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GENERALIZED GEVREY CLASSES AND

MULTI-QUASI-HYPERBOLIC OPERATORS

Abstract. In this paper we consider generalized Gevrey classes definedin
terms of Newton polyhedra. In such functional frame we provea theorem
of solvability of the Cauchy Problem for a class of partial differential op-
erators, called multi-quasi-hyperbolic. We then give a result of regularity
of the solution with respect to the space variables and finally analyze the
regularity with respect to the time variable.

Introduction

It is well known from the Cauchy-Kovalevsky theorem that theCauchy Problem for
partial differential equations with constant coefficientsor analytic coefficients, and an-
alytic data admits a unique, analytic solution.
But there are problems that are notC∞ well-posed, i.e. starting withC∞ data, there is
not aC∞ solution. In these cases it is natural to consider the behaviour of the operator
in the Gevrey classesGs, 1 < s < ∞ (for definition and properties see for example
Rodino [11]). Solvability of the Cauchy Problem in Gevrey spaces has been obtained
for a class of partial differential operators with constantcoefficients, the so called s-
hyperbolic operators.
More precisely, we recall the following definition and the corresponding result, for the
proof see Cattabriga [3], Hörmander [9], Rodino [11].

DEFINITION 1. Let’s consider partial differential operators inRn+1 = Rt × Rn
x,

non-characteristic with respect of the t-hyperplanes, i.e. operators that can be written
in the form:

(1) P(Dt , Dx) = Dm
t +

m−1∑

j =1

a j (Dx)D j
t

with order(a j (Dx)) ≤ m − j .
We say that P(D) is s-hyperbolic (with respect to the t variable),1 < s < ∞, if its
symbol satisfies for a suitable C> 0 the condition:

if λm +
∑m−1

j =0 a j (ξ)λ j = 0 for (λ, ξ) ∈ Ct × Rn
x, then =λ ≥ −C(1 + |ξ |

1
s ).

In the case=λ ≥ −C we say that P(D) is hyperbolic.
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THEOREM 1. Let P(D) be a differential operator inRt × Rn
x of the form(1) and

let P be s-hyperbolic with respect to t, with1 < s < ∞. Let 1 < r < s and assume
fk(x) ∈ Gr

0(R
n
x) for k = 0, 1, . . . , m − 1. Then there exists a Gevrey function u∈

Gr (Rn+1) satisfying the Cauchy Problem:

(2)

{
P(D)u = Dm

t u +
∑m−1

j =0 a j (Dx)D j
t u = 0

Dk
t u(0, x) = fk(x) ∀x ∈ Rn,∀k = 0, 1, . . . , m − 1.

In the case P(D) is hyperbolic , we have the corresponding result of existence in the
C∞ class.

The previous Theorem 1 can be extended to operators with variable coefficients,
for example we refer to the important contribution of Bronstein [2].
Here, remaining in the frame of constant coefficients, we want to extend the previous
theorem in order to assure the solvability of the Cauchy Problem for a larger class of
data.
To this end, we define generalized Gevrey classesGsP , 1 < s < ∞, based on a
complete polyhedronP , following Zanghirati [13], Corli [6], and give equivalentdefi-
nitions of these classes (for details see Section 1).
Let us observe thatGs ⊂ GsP . The classesGsP allow to express a precise result of
regularity for the so called multi-quasi-elliptic equations, defined in terms of the norm
|ξ |P associated toP , see Cattabriga [4], Hakobyan-Margaryan [8], Boggiatto-Buzano-
Rodino [1] and the subsequent Section 1.
We then introduce a class of differential operators with constant coefficients, modelled
on a complete polyhedronP , that is natural to name as multi-quasi-hyperbolic opera-
tors.

DEFINITION 2. Let 1 < s < ∞ and letP be a complete polyhedron. We say that
a differential operator with constant coefficients inRn

x × Rt of the form(1) is multi-
quasi-hyperbolic of order s with respect toP if there exists a constant C> 0 such that
for (λ, ξ) ∈ C × Rn the condition:

P(λ, ξ) = λm +

m−1∑

j =0

a j (ξ)λ j = 0

implies:

=λ ≥ −C|ξ |
1
s
P

where|ξ |P is the weight associated toP as in Section 1.

The algebraic properties of the symbol of multi-quasi-hyperbolic operators will be
studied in Section 2, where we shall also give some examples.
Since|ξ |P ≤ const(1+ |ξ |), the previous definition implies s-hyperbolicity; therefore
we may apply toP(D) the previous Theorem 1 and conclude the well-posedness of (2)
in Gr with r < s. However, for multi-quasi-hyperbolic operators of orders we have
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the well-posedness of the Cauchy Problem in the larger classesGrP , r < s. More
precisely, in Section 3 we will prove the following theorem:

THEOREM2. Let P(D) be a differential operator inRt ×Rn
x as in(1) and let P be

multi-quasi-hyperbolic of order s with respect to a complete polyhedronP in Rn, with
1 < s < ∞. Let1 < r < s and assume fk ∈ GrP

0 (Rn
x) for k = 0, 1, . . . , m − 1. Then

there exists u(t, ·) ∈ GrP (Rn
x) for t ∈ R satisfying the Cauchy Problem(2).

This gives a regularity of the solutionu with respect to the space variables. To test
the regularity with respect to the time variable, we need to define a new polyhedron
P ′ that extends the polyhedronP to Rn+1. We shall then be able to concludeu ∈

GrP ′
(Rn+1), see to Section 4 for details.

1. Complete polyhedra and generalized Gevrey classes

A convex polyhedronP in Rn is the convex hull of a finite set of points inRn. There
is univocally determined byP a finite setV(P) of linearly independent points, called
the set of vertices ofP , as the smallest set whose convex hull isP .
Moreover, ifP has non-empty interior, there exists a finite set:

N (P) = N0(P)
⋃

N1(P)

such that :
|ν| = 1,∀ν ∈ N0(P) and
P = {z ∈ Rn|ν · z ≥ 0,∀ν ∈ N0(P) ∧ ν · z ≤ 1,∀ν ∈ N1(P)}.

The boundary ofP is made of facesFν of equation:

ν · z = 0 if ν ∈ N0(P)

ν · z = 1 if ν ∈ N1(P).

We now introduce a class of polyhedra that will be very usefulin the following.

DEFINITION 3. A complete polyhedron is a convex polyhedronP ⊂ Rn
+ such that:

1. V(P) ⊂ Nn (i.e. all vertices have integer coordinates);

2. the origin(0, 0, . . . , 0) belongs toP ;

3. dim(P) = n;

4. N0(P) = {e1, e2, . . . , en}, with ej = (0, 0, . . . , 0, 1 j −th, 0, . . . , 0) ∈ Rn for
j = 1, . . . , n;

5. N1(P) ⊂ Rn
+.

We note that 5. means that the set:Q(x) = {y ∈ Rn|0 ≤ y ≤ x} ⊂ P if x ∈ P

and ifs belongs to a face ofP andr > s thenr 6∈ P .
We can consider also polyhedra with rational vertices instead of integer vertices, as in
Zanghirati (see [13]); the properties below remain valid.
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PROPOSITION1. LetP be a complete polyhedron inRn with natural (or rational)
vertices sl = (sl

1, . . . , sl
n), l = 1, . . . , n(P), where n(P) is the number of the vertices

of P , then:

1. for every j= 1, 2, . . . , n, there is a vertex sl j ofP such that:

(0, . . . , 0, s
l j
j , 0, . . . , 0) = s

l j
j ej , s

l j
j = max

s∈P
sj =: m j (P).

2. there is a finite non-empty setN1(P) ⊂ Qn
+\{0} such that:

P =
⋂

ν∈N1(P)

{s ∈ Rn
+ : ν · s ≤ 1};

3. for every j= 1, . . . , n there is at least oneν ∈ N1(P) such that:

m j = m j (P) = ν−1
j ;

4. if s ∈ P , then:

|ξs| ≤

n(P)∑

l=1

|ξsl
|


ξs =

n∏

j =1

ξ
sj
j


 .

The proof is trivial and we need only to point out that 4. is a consequence of the
following lemma, for whose proof we refer to Boggiatto-Buzano-Rodino [1], Lemma
1.1.

LEMMA 1. Given a subset A⊂ (R+
0 )n and a linear convex combinationβ =∑

α∈A cαα, then for any x∈ (R+
0 )n the following inequality is satisfied:

(3) xβ ≤
∑

α∈A

cαxα

We now give some notations related to a complete polyhedronP .
Let’s denote byL(P) the cardinality of the smallest setN1(P) that satisfies 2. of
Proposition 1.
We denote:
Fν(P) = {s ∈ P : ν · s = 1}, ∀ν ∈ N1(P) a face ofP ;
F =

⋃
ν∈N1(P) Fν(P) the boundary ofP ;

V(P) the set of vertices ofP ;
δP = {s ∈ Rn

+ : δ−1s ∈ P}, δ > 0;
k(s,P) = inf{t > 0 : t−1s ∈ P} = maxν∈N1(P) ν · s, s ∈ Rn

+.
Now letP be a complete polyhedron, we say:
µ j (P) = maxν∈N1(P) ν−1

j ;
µ = µ(P) = maxj =1,...,n µ j the formal order ofP ;
µ(0)(P) = minγ∈V(P)\{0} |γ | the minimum order ofP ;
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µ(1)(P) = maxγ∈V(P) |γ | the maximum order ofP ;

q(P) =
(

µ(P)
µ1(P)

, . . . ,
µ(P)
µn(P)

)
;

|ξ |P = (
∑

s∈V(P) ξ
2s)

1
2µ , ∀ξ ∈ Rn the weight ofξ associated to the polyhedronP .

Considering a polynomial with complex coefficients, we can regard it as the symbol of
a differential operator, and associate a polyhedron to it, as in the following.

DEFINITION 4. Let P(D) =
∑

|α|≤m cα Dα, cα ∈ C be a differential operator
with complex coefficients inRn and P(ξ) =

∑
|α|≤m cαξα, ξ ∈ Rn its characteristic

polynomial. The Newton polyhedron or characteristic polyhedron associated to P(D)

is the convex hull of the set:

{0}
⋃

{α ∈ Zn
+ : cα 6= 0}.

There follow some examples of Newton polyhedra related to differential operators:

1. If P(ξ) is an elliptic operator of orderm, then its Newton polyhedron is complete
and is the polyhedron of vertices{0, mej , j = 1, . . . , n} and so:P = {ξ ∈ Rn :
ξ ≥ 0,

∑n
i=1 ξi ≤ m}.

The setN1(P) is reduced to a point:
ν = m−1 ∑m

j =1 ej = (m−1, . . . , m−1).

m j (P) = µ j (P) = µ(0)(P) = µ(1)(P) = µ(P) = m, j = 1, 2, . . . , n;
q(P) = (1, 1, . . . , 1);

k(s,P) = m−1|s| = m−1 ∑n
j =1 sj , s ∈ Rn

+.

2. If P(ξ) is a quasi-elliptic polynomial of orderm (see for example Hörmander
[9], Rodino [11], Zanghirati [12]), its characteristic polyhedronP is complete
and has vertices{0, m j ej , j = 1, . . . , n} wherem j = m j (P) are fixed integers.
The setN1(P) is again reduced to a point:
ν =

∑n
j =1 m−1

j ej .

P = {ξ ∈ Rn : ξ ≥ 0,
∑n

j =1 m−1
j ξ j ≤ 1};

µ j (P) = m j , j = 1, . . . , n;
µ(0)(P) = min j =1,...,n m j ;
µ(P) = µ(1)(P) = maxj =1,...,n m j = m;
q(P) = ( m

m1
, . . . , m

mn
);

k(s,P) = µ(P)−1q · s, s ∈ Rn
+.

In this case the unique face ofP is defined by the equation:

1

m1
x1 + . . . +

1

mn
xn = 1.

We note in general thats belongs to the boundary ofk(s,P)P andk(s,P) is univocally
determined for complete polyhedra.
k(s,P) satisfies the following inequality that will be very useful in the following:

(4)
|s|

µ(1)
≤ k(s,P) ≤ |

|s|

µ(0)
≤ |s|, ∀s ∈ Rn

+ .
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We remember (see [1]) that the polyhedron of a hypoelliptic polynomial is complete,
but the converse is not true in general.
We now introduce a class of generalized Gevrey functions associated to a complete
polyhedron, as in Corli[6], Zanghirati [13].
They can be regarded as a particular case of inhomogeneous Gevrey classes with weight
λ(ξ) = |ξ |P , in the sense of the definition of Liess-Rodino [11], and can be expressed
also by means of the derivatives ofu.
Following Corli [6] we give the following definition:

DEFINITION 5. LetP be a complete polyhedron inRn. Let� be an open set inRn

and s∈ R, s > 1. We denote by GsP(�) the set of all u∈ C∞(�) such that:

(5)
∀K ⊂⊂ �, ∃C > 0 :
|Dαu(x)| ≤ C|α|+1(µk(α,P))sµk(α,P), ∀α ∈ Zn

+, ∀x ∈ K .

We also define:
GsP

0 (�) = GsP(�) ∩ C∞
0 (�).

The spaceGsP(�) can be endowed with a natural topology. Namely, we denote by
C∞(P, s, K , C) the space of funcionsu ∈ C∞(�) such that:

(6)
suppu ⊂ K
‖u‖K ,C = supα∈Z

n
+

supx∈K C−|α|(µk(α,P))−sµk(α,P)|Dαu(x)| < ∞

With such a norm,C∞(P, s, K , C) is a Banach space. Then:

GsP (�) =
⋂

K⊂⊂�

⋃

C>0

C∞(P, s, K , C)

endowed with the topology of projective limit of inductive limit.

REMARK 1. If P is the Newton polyhedron of an elliptic operator, thenGsP(�)

coincides withGs(�), the set of the standard s-Gevrey functions in�.

REMARK 2. If P is the Newton polyhedron of a quasi-elliptic operator, then:

GsP (�) = Gsq(�), whereq =

(
m

m1
, . . . ,

m

mn

)

the set of the anisotropic Gevrey functions, for definition see Hörmander [9], Rodino
[11], Zanghirati [12].

REMARK 3. We have the following inclusion:

G
s µ

µ(1) ⊂ GsP ⊂ G
s µ

µ(0) , ∀s > 1, ∀P

as follows immediately from Definition 5 and the inequality (4).
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We give now equivalent definitions of generalized Gevrey classes.
The arguments are similar to those in Corli [6], Zanghirati [13], but simpler, since for
our purposes we need to consider only classes fors > 1; to be definite, we prefer to
give here self-contained proofs.
Let P be a complete polyhedron inRn and let K be a compact set inRn.

DEFINITION 6. If ν ∈ N1(P), let:

C(ν) = {α ∈ Zn
+ : k(α,P) = α · ν}.

C(ν) is a cone ofZn
+ and C(ν)

⋂
F = Fν . This means that k(α,P)−1α ∈ Fν .

LEMMA 2. Let s> 1, there is a functionχ ∈ C∞
0 (Rn) such that:

χ(x) = 1, x ∈ K ,

|Dαχ | ≤ C(C Nsµ)α·ν, if α · ν ≤ N, ∀N = 1, 2, . . . , ∀ν ∈ N1(P).
(7)

Proof. Everyu ∈ Gs
0(R

n) satisfies the conditions 7. In fact, everyu ∈ Gs
0(R

n) satis-
fies:

|Dαu(x)| ≤ CC|α||α|s|α| ≤ CC|α|Ns|α| if |α| ≤ N.

In fact, as 0< ν j ≤ 1,∀ j = 1, . . . , n,∀ν ∈ N1(P) andα · ν ≤ |α|, we get:

|α| ≤ α · ν max(ν j )
−1 = α · νµ

|α| ≤ N ⇒ α · ν ≤ N.

So, takingR = Cµµsµ, we obtain:

|Dαu(x)| ≤ C(RNsµ)α·ν, ∀ν ∈ N1(P), ∀α : α · ν ≤ N.

Then we can proceed as in theC∞ case to constructχ ∈ Gs
0(R

n) such thatχ ≡ 1 in
K .

LEMMA 3. With the previous notations, if u∈ GsP (Rn), then takingχ as in
Lemma 2, we obtain the estimate:

(8) |χ̂u(ξ)| ≤ C

(
C Ns

|ξ |P + Ns

)µN

N = 1, 2, . . .

Proof. By Leibniz formula we can write:

|Dα(χu)| ≤
∑

β≤α

(
α

β

)
|Dα−βχ ||Dβu|

Let’s choose anyβ ≤ α, thenβ ∈ C(ν) for someν ∈ N1(P) (not necessarily unique)
and for thatν we get:

sup
x∈suppχ

|Dβχ(x)| ≤ C(C Nsµ)β·ν
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and by Lemma 2:

sup
x∈suppχ

|Dα−βχ(x)| ≤ C(C Nsµ)(α−β)·ν

if α · ν ≤ N, N = 1, 2, . . .

So we get:

sup
x∈suppχ

|Dα−βχ(x)||Dβu(x)| ≤ C(C Nsµ)(α−β)·νC|α−β|+1
1 (µk(β,P))sµk(β,P)

≤ C(C Nsµ)(α−β)·νC1(C2µk(β,P))sµk(β,P)

as|β| ≤ µk(β,P), taking C2 = C
1
s
1 .

But we have supposed thatk(β,P) = β · ν andβ ≤ α, moreoverα · ν ≤ N implies
β · ν ≤ N. We now proceed to estimate:

sup
x∈suppχ

|Dα−βχ(x)||Dβu(x)| ≤ C′(C Nsµ)(α−β)·ν(C1Nsµ)β·ν

≤ C′(C′′Nsµ)α·ν

∀α, if α · ν ≤ N, ∀ν ∈ N1(P), N = 1, 2, . . . . TakingC′′ = max{C, C1}, using the
linearity of scalar product and observing that:

(α − β) · ν + β · ν = α · ν,

k(α,P) = max{α · ν, ν ∈ N1(P)}

we get the inequality:
|Dα(χu)| ≤ C′(C′′Ns)µk(α,P).

On the other hand we have:

|D̂α(χu)| =|

∫
e−ix ·ξ Dα(χu)|

≤

∫

suppχ
|Dα(χu)| ≤ C sup

suppχ
|Dα(χu)|

asχ has compact support. Using the properties of the Fourier transform we conclude:

|D̂α(χu)| = |ξαχ̂u| ≤ C sup
suppχ

|Dα(χu)| ≤ C(C Ns)µk(α,P).

Let nowα = vN, for anyv ∈ V(P), the set of vertices ofP , summing up the previous
inequalities forα = 0, α = vN,∀v ∈ V(P), we obtain:

|χ̂u(ξ)|NsµN +
∑

v∈V(P)

|χ̂u(ξ)ξvN | ≤ C(C Ns)µN .
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Using the following inequality:
∑

v∈V(P)

|ξvN |n(P)Nµ−1 ≤ |ξ |
Nµ

P
≤ 2n(P)(µN−1)

∑

v∈V(P)

|ξvN |

wheren(P) denotes the number of vertices ofP different from the origin.
So we can conclude that:

|χ̂u(ξ)| ≤
C(C Ns)µN

NsµN +
∑

s∈V(P) |ξ
sN|

≤
C(C Ns)µN

NsµN +
|ξ |

Nµ
P

2n(P)(µN−1)

≤ C′

(
C′Ns

|ξ |P + Ns

)µN

, N = 1, 2, . . . .

THEOREM 3. Let � be an open set inRn, x0 ∈ �, u ∈ D′(�), then u is of
class GsP in a neighborhood of x0 if and only if there is a neighborhood U of x0 and
v ∈ E ′(�) or v ∈ S ′(Rn) such that:

1. v = u in U

2. v̂ satisfies:

(9) |v̂(ξ)| ≤ C

(
C Ns

|ξ |P

)µN

= C


C′N

|ξ |
1
s
P




sµN

, N = 1, 2, . . . .

REMARK 4. The previous Theorem 3 admits the more general formulation:
Let K ⊂⊂ �, u ∈ D′(�), thenu is of classGsP in a neighborhoodU of K if and only
if there isv ∈ E ′(�) or v ∈ S ′(Rn), v = u in U such that̂v satisfies the estimate (9).
The proof is analogous to that of Theorem 3.

Proof. Proof of necessity: Letu ∈ GsP in the set{x : |x − x0| ≤ 3r }, 0 < r ≤ 1, χ

as in Lemma 3, withK = {x : |x − x0| ≤ r } and suppχ ⊂ {x : |x − x0| ≤ 2r }. Then
the functionv = χu satisfies conditions 1.,2. of the theorem.
Proof of sufficiency:
Let v ∈ E ′(�) satisfy the conditions 1.,2.. Then there are two constantsM0, C > 0
such that:

|v̂(ξ)| ≤ C(1 + |ξ |)M0.

So:
|v̂(ξ)| ≤ C|ξ |MP , M = µM0

Let’s fix α ∈ Zn
+, the integral

∫
|ξα v̂(ξ)|dξ converges by condition 2..

By 1., if x ∈ U , then:

Dαu(x) = (2π)−n
∫

eix ·ξξα v̂(ξ)dξ .
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Now we use the property:

(10) |ξα| ≤ |ξ |
µk(α,P)

P
.

In fact, givenα ∈ Zn
+, then α

k(α,P)
∈ F and so, by the definition of convex hull, told

sl1, . . . , slr the vertices of the face whereα
k(α,P)

lies, we have:

α = k(α,P)

r∑

i=1

λi s
l i ,

r∑

i=1

λi = 1, λi ≥ 0 ,

and hence by Lemma 1:

|ξα| =

n∏

j =1

|ξ
α j
j | ≤

r∑

i=1

λi




n∏

j =1

|ξ j |
s

l j
j




k(α,P)

≤


 ∑

sl ∈V(P)

n∏

j =1

|ξ j |
2s

l j
j




1
2k(α,P)

≤ |ξ |
µk(α,P)

P
.

(11)

Now, splitting the integral into the two regions:

|ξ |P < Ns, |ξ |P > Ns

we get:

|Dαu(x)| ≤ (2π)−n(1 + Ns)M+sµk(α,P)

∫

|ξ |P<Ns
dξ

+ C(C Ns)µN
∫

|ξ |P>Ns
|ξ |

µk(α,P)−µN
P

dξ .

The first integral is limited for allN and the second converges for largeN, namely we
setN = k(α,P) + R for R depending only onP andM. Then:

|Dαu(x)| ≤ C′(C′µk(α, P) + R)sµ(k(α,P)+R)

implies:
|Dαu(x)| ≤ C|α|+1(µk(α,P))sµk(α,P).

We now give a characterization of generalized Gevrey functions by means of expo-
nential estimates for the Fourier transform, that is possible if s > 1 and will be of main
interest in the proof of Theorem 2.
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THEOREM 4. 1. Let u∈ GsP
0 (Rn), then there exist two constants C> 0, ε >

0 such that:

(12) |û(ξ)| ≤ C exp(−ε|ξ |
1
s
P

);

2. if the Fourier transform of u∈ E ′(Rn), or u ∈ S ′(Rn) satisfies(12), then u∈

GsP(Rn).

In the proof of Theorem 4 we shall use the following lemma:

LEMMA 4. The estimates:

(13) |û(ξ)| ≤ C


 C N

|ξ |
1
s
P




N

, N = 1, 2, . . .

are equivalent to the following:

(14) |û(ξ)| ≤ CN+1N!|ξ |
− N

s
P

, N = 1, 2, . . .

for suitable different constants C> 0 independent of N.

The proof of the lemma is trivial and based on the inequalities: N! ≤ NN , ∀N =

1, 2, . . . andNN ≤ eN N!. Now we prove Theorem 4.

Proof. Let’s suppose thatu ∈ GsP
0 (Rn), then taking suppu ⊂ K in Remark 4, we

obtain:

|û(ξ)|
1

sµ ≤ C


 C N

|ξ |
1
s
P




N

, N = 1, 2, . . .

Then by the previous lemma,u satisfies for a suitable constantC′ > 0:

|û(ξ)|
1

sµ ≤ (C′)N+1N!|ξ |
− N

s
P

and fixingε = 1
2C′ we get:

|û(ξ)|
1

sµ εN |ξ |
N
s
P

N!
≤

1

2ε

1

2N
.

Summing up forN = 1, 2, . . . :

|û(ξ)|
1

sµ

∞∑

N=0

εN |ξ |
N
s
P

N!
≤

1

2ε

∞∑

N=0

1

2N
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and hence:

|û(ξ)|
1

sµ exp(ε|ξ |
1
s
P

) ≤
1

ε
.

So we obtain for a suitable constantC > 0:

|û(ξ)| ≤ Cexp(−εsµ|ξ |
1
s
P

) = Cexp(−ε′|ξ |
1
s
P

)

letting ε′ = εsµ.

If u ∈ E ′(Rn) satisfies:

|û(ξ)| ≤ C exp(−ε|ξ |
1
s
P

) = C

(
exp

(
−

ε

µs
|ξ |

1
s
P

))µs

then:

|û(ξ)|
1
µs exp

(
ε

µs
|ξ |

1
s
P

)
≤ C

1
µs .

Hence, by expanding the exponential into Taylor series we have:

∞∑

N=0

|û(ξ)|
1
µs (ε′)N |ξ |

1
s
P

N!
≤ C′

with C′ = C 1
µs, ε′ = ε

µs.
This implies:

|û(ξ)|
1
µs (ε′)N |ξ |

N
s
P

N!
≤ C′

and hence for a new constantC > 0:

|û(ξ)| ≤ C′


 C N

|ξ |
1
s
P




sµN

that means thatu ∈ GsP(Rn) as the conditions of Theorem 4 are satisfied in a neigh-
borhood of anyx0 ∈ Rn.

2. Multi-quasi-hyperbolic operators

For any complete polyhedronP we define the corresponding class of multi-quasi-
hyperbolic operators, according to Definition 2. For short,we denote multi-quasi-
hyperbolic operators of orders with respect toP by (s,P)-hyperbolic.
Obviously, if P(D) is multi-quasi-hyperbolic of orders > 1 with respect toP , P(D)

is also multi-quasi-hyperbolic of orderr, ∀r, 1 < r < s with respect toP .
We now prove some properties for this class of operators.



Multi-quasi-hyperbolic operators 85

PROPOSITION 2. If P(D) is (s,P)-hyperbolic for1 < s < ∞, then for any
(λ, ξ) ∈ C × Rn such that P(λ, ξ) = 0, there is C> 0 such that:

(15) |=λ| ≤ C|ξ |
1
s
P

.

Proof. The coefficient ofλm−1 in P(λ, ξ) is a linear function ofξ . If the zeros of
P(λ, ξ) are denoted byλ j , it follows that

∑m
j =1 λ j is a linear function ofξ . Then also∑m

j =1 =λ j is a linear combination ofξ , and if P(D) is (s,P)-hyperbolic, then:

m∑

j =0

=λ j ≥ −mC|ξ |
1
s
P

implies
∑m

j =0 =λ j = C0 for a suitable constantC0. So we obtain for allλk root of
P(λ, ξ):

=λk = C0 −
∑

j 6=k

=λ j ≤ C0 + C(m − 1)|ξ |
1
s
P

≤ C′|ξ |
1
s
P

.

That completes the inequality:

|=λk| ≤ C|ξ |
1
s
P

for all rootsλk of P(λ, ξ).

PROPOSITION3. If P(D) is (s,P)-hyperbolic for1 < s < ∞, then the princi-
pal part Pm(D) of P(D) is hyperbolic, i.e. the homogeneous polynomial Pm(λ, ξ)

satisfies:

(16) Pm(λ, ξ) = 0 (λ, ξ) ∈ C × Rn ⇒ =λ = 0.

Proof. Takingσ > 0, λ ∈ C, ξ ∈ Rn, we get:

Pm(λ, ξ) = lim
σ→∞

P(σλ, σξ) · σ−m

From Proposition 2 the zeros ofP(σλ, σξ) must satisfy:

|=λk| ≤ C
|σξ |

1
s
P

σ

So forσ → ∞, =λ = 0 for all the rootsλ ∈ C of Pm(λ, ξ), that isPm(D) is hyperbolic.

PROPOSITION4. For a differential operator Pm(D) associated to an homogeneous
polynomial Pm(λ, ξ), the notion of hyperbolicity and(s,P)-hyperbolicity coincide.

The proof follows easily from Proposition 3.
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PROPOSITION5. Let P(D) be a differential operator of the form:

(17) P(D) = Pm(D) +

m−1∑

j =0

a j (Dx)D j
t

with homogeneous principal part:

(18) Pm(D) = Dm
t +

m−1∑

j =0

b j (Dx)D j
t ,

with:
order(b j (Dx)) = m − j
order(a j (Dx)) ≤ m − j − 1

and assume:

(19)
Pm(λ, ξ) = 0 for λ ∈ C, ξ ∈ Rn implies=λ = 0
|a j (ξ)| ≤ C|ξ |m−1

P
(1 + |ξ |)− j for j = 1, . . . , m − 1

(for a C > 0).
Then P(D) is ( m

m−1,P) hyperbolic.

Proof. By definition, the termsa j (Dx), b j (Dx) satisfy for a suitableC > 0:

(20)
|b j (ξ)| ≤ C|ξ |m− j

|a j (ξ)| ≤ C|ξ |m− j −1.

In the region{ε|λ| > |ξ |} (for ε > 0 sufficiently small), the following inequality is
satisfied:

|P(λ, ξ) − λm| ≤ C
m−1∑

j =0

|ξ |m− j |λ| j <
λm

2

that implies:

|P(λ, ξ)| >
λm

2

and consequentlyP(λ, ξ) can’t have roots in this region and the roots must so satisfy
for ε > 0:

(21) |λ| ≤ ε−1|ξ |.

On the other hand, for(λ, ξ) such thatP(λ, ξ) = 0:

Pm(λ, ξ) = −(P − Pm)(λ, ξ) = −

m−1∑

j =0

a j (ξ)λ j .
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In view of the estimates (21) and (19), we obtain:

|Pm(λ, ξ)| ≤

m−1∑

j =0

|a j (ξ)||λ| j ≤ C
m−1∑

j =0

|ξ |m−1
P

(1 + |ξ |)− j |λ| j

≤ C′
m−1∑

j =0

|ξ |m−1
P

(1 + |ξ |)− j |ξ | j ≤ C′′|ξ |m−1
P

In view of the hyperbolicity ofPm we can write:

Pm(λ, ξ) =

m∏

j =0

(λ − λ j ), λ j ∈ R.

Hence:

|=λ|m ≤ |Pm(λ, ξ)| ≤ C′′|ξ |m−1
P

|=λ| ≤ C′′′|ξ |
m−1

m
P

i.e. P(D) is ( m
m−1,P) hyperbolic.

PROPOSITION6. Any differential operator P(D) = Dm
t +

∑m−1
j =0 a j (Dx)D j

t sat-
isfying the condition:

(22) |a j (ξ)| ≤ C|ξ |
m− j −1
P

j = 0, 1, . . . , m − 1, for C > 0

is ( m
m−1,P) hyperbolic.

We note that the principal part is onlyDm
t and is obviously hyperbolic; Proposition

6 states that in this particular case we may replace (19) withthe weaker assumption
(22).

Proof. By the estimates (22) we have:

|P(λ, ξ) − λm| ≤ C
m−1∑

j =0

|ξ |
m− j −1
P

|λ| j <
|λ|m

2

in the region{(λ, ξ) ∈ C × Rn : |ξ |P < ε|λ|} for a sufficiently smallε > 0.
Consequently|P(λ, ξ)| >

|λ|m

2 andP(λ, ξ) can’t have roots in this region and so they
must satisfy:

(23) |λ| ≤ ε−1|ξ |P .

For (λ, ξ) such thatP(λ, ξ) = 0, we write:

λm = −(P(λ, ξ) − λm) = −

m−1∑

j =0

a j (ξ)λ j .
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In view of the estimate (23) forλ and (22) fora j (ξ):

|λ|m ≤ C′
m−1∑

j =0

|ξ |
m− j −1
P

|λ| j ≤ C′′|ξ |m−1
P

Hence:

|=λ|m ≤ C′′|ξ |m−1
P

|=λ| ≤ C′′′|ξ |
m−1

m
P

i.e. P(D) is ( m
m−1,P) hyperbolic.

REMARK 5. A more general version of Proposition 6 is easily obtainedby as-
suming as in Proposition 5 thatP(D) has hyperbolic homogeneous principal part
Pm(D) =

∑m−1
j =0 b j (Dx)D j

t with:

(24) |b j (ξ)| ≤ C|ξ |
m− j
P

, j = 0, 1, . . . , m − 1

and keeping condition (22) for the lower order terms.
Observe however that (24) impliesb j (ξ) ≡ 0, but in the quasi-homogeneous case.

There follow some examples of multi-quasi-hyperbolic operators, that follow from
the previous propositions.

1. If P(D) is a differential operator inRn with symbolP(ξ) and Newton polyhe-
dronP of formal orderµ, then the differential operator inRn+1:

Q(D) = Dm
t + P(Dx),

with m > µ, is multi-quasi-hyperbolic of orderm
µ

with respect toP .
In fact, the roots of the symbol ofQ(D) satisfy:

|=λ| ≤ C|ξ |
µ
m
P

.

2. A particular case of Proposition 5 is the following:
if P is the polyhedron inR2 of vertices(0, 0), (0, 2), (1, 0), thenµ = 2 and the
following operator:

P(Dx, Dt ) = P3(Dx, Dt ) + C1D2
x2

+ C2Dx1 + C3Dx2 + C4Dt + C5

where P3(Dx, Dt ) is an hyperbolic homogeneous operator of order 3 and
C1, ..., C5 ∈ C, is multi-quasi-hyperbolic of order32 with respect toP .
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3. Another particular case of Proposition 5 is the following:
if P is the polyhedron inR2 of vertices(0, 0), (0, 3), (1, 2), (2, 0), then the
formal orderµ = 4 and the operator of order 4:

P(Dt , Dx) = P4(Dt , Dx) + c1D2
x2

+ c2Dx1 Dx2 + c3Dx2 Dt

+ c4Dx1 + c5Dx2 + c6Dt + c7

where P4(Dx, Dt ) is an hyperbolic homogeneous operator of order 4 and
C1, ..., C7 ∈ C, is multi-quasi-hyperbolic of order43 with respect toP .

4. Let P(D) be a differential operator inRn with symbolP(ξ), then we consider
the differential operator inRn+1:

Q(D) = (D2
t + 4x)

m − P(Dx)

with order P(D) < 2m.
The roots of the symbol ofQ(D) satisfy:

(λ2 − |ξ |2)m − P(ξ) = 0

and then, denoting byP(ξ)
1
m the genericm − th root of P(ξ):

=λ = |ξ2 + P(ξ)
1
m |

1
2 senθ

where forθ > 0:

tg2θ =
=(ξ2 + P(ξ)

1
m )

<(ξ2 + P(ξ)
1
m )

≤
|P(ξ)|

1
m

|ξ |2
.

We consider the first term of the Taylor expansion to estimatesenθ :

senθ ≤ C
|P(ξ)|

1
m

2|ξ |2

|=λ| ≤ C
P(ξ)

1
m

|ξ |

LetP ′ be a given complete polyhedron. If for someρ < 1 we have:

|P(ξ)|
1
m ≤ C|ξ |

ρ

P ′ |ξ | i.e.

|P(ξ)| ≤ C|ξ |
ρm
P ′ |ξ |m

(25)

then Q(D) is multi-quasi-hyperbolic of order1
ρ

with respect toP ′. If we con-
sider in particular the Newton polyhedron associated toP(Dx) with formal order
µ < 2m, thenQ(D) is multi-quasi-hyperbolic of orderm

µ
, but we can consider

also a larger class of polyhedra satisfying condition (25),and in any case stronger
with respect to what we may deduce from Proposition 5.
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3. Proof of Theorem 2

Now we prove Theorem 2.

Proof. We try to satisfy the Cauchy Problem:
{

P(D)u = Dm
t u +

∑m−1
k=0 ak(Dx)Dk

t u = 0

Dk
t u(0, x) = fk(x) ∀x ∈ Rn,∀k = 0, 1, . . . , m − 1

by a functionu(t, x) such thatu(t, x) ∈ S(Rn
x) for any fixedt ∈ R.

We apply partial Fourier transform with respect tox, consideringt as a parameter, so
the Cauchy Problem admits the following equivalent formulation:

(26)

{
P(Dt , ξ)û = Dm

t û +
∑m−1

k=0 ak(ξ)D j
t û = 0

Dk
t û(0, ξ) = f̂k(ξ) ∀ξ ∈ Rn, k = 0, 1, . . . , m − 1.

This makes sense asfk have compact support,∀k = 0, 1, . . . , m−1 andu ∈ S(Rn), ∀t
fixed.
Now we consider the Cauchy Problem (26) as an ordinary differential problem int ,
depending on the parameterξ . A solution to problem (26) is given by:

(27) û(t, ξ) =

m−1∑

j =0

f̂ j (ξ)F j (t, ξ),

whereF j (t, ξ), j = 0, 1. . . . , m − 1, satisfy the ordinary Cauchy Problem ont de-
pending on the parameterξ ∈ Rn:

(28)

{
P(Dt , ξ)F j = 0

Dk
t F j (0, ξ) = δ j k k = 0, 1, . . . , m − 1

whereδ j k denote the Kronecker delta.
The solution of (28) exists and is unique by the Cauchy theorem for ordinary dif-
ferential equations, and the functionû defined in (27) gives indeed a solution to the
Cauchy Problem (26), as is easy to check. Now we want to estimate |Dα

x u(t, x)| or,
equivalently,|û(t, ξ)| to obtain generalized Gevrey estimates with respect to the space
variables.
By assumptionf̂ j (ξ) ∈ GrP

0 (Rn), so, in view of Theorem 4,(1), there are constants
ε j , C j > 0 ( j = 0, 1, . . . , m − 1) such that for everyξ ∈ Rn:

| f̂ j (ξ)| ≤ C j exp(−ε j |ξ |
1
r
P

) ≤ C exp(−ε|ξ |
1
r
P

),

taking:

C = max{C j , j = 0, . . . , m − 1},

ε = max{ε j , j = 0, . . . , m − 1}.

To estimateF j we use the following lemma (for the proof see for example Hör-
mander[9], Lemma 12.7.7).
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LEMMA 5. Let L(D) = Dm +
∑m−1

j =0 a j D j be an ordinary differential operator
with constant coefficients aj ∈ C. Write3 = {λ ∈ C : L(λ) = 0} and assume:

max
λ∈3

|λ| ≤ A,

max
λ∈3

|=λ| ≤ B for λ ∈ 3.
(29)

Then the solutionsv j (t), j = 0, 1, . . . , m − 1 of the Cauchy Problems:

(30)

{
L(D)v j = 0

(Dkv j )(0) = δ j k, k = 0, . . . , m − 1

satisfy the following estimates:

|DNv j (t)| ≤ 2m(A + 1)N+m+1e(B+1)|t |,

N = 0, 1, . . . , t ∈ R.
(31)

We now apply the estimates of Lemma 5 forN = 0 to the functionsF j (t, ξ) in
(28), j = 0, 1, . . . , m − 1, takingξ as a parameter. IfP(D) is (s,P)-hyperbolic, then
∃C′ > 0 such that the roots ofP(λ) satisfy:

|=λ| ≤ C′|ξ |
1
s
P

,

consequently we may takeB = C′|ξ |
1
s
P

.
Now we determine A. Let’s consider the characteristic polynomial of P:

P(λ, ξ) = λm +

m−1∑

j =0

a j (ξ)λ j

wherea j (ξ) is a polynomial of degree at most equal tom − j . So there are constants
C j such that:

|a j (ξ)| ≤ C j (1 + |ξ |)m− j .

It follows easily that forε > 0 sufficiently small the zeros ofP(λ, ξ) cannot belong to
the region{(1 + |ξ |) < ε|λ|} and must necessarily satisfy:

(32) |λ| ≤ ε−1(1 + |ξ |) .

So we can take:

(33) A = ε−1(1 + |ξ |)

and estimate for a suitableC > 0:

(34) |F j (t, ξ)| ≤ (ε−1(1 + |ξ |) + 1))m+1C exp(C(|t| + 1)|ξ |
1
s
P

)
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By summing up the estimates for̂f j , F j we get the following estimates forû:

|û(t, ξ)| ≤

m−1∑

j =0

| f̂ j (ξ)||F j (t, ξ)|

≤ C
m−1∑

j =0

exp(−ε|ξ |
1
r
P

) exp(C(1 + |t|)|ξ |
1
s
P

) .

(35)

By assumption,r < s, and so1
r > 1

s implies that:

lim
|ξ |→+∞

|ξ |
1
s
P

|ξ |
1
r
P

= 0

Then there exist positive constantsC′
1 = C′

1(|t|), C′
2 = C′

2(|t|) such that:

C(1 + |t|)|ξ |
1
s
P

− ε|ξ |
1
r
P

≤ −C′
1|ξ |

1
r
P

+ C′
2 .

Hence we get the following estimate forû:

|û(t, ξ)| ≤ C′′ exp(−C′
1|ξ |

1
r
P

).

So we have obtained thatu ∈ GrP for anyt ∈ R in view of Theorem 4,2). We observe
that the constantsC′

1, C′′ may depend ont , but are locally bounded, for|t| ≤ T, ∀T >

0.

REMARK 6. We have supposed thatr > s to get the result of regularity. In the case
r = s, the regularity is only local in time, as evident from the previous computations.

4. Regularity with respect to the time variable

We know that the solution of the Cauchy Problem is inC∞([−T, T ], GrP (Rn)), ∀T >

0 ; now we will discuss its regularity with respect to the timevariable in generalized
Gevrey classes. To do so, it is necessary to extend the polyhedron to(n + 1) variables,
that is possible by means of the following proposition.

PROPOSITION7. Given a complete polyhedronP in Rn, we defineP ′ as the convex
hull in Rn+1 of the vertices ofP plus the vector(µ0, 0, . . . , 0) with µ0 ∈ Q+, 0 <

µ0 ≤ µ, cf. figure. ThenP ′ is a complete polyhedron inRn+1 with the same formal
orderµ of P .
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The proof is trivial and follows immediately from the definition of complete poly-
hedra and of formal order. Let’s observe that it is not possible to constructP ′ with
a smaller formal order. Of course, one could take more than one additional vertex to
build P ′; the construction in Proposition 7 represents the cheapestprocedure, which
could be easily iterated to extendP to (n + m) dimensions,∀m.

DEFINITION 7. We callP ′ in Proposition 7 an extension ofP in Rn+1.
If the further vertex has coordinates(µ, 0, . . . , 0) with µ denoting the formal order of
P , we say thatP ′ is the maximal extension ofP in Rn+1.

PROPOSITION8. LetP be a complete polyhedron inRn and letP ′ be an extension
of P to Rn+1 by the additional vertex(µ0, 0, . . . , 0). Then for anyα′ = (α0, α) ∈

Rn+1
+ :

(36) k(α′,P ′) = k(α,P) +
α0

µ0
= k(α,P) + k(α0,R)

whereR denotes the one-dimensional polyhedron[0, µ0] in R.

Proof. Writing α0 = α0
µ0

µ0, we now computek(α′,P ′) = k((α0, α),P ′).
Let us write:

α = k(α,P)

n(P)∑

i=1

ti si

si ∈ V(P),

n(P)∑

i=1

ti = 1 0 ≤ ti ≤ 1, i = 1, . . . , n(P);

(α0, 0, . . . , 0) =
α0

µ0
(µ0, 0, . . . , 0) = t0k(α0,R)s0,

t0 = 1, k(α0,R) =
α0

µ0
s0 = (µ0, 0, . . . , 0).
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We want to findk(α′,P ′) such that:

(α0, α) = k(α′,P ′)




n(P)∑

i=1

t ′i si + t ′0s0




t ′0 +

n(P)∑

i=1

t ′i = 1 0 ≤ t ′i ≤ 1 .

On the other hand we have:

(α0, α) =

n(P)∑

i=1

k(α,P)ti si +
α0

µ0
t0s0

=

(
k(α,P) +

α0

µ0

) 



n(P)∑

i=1

t ′i si + t ′0s0





with:

t ′i =
k(α,P)ti(

k(α,P) + α0
µ0

) , t ′0 =

α0
µ0(

k(α,P) + α0
µ0

) t0

t ′0 +

n(P)∑

i=1

t ′i = 1 .

Sok(α′,P ′) = k(α,P) + α0
µ0

is univocally determined ass0 is orthogonal toP .

We will prove first a theorem of regularity of the Cauchy Problem with respect to
the time variable in the particular case when the coefficientsa j (ξ) satisfy the condition:

(37) |a j (ξ)| ≤ C|ξ |
m− j
P

j = 0, 1, . . . , m − 1

and then a theorem for generala j (ξ) which requires a further discussion on the relation
between the euclidean norm inRn+1 and the weight associated to the polyhedron.

THEOREM 5. Under the assumptions of Theorem 2, if(37) is satisfied, then the
solution u of the Cauchy Problem(2) is of class GrP ′

(Rn+1) whereP ′ denotes the
maximal extension ofP to Rn+1.

Proof. We have to test the regularity ofu with respect to the time variable. Let us go
back to the proof of Theorem 2. From (27) we have:

|DN
t û(t, ξ)| ≤

m−1∑

j =0

| f̂ j (ξ)||DN
t F j (t, ξ)| .
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By Lemma 5 , we can estimate:

(38) |DN
t F j (t, ξ)| ≤ 2m(A + 1)N+m+1 exp((B + 1)|t|).

By the hypothesis of multi-quasi-hyperbolicity forP(D), as before we may take:

B = C1|ξ |
1
s
P

.

To determine A we use the hypothesis (37) that implies:

|P(λ, ξ) − λm| = |

m−1∑

j =0

a j (ξ)λ j | ≤ C
m−1∑

j =0

|ξ |
m− j
P

|λ| j <
|λ|m

2

in the region{(λ, ξ) ∈ C × Rn : |ξ |P < ε|λ|} for a sufficiently smallε > 0.
Consequently,|P(λ, ξ)| >

|λ|m

2 and the zeros ofP(λ, ξ) can’t be in this region, so they
must satisfy:

|λ| ≤ C|ξ |P , for C > 0.

So we can takeA = C|ξ |P and estimate:

|DN
t F j (t, ξ)| ≤ 2m(C|ξ |P )N+m+1 exp(C0(|t| + 1)|ξ |

1
s
P

)

≤ C(C′|ξ |P )N exp(C1(|t| + 1)|ξ |
1
s
P

) .

Hence:

|DN
t û(t, ξ)| ≤

m−1∑

j =0

| f̂ j (ξ)||DN
t F j (t, ξ)|

≤ C(C′|ξ |P )N exp{(C1(|t| + 1)|ξ |
1
s
P

) − ε|ξ |
1
r
P

}.

Arguing as in the proof of Theorem 2, we obtain for a suitableε1 > 0:

(39) |DN
t û(t, ξ)| ≤ C(C′|ξ |P )N exp(−ε1|ξ |

1
r
P

).

Now we pass to consider the Fourier antitransform ofû with respect to the space vari-
ables:

u(t, x) = F
−1
ξ 7→xû(t, ξ)
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and estimate forα′ = (α0, α):

|Dα′
u(t, x)| = |Dα0

t Dα
x u(t, x)| = |Dα0

t F−1(ξα û(t, ξ))|

= |Dα0
t [(2π)−n

∫

Rn
eixξ ξα û(t, ξ)dξ ]|

≤ (2π)−n
∫

Rn
|ξα||Dα0

t û(t, ξ)|dξ

≤ C(2π)−n
∫

Rn
|ξ |

µk(α,P)

P
(C′|ξ |P )α0 exp(−ε1|ξ |

1
r
P

)dξ

≤ C(2π)−n
∫

Rn
(C|ξ |P )µ(k(α,P)+α0) exp(−ε1|ξ |

1
r
P

)dξ

≤ C|α|+α0+1(µk(α,P) + α0)
r (µk(α,P)+α0)

where we have used (11) and we have followed the arguments of the proof of Theorem
4 (2).
LettingP ′ be the maximal extension ofP in Rn+1, by Proposition 8:

k(α′,P ′) = k(α,P) +
α0

µ
.

So we can conclude that for a suitable constantC > 0:

(40) |Dα′
u(t, x)| ≤ C|α′|+1(µk(α′,P ′))rµk(α′,P ′), ∀α′ ∈ Zn+1

+

that meansu ∈ GrP ′
(Rn+1) as we wanted to prove.

REMARK 7. If r = s the regularity is only local in time andu is of classGsP ′
only

in the set|t| < ε
C1

as to satisfy condition (39).

THEOREM 6. Under the assumptions of Theorem 2 the solution u of the Cauchy
Problem is of class GrP

′
(Rn+1), whereP ′ is the extension ofP to Rn+1 obtained

adding the vertex:

s0 = (µ0, 0, . . . , 0), µ0 = µ(0),

µ(0) = µ(0)(P) = min{m j : m j ej ∈ V(P), j = 1, . . . , n} = minγ∈V(P)\{0} |γ |.

Sinceµ0 < µ but in the elliptic case, the present result of regularity isweaker than
the one expressed by Theorem 5 under the additional assumption (37).

Proof. We proceed as in the proof of Theorem 5 to estimate:

(41) |DN
t û(t, ξ)| ≤

m−1∑

j =0

| f̂ j (ξ)DN
t F j (t, ξ)| .



Multi-quasi-hyperbolic operators 97

From Lemma 5 we have:

(42) |DN
t F j (t, ξ)| ≤ C(A + 1)N+m+1 exp(1 + B)|t|

where:

B = C|ξ |
1
s
P

by the hypothesis of multi-quasi-hyperbolicity, and now:

A = C′(1 + |ξ |) .

So arguing as in the previous proof we can estimate:

|Dα0
t û(t, ξ)| ≤ Cα0+1

2 (1 + |ξ |)α0 exp(−ε|ξ |
1
r
P

)

and passing to the Fourier antitransform with respect toξ :

|Dα′
u(t, x)| = |Dα0

t Dα
x u(t, x)|

≤ (2π)−nCα0+1
∫

Rn
|ξα|(1 + |ξ |)α0 exp(−ε|ξ |

1
r
P

)dξ.

Using the inequalities:

|ξα| ≤ |ξ |
µk(α,P)

P

(1 + |ξ |) ≤ |ξ |

µ
µ0
P

we obtain:

|Dα′
u(t, x)| ≤ (2π)−nCα0+1

∫

Rn
|ξ |

µk(α,P)

P
|ξ |

µ
µ0

α0

P
exp(−ε|ξ |

1
r
P

)dξ .

Now we consider the vectorα′ = (α0, α) ∈ Rn+1 and we define the extensionP ′ of P
to Rn+1 as the convex hull ofP

⋃
{(µ0, 0, . . . , 0)}.

By Proposition 8:

k(α′,P ′) = k(α,P) + k(α0,R) = k(α,P) +
α0

µ0

and therefore we can get the estimate:

|Dα′
u(t, x)| ≤ (2π)−nCα0+1

∫

Rn
|ξ |

µk(α′,P ′)

P
exp(−ε|ξ |

1
r
P

)dξ

≤ C1C|α′|
2 (µk(α′,P ′))r (µk(α′,P ′)).

We have obtained thatu ∈ GrP ′
(Rn+1) as we wanted to prove.

REMARK 8. Analogously to Theorem 5 ifr = s the regularity is only local in time
andu is of classGsP ′

(Rn) only in the set|t| < ε, with ε > 0 depending on the initial
data.
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