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P-SPACES OF IWASAWA TYPE AND ALGEBRAIC RANK ONE

Abstract. A Riemannian manifold is §-space if the Jacobi operators
along the geodesics are diagonalizable by a parallel ootimoal basis.

We show that a solvable Lie group of Iwasawa type and algebeaik

one which is &3-space is a symmetric space of noncompact type and rank
one. In particular, irreducible, non-flat homogeneous teing3-spaces
with nonpositive curvature and algebraic rank one, are cargksymmetric
spaces of noncompact type.

Let M be a Riemannian manifol® its curvature tensor anidy the Jacobi operator
defined byRxY = R(Y, X)X, whereX is a unit tangent vector. Following [3], we say
thatM is a’3-space if for every geodesjcin M the associated Jacobi operatBys )
are diagonalizable by a parallel orthonormal basis alpngondition that is satisfied
for symmetric spaces.

In this paper we study the homogene@ispaces of lwasawa type and algebraic
rank one and in particular, those with nonpositive cunatuhich are Einstein, since
irreducible, non-flat homogeneous Einstein spaces witlpositive curvature are rep-
resented as Lie groups of lwasawa type (see [6]). The gegroétrie groups of
Iwasawa type and algebraic rank one which at a first glanaasézbe complicated,
becomes very simple when they afespaces: they are Damek—Ricci spaces whose
geometric structure is well known (Damek-Ricci spaces afndd in Section 1, fol-
lowing [2], Chapter 4).

An outline of the paper is as follows. In Sections 1 and 2, we tfie basic results
concerning the Lie algebras of Iwasawa type and algebraic oae, its geodesics in
various directions and the expression of the Jacobi opeaéiog them. Properties of
its eigenvalues in the special case of parallel eigenveaterobtained in Section 3. The
geometric hypothesis involving conditig®) about the eigenvalues is strongly used in
Section 4 to obtain algebraic properties of the solvabledlgebra. This information
allows us to show that an lwasawa type Lie group of algebraid rone satisfying
condition (P) is a Damek-Ricci space. By applying a result from [2], we abthe
following:

THEOREM. If S is a solvable Lie group of lwasawa type and algebraic rank
which is an3-space, then S is a rank one symmetric space of noncompact typ

The class of Riemannian manifolds obtained by consideriagtoups of Iwvasawa
type contains as a subclass the Damek-Ricci spaces, andjerweally the irreducible,
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non-flat homogeneous Einstein spaces with nonpositiveatuire. As a consequence,
we have

COROLLARY. An irreducible, non-flat homogeneous Einst&rspace with non-
positive curvature and algebraic rank one is a symmetriccepaf noncompact type
and rank one

1. Lie algebras of lIwasawa type and algebraic rank one

A solvable Lie algebrawith inner product, ) is a metric Lie algebra of Iwasawa type
if it satisfies the conditions
(i) s =n® awheren = [s, s] anda, the orthogonal complement af is abelian.
(i) The operators ad are symmetric for alH € a.
(iii) For someHg € a, ady,|n has positive eigenvalues.
The simply connected Lie group with Lie algebras and left invariant metric

induced by the inner produdt ) will be called of lwasawa type. The Levi Civita
connection and the curvature tensor associated to theawattibe computed by

2(VxY.Z) = (X Y],Z)— (Y. Z].X) +(Z, X].Y),
ROX,Y) = [Vx, VW] —=Vixy]

forany X, Y, Z in s.

For each unit vectoK in s, Ry, the Jacobi operator associatedXpis the sym-
metric endomorphism of defined byRxY = R(Y, X)X. We will say that either the
metric Lie algebra satisfies conditiotiP) or Sis a‘3-space if for every geodesijcin
Sthe associated Jacobi operaRy ), can be diagonalized by a parallel orthonormal
basis ofT, )S. We note that conditiotP) is equivalent to the fadRx o Ry = R o Rx
for all X € s (see Corollary 5 of [3] and note th&tis a real analyticC°°-manifold).
We recall thatSis an Einstein space if

Ric(X) = trRx = ¢|X|2, cconstant, for allX < s.

If s = n®ais a metric Lie algebra of Iwasawa type, jetlenote the center af = [s, 5]
and letv be the orthogonal complement pivith respect to the metri¢, ) restricted
to n. Thusn decomposes as = 3 v, and for allH € a ady : 3 — 3 and hence,
ady : v — v since ag is symmetric. We recall thatis said to be 2-step nilpotent if
[n,n] =[v,0] C3.

For anyZ e 3 the skew-symmetric linear operatpr : v — v is defined by

(izX,Y) = ([X,Y], Z) forall X, Y evandZ ;.

Equivalently,jz X = (adx)*Z for all X € v, where(adx)* denotes the adjoint of ad
The operatorgz coincide with the usual one in the case of a 2-step nilpaigisee
[5]) and their properties determine the geometryi @inds, as we will see.

We now assume that= n®a is a metric Lie algebra of Iwasawa type and algebraic
rank one; that iss = RH whereH, |H| = 1, is chosen such that all eigenvalues of
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ady |, are positive Sis called a Damek-Ricci space in the special case that,a¢ Id,
adhl, = 21dandj2 = —|Z|2d for all Z € ; (see [2], p. 78).

We recall that since agl,, is a symmetric operaton has an orthogonal direct
sum decomposition into eigenspaags for all eigenvalueg. of ady |, , which are in-
variant by ag; with the property ., n,/] C n,4, (by the Jacobi identity), whenever
u~+u’is an eigenvalue of agd, (see [7]). Moreover, sincgandv are ad;-invariant, by
the same argument they also have decompositions into igeingpaces as= ) _; s,
ando =} v,.

1.1. Algebraic structure of the Lie algebras

The definition of the Lie algebra structure erimplies that, as a Lie algebra,is
the semidirect suns = n 4+, aof n anda = RH, by considering theR-algebra
homomorphisnv =ad: a —dern, H — (ady : n — n). Carrying this over to
the group level means th& = N x; A is a semidirect product ol and A = R
(considered in the canonical way), where

1 A— AutN, 75 : X — axa %, (dta)e = Ad(a),

is given byaexpXa™! = exp,(Exp(tadq)X) for all X € n, a = t, and Exp de-
notes the exponential map of matrices. Note tBa$ diffeomorphic tos under the
map (X,r) — (exg1 X, r) since exp : n — N, the exponential map oN, is a
diffeomorphism.

We assume that is 2-step nilpotent. In this case we have that for @nhg 3 and
X e v, if Z* andY are eigenvectors of adrestricted to; and v, with associated
eigenvalues andpu, respectively, then the product Biyields

(exp,(Z + X),r) - (exp(Z* +Y), s)
1
= (exp,(Z+€*Z* + Ee”‘[x, Y]+ X +€1Y),r +59).
In fact, note that by the definition of the product3we have

(exp(Z + X),r) - (exp,(Z* +Y),s)
= (exp,(Z + X)7r (eXp(Z* + Y)). 1 +9)
= (exp,(Z + X) exp, (Exp(rady)Z* + Exp(radi)Y),r +s)
= (expu(Z + X) exp, (€4 Z* + 1Y), 1 +5),

since exp X exp, Y = exp, (X +Y + %[X, Y]) gives the multiplication law irN (see
the Campbell-Hausdorff formula in [7]).

1.2. Global coordinates inS

We introduce global coordinates $given byy = (xq, ..., Xk, Y1, ..., Ym, I'), defined
as follows. If{Z;, ..., Zx} and{Xj, ..., Xm} (k = dim3, m = dimv) are orthonormal
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bases of eigenvectors of @dn 3 andv, with associated eigenvalugs;, ..., Ak} and
{u1, ..., um} respectively, then

(p(xlv ceey ka yls [EX3} yms r) = (exn'((xlzl + oo + szk + lel + e + ymxm)v r) .

Following the same argument as the given in [2], p. 82 for DsRieci spaces, we
see in the case of 2-step nilpoterthat

a o

T =€ rii Zl ((p(xla"'axka ylv"'v ymar))a
Xi O(X1,0ees Xk, Y15 -ems Yol
ad o

F =€ Fui Xl ((p(xlv"'vxka yla seey ymar))
Yilooa, ..y, oY)

1 .
+5 JZ ey (izeXi\ X)) Zs(@ (X1, <oy Xk, Y1, -ovs Yo ),

d

ar

= H ((p(xl! sy Xk? yl? eeey ym? r))?
O(X1, 05Xk, Y150, Ym, 1)

whereZ;, X; andH on the right-hand side denote the left invariant vector fieldS
associated to the corresponding vectors.in

1.3. Curvature formulas
By applying the connection formula given at the beginninghif section, one obtains

Vy =0andifZ,Zz* € 3, X,Y e vthenVzZ* = Vz«Z = ([H, Z], Z*)H, VxZ =
Vz)(:—%jzx and

VxY = %[X, Y] + ([H, X], Y)H, in case of 2-step nilpotent. Consequently, by a
direct computation, we obtain the following formulas (sék Eection 2):

(i) Ry = —ad.
(i) Ifeither Z € 35, |Z| =1, 0r X e v, |X| =1,

RzH = —A?H andRxH = —u2H.
(i) If Z ey, |Z] =1, foranyZ* € 3andX € v, we have
1.
RzZ* = ((Z,a0hZ*)Z — ady Z*) andRz X = —ZJ§(X) — Aady X.

In the case thai is 2-step nilpotent, we obtain
(iv)If Xev,, [X|=1foranyZej;,Yen

1 . 3.
RxZ = Z[X, jzX] — nady Z andRxY = _ZJ[X’Y]X — padyy.
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2. Geodesics and associated Jacobi operators

Throughout this section and the following oness= n @ a will denote a metric Lie
algebra of lwasawa type and algebraic rank one, wheteRH, |H| = 1, is chosen
such that all eigenvalues of g¢l, are positive, ana = 3 @ v is expressed as in the
previous section. Lety denote the geodesic Bsatisfyingyy (0) = e (the identity of
S) andyy (0) =Y. ForanyX e s, the associated left invariant field along the geodesic
yv will be denoted byX (t) = X(yv (1)) = (dL,y¢))eX.

Next, we compute the geodesig with Y € n, an eigenvector of ag|,, .

LEMMA 1. IfY € nis an eigenvector of agl,, with eigenvaluer, then

py(t) = (expi1 <tanhat> Y, —E In(coshxt))
o o

with associated tangent vector field

wt) = Y (t) — tanhatH (t).

coshut

Proof. Let S be the simply connected Lie group associateddothe Lie algebra
spanned byY, H}. Note thatS has global coordinates(x, r) = (exp, XY, r) and it
is a totally geodesic subgroup 8fwith connectionv = V|g, satisfying

VyY =aH, VwH = —[H, Y] = —aY¥, Vyq =0.
Since the coordinate fields associategtare given by

0

d
— =e T (px,r —
% (p(x, 1)), ar

= H(p(x, 1)),
o(X,r)

o(X,r)

the Christoffel symbols are easily computed by the formulas

9 9 9
Vi — = ae " H(p(x,1), Vi — = —o— ,
X IX | pxr) AN | y0xr) Xl px.r)
9 9
Vo — = 0=V, — .
TN o x.r) T IX [ pxr)

Hence, we obtain the geodesig(t) = ¢(x(1), r (1)), wherex(t) andr (t) are solutions
of the differential equations

X" —2ax't’ = 0,
r// + aele’ol (X/)Z — O
Using thatyy, (t) = x/(t)aix\w(t) +r/(t) Bir\w(t) |y ] = 1, with
) 2arty 0 —ar(t) 9
xX'(t) =€ - =e Y(t) and — =H(@®),

w(t) P0)
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we have the equivalent equations

X(t) = eZar(t)’
') +a@ - ') = 0

whose solutions satisfy
t
X(t) = f e Wdyandr/(t) = — tanhat.
0
Therefore, we get
1 1
r(t) = ——In(coshat), x(t) = — tanhat,
o o

and the expression g& andyy, follows as claimed.
([l

ProPOSITIONL. If Z € 3 and X € v are eigenvectors of af with associated
eigenvalues andu, respectively, then for any ¥ v, we have

1
i e Y(t) = ————(dL
O R YO = Coofiag Ahrawle
1
. <RZY — sintf At add, Y — sinhitjz <§x Id — adH> Y>
(i) Ry Z) = —=—(dLyyq)
Riw2® = cosfput -~ XVe

1
. <sz —A2sinkP utZ + (n — éu) sinhut jZX)

cosHf ut
1
. <RXY — sint? ut ad, Y — sinhpt <§uld — adH> [X, Y])

in the case oR-step nilpotent, with YL X in v.

Proof. (i) Let Z € 3 andyz(t) be the associated geodesic. Since

vz () = Z(t) — tanhAtH (t), we have that

1
coshat

li / 1
RY(), yz())yz(t) = m(dl-yz(t))e

. (RZY + sinf? AtRy Y — sinhat (R(Y, Z)H + R(Y, H )Z)) .
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Using the Bianchi identity and the connection formulas weapate

R(Y,Z2)H +R(YY,H)Z = 2R(Y,H)Z - R(Z,H)Y
= 2VIH,v1Z - ViH,71Y

) 1 .
= —Jz(adHY)+§)»JzY,

that substituted in the above expression, gives (i) aststiteeRy = —ad,a.

(i))-(iif) Assume thatX e v is an eigenvector of agd with eigenvaluex, and let
Y L Xinv. Using the expression gf; (t), in the same way as (i) we get

1
R(Z(®), y5 () yx () = ———(dL
(ZO), yx ) yx® cosf‘?ut( yx(®)e
. (sz + sint? 4t Ry Z — sinhut (R(Z, X)H + R(Z, H)X)) .
Hence, the expression ﬁty)f((t)Z(t) follows as claimed since
R(Z, X)H + R(Z, H)X = ZV[H,Z]X —Viu,x1Z = 2AVzX — uVxZ
1
= —(A—ZwjzX.
( 2H)Jz

Finally, we have

RIY (1), yx M)yx () = o (dLyxt)e

1
osHf ut
: (RXY + sint? it Ry Y — sinhut (R(Y, X)H + R(Y, H)X)) .
In the same way as above, in the case of 2-step nilpatemé compute
R(Y, X)H + R(Y, H)X = 2V[yviX — V[H,x]Y
1

which completes the proof of the proposition.

3. Eigenvectors and eigenvalues along Jacobi operators

In this section we assume that= 3 ® v is non-abelian anglz is non-singular om for
all Z € 3. Note that ifA is an eigenvalue of agl; andZ € 3, then jZ|nM L S
for any eigenvalug. of ady|, . In fact, for X € v, andY € v,/

and thusu + ' = A since [X, Y] € n,, and has non-zero componentin
ntu p
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Hence, for any eigenvalyeof ady |,, A — u is also an eigenvalue of ad,, A > u
and the symmetric operattjé preserves,. Moreover, the map‘: — [X, jzX] de-
fines a symmetric operator gn(([ X, jzX], Z*) = (jz=X, jzX) = ([ X, jz*X] Z))
such that K, jzX] € 3. forall X € v, since([X, jzX],Z) = |jzX|? # O
[X, jzX] € ny (the Jacobi identity) and > u.

Next, we describe the eigenvalues of the operaIR;,er), Ry ) and the parallel
vector fields along the geodesigs(t) andyx (t) for soméZ € 3 ‘andX €vy.

jzX
1zX1"

(i) If X is an eigenvector ofﬁ, then Rfﬁ(t) has an eigenvector @) = x(t) X(t) +
y()Y (1) with x(t)? + y(t)2 = 1 and associated eigenvalue @) satisfying

az(t)costf At = (RzY,Y) — (A — w)?sintP At — G L M)|jZX|QsmhM

y(®)

LEMMA 2. Let Z € 3, and X € v, be unit vectors. We set ¥

whenever yt) # 0.

(i) Assume than is 2-step nilpotent. If X satisfigsX, jzX] = |jzX|? Z, then
R, 1) has an eigenvector U) = x(t)Z(t) + y()Y (1), x(1)2 + y(t)?2 = 1, whose
associated eigenvalue@t) is given by

ax (t) cosif ut
L a IR0
= 4|jzX| A — A2 sink? ut + (A 2M)|JZX| (t)smhm or
ax (t) cosif ut
3.
= X = Wt O M)Slnhzut)Jr()\——M)IJzXI%SInhMt

according to Xt) £ O or y(t) # 0, respectively.

Proof. Note that by the properties o and X, the spaces sp&K(t), Y(t)} and
sparZ(t), Y(t)} are invariant under the symmetric operatﬁ}s ) and Ry (t), re-
spectively. The assertion of the lemma follows from the egpion oiRy @ andRy, )
given in Proposition 1 and using in each case the equalities

R, 0U®) =az)U®) andR,; (U (1) = ax®U ),
Note that in the last case,
1. oo 3 . e
RxZ = 7 1izX?Z —AuZ and ReY = — 7 izXPY — u( — )Y

sincen is 2-step nilpotent.
O

PROPOSITIONZ2. Let Z € 3, be a unit vectorlf X € v, [X]| =1, is an eigenvec-
tor of j%, then the parallel vector field U along the geodesiawith U (0) = xoX+YoY
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(Y = 425, 52 + y2 = 1, is given by Ut) = x(X (1) + y(HY(t) where

X(t) = Xgcoss(t) — yosins(t) , y(t) = xgsins(t) + yocoss(t), and

s(t)—ll' XI/t du

=3z o coshau’

Proof. We first note that(dL,,«))e(spaiX, jzX}) is invariant undervyé(t) since
yy(t) = 53 Z(1) — tanhatH (), VzX = —1jzX, VzjzX = 11jzX?X and
Vy =0.

Hence the parallel vector field alongyz with U (0) = xoX + yoY is given byU (t) =
X)X () + y@)Y(t) satisfying the equatioﬁ'yé(t)u (t) = 0, which gives

1
VzX+Yy Y+ Y2 VY = 0 for all realt

1
"X t
x®) +X()c oshit

oshit
sinceX andY are left invariant. Thus,

1
X' ()X — X0 5 cost JzX +YOY — YOS osmt

Y =0,
ostit 12
andx(t), y(t) are solutions of the differential equations
/ IJZX| _ / IJZX| _
X+ 2 coshit yo =0 y® 2 coshit Xt =0
sincejzY = — |jz X| X. By expressing these equations in the matrix form as

Xt 1_11lzXI[0o -1 X(t)
y® | 2costat [ 1 O y@ |’
the solutions are given by
Xt | Xo |10 -1
[ VD }_Exps(t)\][ Yo } whereJ _[ 1 0 }
s(t) = % [jzX] fé Cogﬁ (Exp denotes the exponential map of matrices). The assertio

cOSs —sins }

of the proposition follows since Expl = [ sins  COSS

O

PrROPOSITION3. Assume that is 2-step nilpotent. Let Xe v, and Z € 3, be
unit vectors satisfyingX, jzX] = |jzX|? Z. Then the parallel vector field U along
the geodesigx with U(0) = x0Z + yoY (Y = IJZXI) x0 + y0 = 1, is given by
U) =x(@)Z(@) + yt)Y(t) where

X(t) = Xp coss(t) — ypsins(t) , y(t) = xgsins(t) + yocoss(t) and

s(t)—ll' XI/t du
=2z o coshuu’
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Proof. Note that the parallel displacemddit) of U (0) alongyx(t) is expressed as
U@ = xM®)Z)+y@)Y (1), since(dL,, t)e(spaiZ, jzX}) |smvar|antundelvy/ -
In the same way as in Proposition 2, the equaﬂgn(t)u (t) = 0 gives

X 1Z - xty 2y ¢y ¢ y(t)“27|
2 coshut coshut

Hence x(t) andy(t) are solutions of the differential equations

Z = 0 for all realt.

jz X
Xt + 12X yy o, y(t)_ZL:chsth

2 coshut X® =0,

which are given by
X(t) = Xpcoss(t) — ypsins(t), Y(t) = Xpgsins(t) + Yo Coss(t)

with s(t) = 3 IJ'zX|fc§ cog%'

4. Condition (P) on Lie algebras of lwasawa type and rank one

In this section we will assume thatis a metric Lie algebra of lwasawa type with
non-abeliam and algebraic rank one satisfying conditig®). We summarize in the
proposition below some properties of the algebraic streatfithe Lie algebra = 3;do
(Similar ones were obtained in [4], Proposition 1.3). Thlofging lemma will be
useful in what follows.

LEMMA 3. If & is a totally geodesic subgroup of a Lie group S which i8a
space, then §is a B-space. Equivalently, a totally geodesic subalgefyaf a Lie
algebras satisfying conditior{P) satisfies conditioriP).

Proof. Lets andsg denote the Lie algebras &and Sy, respectively, with associated
curvature tensor® and Ry. Note that for a uniX € s the symmetric operatdRy =

Vi) (RV (t))‘ is defined along/x(t) by R Lt = Vi, (Ry (t)> on s(t)
(dLyX(t))es, and for any orthonormal parallel bas{le, (t)} satisfying Ry BCIO)
g (H)g (t), we have

Rew8® =V (Ry’x(oei (t)> ~ Ry (Vy’x(oei (t)> =aMa ),

Let X € sg be a unit vector, and note thaf andsé are invariant under the symmetric
operatorRx andRy in s sinceso is a totally geodesic subalgebrasadndRy = R, .
Hencesg andsol are also invariant by the skew-symmetric oper&gp Ry — R} o Rx.
Using that conditior{P) is equivalent toRx o Ry — Ry o Rx = 0 for all unit vectors
X in s, it follows thatRox o Ry — Ry o Rox = 0 (Rox andRyy are the restrictions
of Rx andR to so, respectively). Thu§p is a’3-space.

O
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PROPOSITION4. Lets = n® RH, |[H| = 1, be a metric Lie algebra of lwasawa
type that satisfies conditiaiP). Then

(i) adul; = Ald.

(i) If nis non-abelian) > w1, the maximum eigenvalue of @f,. In particular
ny, =3 and[n,,, 0] < 3.

(iii) Forany Z € 3 thelinearmap j : v — v is anisomorphism with the properties
izly, @ o — 03—, and j§|UH v, — v, (isomorphically). In particular, if is an
eigenvalue of ad|y, theni — p is also an eigenvalue of ady.

Proof. (i) Let so = 3 ® RH be the subalgebra afwith associated simply connected
Lie group &. It follows from the above lemma th&y is a B-space sinceyg is a
totally geodesic subalgebra efMoreover, ifZ L Z* are eigenvectors of ad; with
associated eigenvalugsandi*, respectively, the Lie algebra spanned{&; Z*, H}

is a three-dimensional totally geodesic subalgebraofvhose associated Lie group is
a‘P-space, by the previous lemma. Then we can assume thaip and it is spanned
by {Z, z*, H}. Using Lemma 7 and the Remark on page 73 of [3], it follows that t
conditionRx o Ry — R} o Rx = 0 implies that

(VzRic) (Z, H) = (Vz+Ric) (Z*, H),

where the Ricci tensor associated3@ defined by Ri¢X, Y) = tr(V — R(V, X)Y).
We compute

Ric(Z, Z*) Ric(Z, H) = Ric(Z*, H) = 0, Ric(Z, Z) = —A(A + A%),
Ric(Z*,Z*) = —A*(+ A" and RigH, H) = —(.2 + 1*2).

As a consequence, it is easy to see that

(VzRic) (Z,H) = —Ric(VzZ,H) —Ric(Z, VzH)
= A(RIC(Z, Z) — Ric(H, H)) = A*(A* — A)

and similarly,
(Vz+Ric) (Z*, H) = A1* (L — A%).
Hencer* = 1 and there is a unique eigenvalue ofidg.

(if) Assume than is non-abelian. Then we have thaj[, n,] # 0 for some eigen-
valuep of ady|, , which implies thafu; + 1 = A sinceus is the maximum. Hence,
A > g > p for all eigenvaluesge of ady in v, and it also follows thatid,,,, v] < 3
from the definition ofu1.

(iii) We recall thatjzln, @ ny — My Hencej% preservesy, for all u (see
the beginning of Section 3). Moreover, Keris invariant by ag, since the condition
jzX = 0 implies that

AMjzX, Y)—={([H,Y],jzX) =0forallY € v.
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We will show thatjzX # 0 forallunitZin 3andX € v. If jzX = 0, then by
the previous remark we can assume tiate n, and|X| = 1. Thensg, the Lie
algebra spanned Y, X, H}, is a totally geodesic subalgebrasdincevzZ = AH ,

VxX = uH,VzX =VxZ =0andVzH = —AZ, VxH = —uX, V4 = 0. Hence,
so satisfies conditioriP) and applying the same argument used to showxhati*

in (i) above, we obtain that = wu, contradicting (ii). Consequently, — w is an
eigenvalue of ad|, wheneve is an eigenvalue sincgz|n, : n, — n,—,. Assertion
(iii) follows since dimv,, < dimv,_, < dimwv, (jz is an isomorphism).

O

Next we will show that under the hypothesis of conditi@), the number of eigen-
values of ag |, can be reduced to at most two, namklynd%)\, attained iry andv,
respectively. For any subspacef the Lie algebra andyx (X € s) a fixed geodesic
in' S, we will denote byu(t) =(dL,t))eu.

REMARK 1. If so & u is a direct sum decomposition into subspaces of the Lie
algebras such thatsg(t) andu(t) are invariant undeWV)/((t) and Ryg(n for all t, then
e(t) = ei(t) + ex(t), expressed according to the decomposig(t) & u(t), is a
parallel eigenvector oRy)f((t) alongyx if and only if e;(t) andex(t) are also parallel
eigenvectors ot:g,)/< -

In the case of an orthogonal direct sum decompositiosy(if) is invariant under
Vi _and Ry - thenu_(t) = 5o(t)_l is also inyariant undev,, ) andR,, ) since
Vy, (t) Is skew-symmetric an&,, ) is symmetric.

PrRoOPOSITIONS. Ifs = ndRH, |H| =1, isametric Lie algebra of lIwasawa type
with non-abelian nilpotent satisfying condition(P), then the eigenvalues of ad,
are A and %A, when restricted tq andv, respectively. Then is 2-step nilpotent.

Proof. Note that aq:l||3 = Ald, by Proposition 4. Next we will show that adl, =
%Md. For this purpose, we fix an eigenvalueof ady|, and assume that # %A.
If Z € 3 is a unit vector, it follows from the definition o7, ) and the expression of
Ryé(t) given by Proposition 1 (i) that for any eigenvajugof ady |y, , v, () Do — . (1)

(or n%k(t) in caseu™ = 1A) is invariant undelRyi(t) andvyé(t) sincev,x @ vy_,x IS

Rz-invariant andv,,, ) X (t) = — e JZ X ().

Assume that the conditiofP) is satisfied and leftg (t) : i = 1, ..., dims} be an or-
thonormal parallel basis that diagonaliZes ;,. Thereforeg (0) has a non-zero com-
ponente € v, @ v;_, for somei = 1, ..., dims (otherwise{g (0) : i = 1, ..., dims}

would be a basis of & >+, 5, 0 ® RH). It follows from the previous remark
thate(t), the parallel displacement efalongyz(t), is a parallel eigenvector d?yé(t)
with e(t) € v, @ vy, (1).

Now, we choose a basi; : i = 1,...,m = dimv,} of v, that diagonalizes
the symmetric operato'y% Do, — v,. Hence{Xi, jzXi : i = 1,..,m}is an
orthogonal basis af , v, _,, by Proposition 4, and, ®v,_,, = eaim:lspar{Xi, jzXi},
where each spdiX;, jz X;}(t) is invariant undervyi(t) and Ryé(t) (Xj andjzX; are
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eigenvectors oRz). Applying Remark 1 again, we can choose a Wit v, such
thatj%X = —]jzX|2X (X = X; for somei = 1, ..., m so thate = a,a #0
and a parallel eigenvecttr(t) of Ryé(t) along the geodesigz(t) satisfyingU (t) =
X®)X () + y®Y®) (Y = ‘EQ), with x(1)2 + y(t)2 = 1.

We setU (0) = xoX + yoY and letaz(t) be the associated eigenvalueR;)‘é(t).

If Xo # 0 andyp # 0, we have thaRz X = az(0)X, RzY = az(0)Y. Therefore,
(RzX, X) =az(0) = (RzY, Y) and consequently = %A since

1 . 1 .
3 lizXI12 = ap = lezXF—m—m.

Assume thaky # 0 andyp = 0, hencexg = 1, yo = 0 andaz(0) = (RzX, X). It
follows from Lemma 2 (applied dt= 0) and Proposition 2 that

az(0) = (RzY.,Y) (1A ) jzX] lim x(t) sinhit
2= AR h ot Wz t—0 y(t)
wherex(t) = coss(t), y(t) = sins(t) with '(t) = 3 |jzX| g5z We compute
Mt <& Sinh)»'[) = | t—0 (7(5"’]"])»'[)/) = )\,“mtﬁocosr?ft _COSH S(t)
y(®) (tans(t)) 51z X

2 sty - 0)
[jzX] ’

which substituted in the above expression gives

1
az(0) = 7 ljizX[? = (2% — 3p).

From the equalityz (0) = (Rz X, X), we obtainu = %A and get a contradiction. The
same argumentis used in the case= 0, yp = 1.

Now we observe that the conditionsfd = Ald and agy |, = %Md imply that the
eigenspaces associated tqyagdaren; =3 andn%A =1v. Thus, p,v] = [“%w “%x] C
n, = 3, showing that is 2-step nilpotent.

O

ExampPLE 1. Consider the four-dimensional metric Lie algebwaf Iwasawa type
and algebraic rank one with nilpotent non-abeliag 3 ® v. Hencegs is spanned by
an orthogonal basi&Z, X, jz X, H} with unit vectorsZ € 3, X € v and Lie bracket

[Z,X] = 0=[ZjzX], [X izX]=1jzX[*Z
1 . 1.
[H,Z] = AZ, [H,X]= 5%, [H, jzX] = ShizX.
Note thatj%X = —]jzX|? X. We show that the Lie group associated te is a‘J3-

space if and only if jzX| = A. Thus, up to scaling$ is the 2-complex hyperbolic
spaceCH?2.
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For this purpose we see that
Rz4x 0 Rpyx(H) = Ry, x 0 Rzpx(H) =04 |jzX| = 1.

Note that from the connection formulas,
V2Z =H, VxX = $aH, Vi;xizX = 311jzXI?H, VzX = —3jzX, Vi =0,
we get

1/1
RzX = =(Z]jzX]2=22) X
z 2(2|JZ | > ,
. 1/1 .
Rz(jzX) = §(§|JZX|2—)\2>JZK
1/1
RxZ = §(§|jZX|2—A2>Z,
. 1, .
RyjzX = —Z(3|JZX|2+A2)JZX,
1 1
RiyxZ = = 1izXI?( S 1jzXI? =22
jzX 2|Jz | <2|JzXI )»)Z,
1 .
RipxX = —71iz2X?(31izX1? +2?) X.

Hence, taking into account th&,  x () = Rz(-) + Rx(-) + R(-, 2) X + R(-, X)Z, it
is a direct computation to see that

1ia,. 2
(1) Rzix(H) = Z(3AJZX—5)\ H),
. 1 . 3 . 3. .
Rz+x(jzX) = —<§|JZX|2+Z)»2>JZX—l—Z)»IJzXIZH,

Rzx(Z — X)

1.
(5 |izX[? ~ A2> (Z =X,
Recall that, by definitionR,_ y (-) =

[Vz4x, Rz4+x](-) = R(:, Vzux (Z + X))(Z + X) — R(-, Z + X)Vz4x(Z + X),

and by a straightforward computation, using the connedtionulas and the definition
of R, we obtain the following expressions Bf, |

/ 1
@) Zex(H) = Sx(lizX2=32) 2 = X).

Ry, x(jzX)

1 . .
-5 lizXI12(1jzXI2 = 23)(Z = X),
since

1 . 2 2 1 . 2 7 2
[Vzex. RzexI(H) = & ( 5 1izX2+22) Z+ 20 (1izXP + 527 ) X,
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1 .
R(H, Vz4x(Z + X)(Z + X) = =4 lizX[%(Z = X),

1 1 . 3 .
R(H. Z+ X)Vzx(Z +X) = 52 <(3A2+ > 1jzX1)Z + (ZA2+ IJZX|2)X> i

and

. 1 . . 9 )
[Vzix, Rz+x1(izX) = =3 ljzX|? <(|JZX|2 + Ex%z + (ljzX12+ 3x2>x> ,

. 3,
R(jzX, Vz4x(Z + X)(Z + X) = —§A2|JZX|Z(Z—X),

R(jzX, Z 4+ X)Vzix(Z + X)

1. .
ZlJzXIZ(IJzXI2—5?»2)Z

1 2 vi2ali w2, 2,2
—ZIJZXI (IjzXI* @ljzX| +§)» )X.
Finally, we get

1 . . :
[Rzex. RpoxI(H) = £h (5112X12+42) (12X2 = 3)(Z = X). since

1 /. 1.
Rzix o Rz x(H) = EA(UZXF—AZ) (§|JZX|Z—AZ><Z—X>and

RZ.x © Rz+x(H)

3 ) 5
Z)‘R/ZJrX(JZX) - ZAZR’Z+X(H)

1 . ,
—1 (3112XP +5:2) (12X = 22)(Z = X).

which are computed using (1) and (2) above. The assertitowfslas claimed.

THEOREML. If S is a Lie group of lIwasawa type and algebraic rank one wigch
a‘B-space, then S is a rank one symmetric space of noncompact typ

Proof. Lets = n®RH, |H| = 1, be the metric Lie algebra of Ivasawa type associated
to S. If nis abelian, them = 3 & RH with A as unique eigenvalue of gd;; thusSis,
up to scaling, the real hyperbolic space.

Assume that is non-abelian, then by Propositionbis 2-step nilpotent. We
show that|jzX|> = A2 for unit vectorsZ e 3 and X e v. For this pur-
pose letX # 0, |X|] = 1, be a vector inv. Let {Z3, ..., Zx} be an orthonor-
mal basis of; diagonalizing the symmetric operatdr — [X, jzX] on 3. Hence,
(ize X, iz X) = 8il |iz, X|2 and{jz, X, ..., jz X} is an orthogonal basis gfX. More-
over, since K, jz X] = |jz X|ZZi (i = 1,...,k), it follows that Z; and jz X are
eigenvectors oRx|; and Rxlj;x » respectively (see Section 1, 1.3), and consequently,
3@ ;X = @}‘lepar{Zi, iz; X} where spa{Zj, jz X}(t) is invariantundeRV;((t) and
V),)Q(t) foralli =1, ..., k.
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Assume that conditioiP) is satisfied and lefej(t) : j = 1,...,dims} be an
orthonormal parallel basis dlagonallzuﬁg - Applying the same argument as used
in the previous proposition, for each= 1 ..k, we can choose k j; < dims
such thatU; (t), the non-zero component ef (t) in spaniZ;, jz X}(t) is a parallel

eigenvector oﬂ?y @ alongyx(t) by Remark 1. We seZ = Zj, Y = dii‘ U=

Ui (0) = XoZ+YoY with x0+y0 = 1, and note that the unZ € j satisfies K, jzX] =
|jzX|? Z. By applying Proposition 3, the parallel eigenvedtbalongyx with U (0) =
U is given byU (t) = x(t)Z(t) + y)Y(t), with

X(t) = Xpcoss(t) — ypsins(t), Y(t) = Xosins(t) + Yo coss(t)
ands(t) = 3 1 jzX| o th whose associated eigenvalag(t) satisfiesax(0) =

(RxU,U) = x§(RxZ, Z) + Y§(RxY. Y),

1 1 1, 1
ax (t) costf SM=7 ljzX|? — 2 % )»zsmh2 SA+ )»I]zXI &smhikt

X(t)
and
1 3. > 1, 1 X(t)
ax(t)cosﬁékt_—Z|JZX| —ZA cosﬁékt + AIJZX|Esmh At

for all realt, by Lemma 2.
If Xo # 0 andyp # O, thenax(0) = (RxZ, Z) = (RxY,Y) (Z andY are
eigenvectors oRx) and we getjz X|* = 12 since

1 1 3 1
“1jzX12 = 222 = — 2|2 X2 — 222,
4|Jz | > 4|Jz | 2

If Xo = 1 andyp = 0O, it follows from Proposition 3 thak(t) = coss(t), y@) =
sins(t) and in the same way that in the previous proposition,

(t) 1., coshjat A
mHo< O sin h2 ) = é)»IlmHo( =0 = X"

coslt s(t)

Substituting this limit in the last expressionayf (t) above, we get

1 3 X)) . .1
ax(0) = ——|jzX|2 A2+ MJZX“Imt_’O(yEt;SthM)
= ——|jZX|2+3A2
4 277

and from the equalityRx Z, Z) = ax(0) it follows that|jz X|% = AZ2.

The same condition is obtained in the cage= 0 andyo = 1, since in this case
X(t) = —sins(t), y(t) = coss(t) andax(0) = (RxY, Y) with ax (0) computed as
sinh%kt) 1 2

5
=~ |jzX[? = 252
tans(t) 4 4

1 3
ax(0) = —IJ X[? — _)\2__)\|JZX|||mt—>O<
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Finally, using the same argument on each $@ganjz X} (i = 1, ..., k), it follows
that for any unit vectoiX € v, an orthonormal basi&Z;, ..., Zx} can be chosen so
that [X, jz X] = |jz X\zzi and{jz X : i = 1,...,k} is an orthogonal basis GfX

satisfying eithet j z; X|2 =2or|jz X|2 =A2fori =1, ..., k. Hence,
1 .
(%) ZAZ 1Z|? < |jzX|? <22|Z|)? forall Z € 3andX € v, |X| =1,

sincejzX = Zikzl a jz X is an orthogonal sum for arg = Zik=1 aZinj.

Next we show that the conditiqrjzi X|2 = 711)\2 in the above basis is not possible.
In fact, for a suct;, it follows from (x) above thag .2 = —(j%i X, X) is the minimum
eigenvalue of the symmetric operateij %i with X as associated eigenvector. Thus
—j2X = 712X andso, the Lie algebra spanned Hyi, X, jz X, H}, is a totally

geodesic subalgebra of Applying Lemma 3, the associated Lie groupstois a‘3-
space, which is not possible by Example 1.

The condition|jziX|2 = A2foralli = 1,...k, implies that|jzX|? = 22|Z|?
forall Z € 3andX € v, |X| = 1, or equivalentlyj2 = —22|Z|2Id for all Z € ;.
Since agh|; = Ald and ag|, = %Md it follows that Sis, up to scaling of the metric,
a Damek-Ricci space. Theorem 2 of [2], Section 4.3 implieg $is a rank one
symmetric space of noncompact type.

O

COROLLARY 1. If M is an irreducible, non-flat homogeneous Einst@8rspace
with nonpositive curvature and algebraic rank one, then Maisymmetric space of
noncompact type and rank one.

Proof. SinceM is irreducible and non-flat, by applying Corollary 1 of [8]fdllows
that M is a simply connected homogeneous space with nonpositivattwe. Hence,
M can be represented as a solvable Lie grBopalgebraic rank one with left invariant
metric of nonpositive curvature, whose associated metdalgebras decomposes as
an orthogonal direct sum= n @ a wheren = [s,s] anda is one-dimensional (see [1]).
By applying Proposition 4.9 and Theorem 4.10 of [B]s isometric to a Lie group of
Iwasawa type and algebraic rank one. It follows from TheotdahatM is a symmetric
space of noncompact type and rank one.

O
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