJ(Ov‘%—):Sjk k=0,1,....m—-1

wheredjk denote the Kronecker delta.

The solution of (28) exists and is unique by the Cauchy thedi@ ordinary dif-
ferential equations, and the functiondefined in (27) gives indeed a solution to the
Cauchy Problem (26), as is easy to check. Now we want to eifBg u(t, x)| or,
equivalently,l(t, £)| to obtain generalized Gevrey estimates with respect toghees
variables.

By assumptioanj &) € G[)P(R”), so, in view of Theorem 4,(1), there are constants
€j,Cj >0(j=0,1,...,m—1) such that for every € R":

- 1 1
|fj(€)] < Cj exp(—¢jl£]5) < Cexp(—el&[5).
taking:
C=maxCj, j=0,...,m—1},
e=maxej, j=0,...,m—1}.

To estimateF; we use the following lemma (for the proof see for example-Hor
mander[9], Lemma 12.7.7).
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LEMMA 5. Let L(D) = D™ + ZT:_& aj D! be an ordinary differential operator
with constant coefficientsjae C. Write A = {A € C: L(%) = 0} and assume:

max|i| < A,
AEA

(29)
max|Jx] < B fori € A.
rEA

Then the solutions; (t), j =0, 1,..., m— 1 of the Cauchy Problems:
L(D)v; =0

(30) N .

satisfy the following estimates:

IDNwj (t)] < 2™(A 4 [N+MHLgBHDI

31
(1) N=01...,teR.

We now apply the estimates of Lemma 5 fdr= 0 to the functiongFj(t, &) in
(28),j =0,1,...,m— 1, takingé as a parameter. P(D) is (s, P)-hyperbolic, then
3C’ > 0 such that the roots d? () satisfy:

1
~ / s
3] < CES,

1
consequently we may take = C'|&| .
Now we determine A. Let’s consider the characteristic potyial of P:

m—1
POLE) ="+ ) aj)n)
j=0

wherea; () is a polynomial of degree at most equahto- j. So there are constants
Cj such that:

laj(&)] < Cj(1+ &)™ ).

It follows easily that fore > 0 sufficiently small the zeros d? (1, &) cannot belong to
the region{(1 + |£|) < €|A|} and must necessarily satisfy:

(32) A < e ta+ gD .
So we can take:
(33) A=e11+)

and estimate for a suitab® > 0:

1
(34) IFj(t, &) < (e 1L+ |E) + )™ ICexpClt] + DIE]S)
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By summing up the estimates fd'fy, Fj we get the following estimates far.

m-1
la. &) < > Ifi@IIF &)
j=0
(3%) | m-1 1 1
<C ) exp—el¢l]) expC(L+ [thIElS) -
j=0

By assumption; < s, and so! > 1 implies that:

1
S

lim "3'71’ =0
—+ B

Then there exist positive constait$ = C;(|t|), C, = C4(|t]) such that:

1 1 1
CA+IthIElp —€lélp = —CilElp +C5.

Hence we get the following estimate for

1
lact, &)| < C" exp(—C1l&[p).

So we have obtained thate G'” for anyt € R in view of Theorem 4,2). We observe
that the constants;, C” may depend oh, but are locally bounded, fot| < T, VT >
0.

([l

REMARK 6. We have supposed that- sto get the result of regularity. In the case
r = s, the regularity is only local in time, as evident from the\poeis computations.

4. Regularity with respect to the time variable

We know that the solution of the Cauchy Problem i€f ([—T, T], G'” (R™)), VT >

0 ; now we will discuss its regularity with respect to the tinegiable in generalized
Gevrey classes. To do so, it is necessary to extend the pilyhéo(n + 1) variables,
that is possible by means of the following proposition.

PROPOSITION7. Given a complete polyhedrgnin R", we definé®’ as the convex
hull in R™1 of the vertices ofP plus the vectoo, 0, ..., 0) with o € Q4+, 0 <
po < u, cf. figure. Ther' is a complete polyhedron iR™+! with the same formal
order u of P.
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The proof is trivial and follows immediately from the defioit of complete poly-
hedra and of formal order. Let's observe that it is not pdesib constructP’ with
a smaller formal order. Of course, one could take more thanaatditional vertex to
build P’; the construction in Proposition 7 represents the chegpesedure, which
could be easily iterated to extefito (n + m) dimensionsym.

DEFINITION 7. We call?’ in Proposition 7 an extension 6f in R™+1.

If the further vertex has coordinatég, O, ..., 0) with © denoting the formal order of
P, we say thaP’ is the maximal extension &f in R™+1,

PROPOSITIONS. LetP be a complete polyhedron " and letP’ be an extension
of P to R"1 by the additional verteXuo, 0, ..., 0). Then for any’ = (ap, o) €

n+1.
R}

(36) k@', P) = k(a, P) + % — Kk(a, P) + k(ao, R)
0

whereR denotes the one-dimensional polyhedi@ryo] in R.

Proof. Writing ag = %/Lo, we now computé&(a’, P) = k((ao, @), P’).

Let us write:

n(P)
o = k(a, P) Z tis
i=1
n(P)
S €V(P), Yt
ao

((XO’Oa"'aO):_
140

to=1,

140

=1 0<t<l1l i=1....,nP);

(10, 0, ..., 0) = tok(xo, R)S0,

(07
5= (u0.0,....0).
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We want to findk(a’, P’) such that:

P
_ / / | / /
(@0, @) =K@, P) | D ts +tyso

i=1
n(P)
b+ Y t=1 0<t <1.
i=1
On the other hand we have:
n(P)

o
(@0.@) = > k@ P)tis + —tos
i1 Mo

N L6

- <k(a, P) + —0) > s+t
o i1

with:

@0

kePn B
(keP)+ ) ° (kP +2)

Ho

tf =

n(P)
o+ Y t=1.
i=1
Sok(a/, P) = k(a, P) + f:—g is univocally determined a® is orthogonal taP.
O

We will prove first a theorem of regularity of the Cauchy Peghlwith respect to
the time variable in the particular case when the coeffisigf(t) satisfy the condition:
(37) laj&l<ClElp ! j=01...m-1
and then a theorem for geneggl&) which requires a further discussion on the relation

between the euclidean normRi"+1 and the weight associated to the polyhedron.

THEOREM 5. Under the assumptions of Theorem 2(3f7) is satisfied, then the
solution u of the Cauchy Proble(®) is of class G (R"*1) whereP’ denotes the
maximal extension d? to R"1,

Proof. We have to test the regularity afwith respect to the time variable. Let us go
back to the proof of Theorem 2. From (27) we have:

m-1
IDMA. &)1 < Y Ifj@IIDNFjt, )] .

j=0
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By Lemma 5, we can estimate:
(38) IDNFj(t, )] < 2MA+ DN exp((B + Dt)).

By the hypothesis of multi-quasi-hyperbolicity fex(D), as before we may take:

1
B=Cilélp .
To determine A we use the hypothesis (37) that implies:

m-1 m-1

i i

IPGLE =M = 1) ay@nl<C ) lelp 1) < —-
j=0 j=0

in the region{(A, £) € C x R" : |§|p < €|A|} for a sufficiently smalk > 0.
Consequently,P(x, &)| > % and the zeros oP (%, &) can't be in this region, so they
must satisfy:

|A| < Cl&|p, forC>O0.

So we can také\ = C|&|p and estimate:

1
ID{Fj(t, 6)] < 2™(ClElp) MM expCo(It] + D)IEIS)

1
< C(C'IEIp)N expCo(It] + DIEIS) -

Hence:

m—1

IDMac. &) < Y I @IIDNFi(t, &)

j=0
1 1
< C(C'Iglp)N expl(Ca(lt] + DIELS) — €l€]5).

Arguing as in the proof of Theorem 2, we obtain for a suitahle- O:

1
(39) ID{NG(, £)] < C(C|E1p)N exp(—e1|€] ).
Now we pass to consider the Fourier antitransform ofith respect to the space vari-
ables:

uct, x) = Fo 1 ad, €)

E—>X
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and estimate fost’ = («g, o):
ID*u(t, )| = [D{°Dyu(t, )| = | D{°FHE*act, )
— ID%[(21)" / Xt £)dé]|
Rn
=@ [ leibrac oide
1
<C@n) /Hé ) (€ ) expl—eel)de
1
<C@n ™ [ (Clelp) P expl-eafel e
Rn
S C‘O!|+Olo+1(uk(a’ P) + ao)l’(ﬂk(d,/]))‘l’ao)
where we have used (11) and we have followed the argumertie pfbof of Theorem

4 (2).
Letting P’ be the maximal extension @ in R"*1, by Proposition 8:

ke, P = k(a, P) + 0
m

So we can conclude that for a suitable cons@mnt O:
(40) ID¥u(t, x)| < k@@, P K@) vy e 2

that meansi € G''(R™1) as we wanted to prove.
[l

REMARK 7. Ifr = sthe regularity is only local in time andlis of classGS”" only
in the setit| < cil as to satisfy condition (39).

THEOREM 6. Under the assumptions of Theorem 2 the solution u of the Gauch
Problem is of class & (R™1), whereP’ is the extension oP to R"1 obtained
adding the vertex:

S0 = (10,0, ...,0), uo=pnO,
1@ = pO Py =minimj : mjej e V(P), j =1,...,n} = min,cppy o 17I-

Sinceug < w butin the elliptic case, the present result of regularityésaker than
the one expressed by Theorem 5 under the additional assam{Bi).

Proof. We proceed as in the proof of Theorem 5 to estimate:

m-1
(41) IDNA. &) < Y IfjEDNFy(t,£)] -

j=0
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From Lemma 5 we have:

(42) IDMF(t, ) < C(A+ DN exp(1 + B)|t|
where: )
B =Clél}
by the hypothesis of multi-quasi-hyperbolicity, and now:
A=C'(1+g]).

So arguing as in the previous proof we can estimate:
ID{0(t, )] < C§°+1(1 + &) eXp(—EIEIi)
and passing to the Fourier antitransform with respeét to
ID¥u(t, x)| = [D{°Du(t, X)|
< @7t [ eI+ €)% exploeli s,
Using the inequalities:
69 < g

1+ 15D < 132

we obtain:
! LO[O 1
ID¥uct, x)| < (2r) G0t /R BP9 expt—elel)d

Now we consider the vectar = (o, @) € R"1 and we define the extensid of P
to R"+1 as the convex hull oP | J{(10, 0, ..., 0)}.
By Proposition 8:

k@', P') = k(. P) + K(ao, R) = k(e P) + %
and therefore we can get the estimate:
IDY u(t, x)| < (27)~"Ceotl /Rn ke’ P eXp(—eléli)ds
< CLCY l(uk(@, P'y) ke P

We have obtained thate G'”' (R"+1) as we wanted to prove.
O

REMARK 8. Analogously to Theorem 5iif = s the regularity is only local in time
andu is of classGS”' (R") only in the seft| < ¢, with e > 0 depending on the initial
data.
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