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SOME RESULTS ON THE WELL-POSEDNESS OF AN
INTEGRO-DIFFERENTIAL FR EMOND MODEL FOR SHAPE
MEMORY ALLOYS

Abstract. This note deals with the nonlinear three-dimensional Fenén
model for shape memory alloys in the case when the heat fluxctaw
tains a thermal memory term. The abstract formulation ofititeal and
boundary value problem for the resulting system of PDE’issidered.
Existence and uniqueness of the solutions can be provedpigitng a
time discretization semi-implicit scheme, combined withegpriori esti-
mate - passage to the limit proceduses well as by performing suitable
contracting estimates on the solutions.

1. Introduction

This note is concerned with a mathematical model descrithiaghermo-mechanical
evolution of a class of shape memory alloys (metallic alldyaracterized by the pos-
sibility of recovering, after deformations, their origlrehape just by thermal means),
in the case one takes into account some memory term in thdlinetw. We consider
a three-dimensional initial-boundary value problem edato the thermo-mechanical
model introduced by Frémond to describe the martensiséeaite phase transition in
shape memory alloys (cf. [12, 13, 14, 15]). The differendgvieen the problem we are
investigating and the classical Fremond model is giverhieyfact that we do not refer
to the standard Fourier law for the heat flux and, conseqyemt deal with a different
equation describing the energy balance.

The shape memory effect can be ascribed to a phase transétiaeen two differ-
ent configurations of the metallic lattice (martensite anstenite) and it results from
the occurrence of an hysteretic behavior, shown as to agttependence of the load-
deformation diagrams on temperature. The model proposé&déyond describes the
phenomenon from a macroscopic point of view and it can beeghpb any dimension
of space. Concerning the two phases, we recall that only awi@nts of martensite
and one variant of austenite are considered and it is sugplbeg may coexist at each
point. Hence, on account of the expression of the free-gnang by applying the
conservation laws for energy and momentum (in the quasbetry case), one can
deduce the constitutive equations of the model in accorlaiith the second principle
of thermodynamics (cf. e.g. [4, 14]).
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The unknowns of the resulting PDE’s system are the abscdmgératur®, the
vector of displacements, and two phase variabldy1, x2) that are linearly related
to the volume fractions of martensite and austenite. Indagdt is assumed that no
void nor overlapping can occur between the phases, denbyirig:, 82) the volume
fractions of martensitic variants and By the volumic fraction of austenite, it turns out
physically consistent to require that

3
1) 0<p<1i=123 and ) g=1
i=1

Thus, we can fix as state variables (note = 1 — 81 — B2)

(2) x1:=PB1+ B2 and x2 = B2— 1.

We refer to [4] and references therein for a detailed arguatiem on the mathemat-
ical derivation of the model as well as for a discussion onrtiechanical aspects.
Moreover, in [14, 15] it is shown that the model by Frémonddicts a behavior of
the solutions which is in accordance with experimentalltestience, we introduce a
positive, bounded, and Lipschitz continuous functigrwhich vanishes over a critical
temperaturé. (the Curie temperature) with, > 6*, 6* denoting the equilibrium tem-
perature. Thus, by referring to a sample of shape memompjsictmaterial, located in
a bounded smooth domaih c R3, and after fixing a final tim@ , the system of PDE’s
describing the thermo-mechanical evolutionQn= Q x (0, T), reads as follows

(Co — 0" (0) x2divu)ad + divg = f + Larx1

3) +(0a'(0) — a(9)) divudy x2 + 0’ (9) x20¢ (div u),
(4) div(—vA(divu)l 4+ A divul 4+ 2ue(u) + @ () x21) + s= 0,
x1 1(© —6%) 0

wherel denotes the identity matrix,(u) the linearized strain tensay, the heat flux,
f stands for an external heat sourségr the vector of the volume forces, addl is
the subdifferential of the indicator functidi: of a suitable convex subskt of R? (a
triangle with one of the vertices at the origin) and it acdstifor the constraint on the
phases (1) to attain only physically meaningful values. Wg point out thatg, u«, v,
A, L, I, and¢ are strictly positive constants (see e.g. [14] for the matizd meanings
of the above constants). By virtue of (1) and (E)can be taken i.e. as follows

(6) Ki={(y1,72) eR?:0< |yl < y1 < 1}.
For the reader’s convenience, we also recall thay) = 0ify € K andlx(y) =
+o00 otherwise. Moreover, sinck is a closed convex sed, turns out a maximal

monotone graph such that (cf. [5])

(Y1, ¥2) € dlxc(x1, x2) ifand only if (x1, x2) € K
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2

(7) and ) " yi(xi — xi) <0, ¥(x1, X2) € K.
i=1

In particular, we stress that ifx1, x2) ¢ K thenadlx(x1, x2) is the empty set, if
(x1, x2) belongs to the interior ok thendlx(x1, x2) = (0, 0), and if (x1, x2) lies
on the boundary of thend I (x1, x2) coincides with the cone of normal vectorsito
at point(x1, x2). We should also remark that, under the small perturbatissgrap-
tion, equations (3) and (4) correspond to the balance lawsrfergy and momentum
(in the quasi-stationary case), respectively, while thawgion of the phaseéy1, x2)

is governed by the inclusion (5) that could be rewritten agiatgise variational in-
equality (cf. (7)). Finally, the system (3)-(5) has to be@ligd by suitable initial and
boundary conditions. In particular, we prescribe (naju€aluchy conditions fof and

(X1, x2)
(8) 0000 =6°% x10)=x{, x200 = 2,

and appropriate boundary conditions @mandu. We consider the boundaliy of

be partied in[(o andI"; and we require that they are (measurable) sets with positive
surface measures. Indicating bythe outer unit normal vector to the boundarywe
state

9 g-n=-h onl x (0, T),

(10) u=0 on Tox(0,T),

(11)  ((—vA(divu) +rdivu +a(@)x2)1+ 2ue(u)) -n=g onl1 x (0, T),
(12)  Op(divu) =0 orl x (0, T).

The above conditions mean that the heat fiukrough the boundary (cf. (9)) and an
external tractiorg (cf. (11)) are known, while neither displacementslan(cf. (10))
nor double forces oir (cf. (12)) occur.

As we have already stressed, the standard Frémond modekis lgy equations
(3)—(5) in which the heat flug is assumed to fulfil the classical Fourier heat flux law,
namely

(13) gx,t) = =koVo(x,t), (x,t) € Q,

with ko > 0. Here, we would like to discuss other possible differerticks for the
form of the heat fluxg to combine with the energy balance (3). Indeed, our work is
related to the problem of representing heat transporte@bgiuction in which the heat
pulses are transmitted by waves at a finite but possibly hgleds (cf. [18, 19] for a
complete and detailed physical presentation of this stibjéc the linearized theory,
the heat flux is determined by an integral over the historjheftemperature gradient
weighted against a relaxation functiércalled heat flux kernel More precisely, the
heat fluxqg is assumed to be governed by the following relation

t
(14) qex, t) = —f Kt —s)VO (X, s)ds.

—00
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Let us point out that, in general, the thermal history of theterial is assumed to be
known up to the time = 0, i.e. the termff’oo E(t — s)VO(x, s)ydsis considered as a
datum. Thus, in the sequel, we will denote bycf. (3)) a heat source term, accounting
both for external thermal actions and for the past histortheftemperature gradient.
Many different constitutive models arise from differenbates of the kernek in (14).
Note that if one consideﬁé(s) = Kkod(s) (8 being the Dirac mass) one can recover
the classical Fourier law (13). The Frémond model coupléd the Fourier law has
been deeply investigated and existence as well as unigsiehte solutions have been
proved (cf., among the others, [6, 8, 9, 10, 11]). A differgmproach consists in taking
into account a Jeffrey type kernel (formally derived frorasticity theory) that reads
(cf. [18])

(15) K(s) = kod(s) + %exp(—s/n,

in which an effective Fourier conductivitg is explicitly acknowledged anH; is a
positive constant. In particular, note thatkf = 0 then (15) reduces to the known
Cattaneo-Maxwell heat flux law (cf. [7] and a mathematicatdssion in [3]). Thus,
in general, in (14) one could takeas follows

(16) K(s) = kod(s) +k(9),

whereky > 0 andk, in general, denotes a positive type (cf. [16]) and suffitjen
smooth function. Observe that, in the case wkegilis strictly positive andk is not
identically zero, (16) is known as the Coleman-Gurtin haat faw. In [2] we have
investigated the thermo-mechanical Frémond model fopshmemory alloys in the
framework of Gurtin and Pipkin’s theory (cf. [17]), which éharacterized by the fact
that no Dirac mass is considered in the kelfhéto = 01in (16)). In particular, by use
of a fixed point argument and contracting estimates on thgisak, we have proved
well-posedness of the initial and boundary value problelated to a slightly modi-
fied version of the PDE's system (3)-(5) , which is obtaineddking the equilibrium
equation (4) , by linearizing the energy balance (3) (cff@®Ja similar approximation)

(17) Codth — kA = f + Log x1,

+ denoting the usual convolution product ovért), and by adding a diffusive term in
the variational inclusion describing the phases dynanaic{%))

X1 Ax1 1 —0%) 0
n being a strictly positive parameter. The reader can eabgive that (17) is obtained
by neglecting the nonlinear terms in (3)and substitugjty (14) and (16) wittkg = 0.
In addition, we stress that, as it is assurké@) > 0, (17) turns out to be of hyperbolic
type. On a second step, in [3] we have discussed the modelichwithe Cattaneo-

Maxwell heat flux law is assumed, which corresponds to spé&c¢H) = % exp(—s/t)
in (17). By letting diffusive dynamics for the phases (18 tresulting model turns
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out to be a singular perturbation of the standard Frémammks in which the heat flux
is governed by the Fourier law and no diffusion for the phase®nsidered. Indeed,
by performing a rigorous asymptotic analysis as the relargtarameter and the
diffusion parameten tend to zero, we have proved that the resulting model coegerg
to the classical Fremond model. This way of proceeding aarfiobmally justified
after observing that the Cattaneo-Maxwell relaxation kékigs) = % exp(—s/t) ap-
proximates, in some suitable sense, the medsifes). Moreover, meaningful error
estimates are established under some compatibility agsamsn the rates of conver-
gence of the two parametersandn. Nonetheless, the presence of thermal memory
forces us to deal with some mathematical difficulties dyriconnected with this as-
sumption and an existence result for the complete problédm(8)-(5)) seems very
hard to be proved. For this reason, in order to include themeanory effects in the
complete energy balance, we restrict ourselves to the ddke €oleman-Gurtin heat
flux law, namely we consider the heat flux kertehs in (16), but we assume that
ko > 0. Thus, the resulting energy balance retains its parabehavior even if it ac-
counts for thermal memory. As a consequence, we do not nerdltidy the dynamics
of the phases by introducing a diffusive term (cf. (5)and)1B this note an existence
result is established for an abstract version of the rewsyltiitial and boundary value
problem by use of a semi-implicit time discretization scleesombined with an a pri-
ori estimate-passage to the limit procedure. In particldamus stress the presence of
a convolution product in the energy balance, following fr(id) and (16), as one can
easily check by specifying the ter@div g in (3), as follows

0
(29) divg(x,t) = —koAO(X,t) — kx AO(X,t) — / k(t —s)AO(X, s)ds,

for (x,t) € Q; we recall that the term ffoo k(t —s)AO(x, s) dshas to be included in
the energy balance as a datum in a given heat sofur€oncerning the discretization
procedure we have to point out that we treat convolution aesxaficit term (cf. [1]).
Finally, an uniqueness result is proved by use of suitabidraoting estimates on the
solutions of the problem, exploiting a similar argumentes tntroduced by Chemetov
in [6].

2. Main results

We can now specify the abstract version of the problem we eaéird) with and state
the related main existence and uniqueness result. To thiope, letV < H — V’
be an Hilbert triplet, with

H:=L%Q), V:=HYQ),

and identify, as usuald with its dual spaceH’. Moreover, to write the variational
formulation of (4), we introduce an appropriate Hilbertsp@/ specified by

W = {ve (HYQ)3: Vir, =0, divv e H(Q)},
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endowed with the norm (cf. [8])

1/2

3
IVl = (vf |V(divv)|2+2f |Vvi|2> . V= (v, v2.03) € W.
Q i—1 Q

Hence, we define a bilinear symmetric continuous formiMink W as follows: forv
andw in W, we set

3
av,w) ;.= / vV(divv) - V({divw) + Adivvdivw + 2u Z €ij (Veij (W)
Q -
i,j=1
with €jj (V) = %(axi vj + dx;vi). Letus note that, thanks to the Korn’s inequaldy,
turns out to b&V-coercive, namely there exists a positive cons@stich that

a(v,v) = C|vl|a,, VveWw.

We also outline that we could také (cf. (6)) as any bounded, closed, and convex
subset ofR? and then introduce the corresponding closed and conversabi 2

K = {(y1, 72) € H?: (y1. 12) € K a.e. inQ}.

Note that, by construction, there exists a positive coristan(depending orkC) such
that if (y1, y2) € K there holds

(20) (y1012 + [12(01P)Y2 < ek, fora.ex € Q.

In the following, we will denote by Ik the subdifferential of the indicator function
of the convexK, which turns out to be a maximal monotone operatodinnaturally
induced byd I (cf. [5]). Hence, in order to write the abstract equivalession of the
problem given by (3)-(5) and (8)-(12), we introduce thedaling operators (cf. [2])

AV =V, y(Av, vy = / Vv -Vva, v, v eV,
Q

H:W — W, w(Hviy, va)w =a(vy, v2), Vi,Vo e W,

B:H—> W, Wr(Bv,V)W:/vdivv, veH,veW.
Q

Finally, concerning the data of the problem, we prescrilag¢ th

f € L2(0, T; L)),

h e HLO, T; LAI)),

ge HYO, T;: L2Tp?3),

se HYO, T; LZ(Q)3),
(21) 0% e H1(Q),
(22) 2 XD e K,
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so that, in the abstract formulation, we can introduce thieesponding functions

(23) Fel20,TiH), viF, vy =/Q fo,veV

(24) HeHYO T;V), v(H, vy :/rhv‘r, VeV,

(25) Ge HYO, T; W), w (G, V)w :/r gV, VEW,
1

(26) Se HYO, T; H®, w(SVviw= /Qs-v,v eW.

Moreover, we have to precise the assumptions on the kkring19) and the function
a. Precisely, we require that

(27) ke wtio, 1),
ande fulfils
(28) aeC?R) and ¢, = || Lo, IS sufficiently small

Hence, as at high temperatures shape memory alloys preestiym@mn elastic behavior,
a(9) = 0ford > 6. and in addition we assume

(29) {v eR:d'(y) #0} C [0, 6c].
Note that, as a consequence, the functions of the vartaliidhe nonlinear terms of

(3) turn out continuous and uniformly bounded. Indeed, weeoke that (28) and (29)
imply

(30) o/ (Y)] < OcCas  lyd'(¥)| < 62y, Vy eR.

REMARK 1. Asto concerns the constaigtand the second of (28), it turns out nec-
essary to assume some compatibility conditions (satisfygghlysically realistic data)
between the quantities involved in the model and the heaaifypof the system. In-
deed, the coefficient of the temperature time derivativeéemnergy balance represents
the specific heat of the solid-solid phase transition andenss physically consistent
to require it is positive everywhere. To this aim, later wd specify (28) by letting a
suitable bound foc,.

Now, we are in the position of stating the existence and wenigss result referring
to (3)-(5) and (8)-(12) combined with (19).

THEOREM 1. Assume that (21)-(22), (23)-(26) and (27)-(29) hold. Theere
exists a unique quadruplét, x1, x2, u), with
(31) 6 e HYO, T; H)NL>®(0,T; V),
(32) xj €WE®O, T: H)NL®(Q), =12
(33) ue HY0, T; W), divue L®(Q),
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fulfilling
(34) 9(0) = ®°,
(35) (x1(0), x2(0)) = (x2, xD),

and satisfying, almost everywhere( T),

(Co— 0" (B)x2divu)otd + koA +k+x A =F + H + Lo

(36) 10 (0) — (0)) divudy x2 + 6 () x2d (divu) in V'

X1 —1(® —0%) : 2
(37) §3t< o >+3|K(X1,X2)5< _a@)divu ) in H
(38) Hu+B@@®)x2) =S+G inW'.

In particular, the boundedness result in (33) forufellows from the next lemma,
which can be proved by use of the Lax-Milgram theorem andatipy standard esti-
mates and regularity results on elliptic equations (cf).[9]

LEMMA 1. Letd, x» belong to [2(Q) such thafx»| < ck a.e. in Q. Then, under
assumptions (25), (26), (28), and (29), there exists a wngputionu € L*°(0, T; W)
solving the resulting equation (38). Moreover, the follogvbound holds
(39) ldivull =) < C1.
for a constant ¢ depending only o2, C, |||~ g, and the convex..

In particular, the previous lemma allows us to specify hizgsts (28) (cf. Remark
1). Indeed, in order to get positivity of the coefficient of temperature time derivative
in the energy balance (36), by virtue of (20), (28), (29), &), it is now clear that it
is sufficient to ask for a constaat sufficiently small in the sense that there holds (cf.
[14, 15])

(40) (Co — Ba” (0) x2divu) > ¢ := cg — HcCuCkC1 > O.
Let us in addition note that the specific heat turns out bodnde

Co — 0" (0) x2divu| < Co + OcCoCk C1.
Finally, we have also to introduce a technical assumptienneed to exploit basic a
priori estimates on the solutions of the problem (see, [B& for similar proceeding).
Thus, we require that there holds

(41) (Bc(fc + 1)CuCr)? < C2( + 2u/3).

Let us note that both (40) and (41) are in accordance withréxpats (see [20]).
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3. Proof of Theorem 1

Existence result stated by the Theorem 1 can be proved byiagm semi-implicit
time discretization scheme combined with an a priori edttmgpassage to the limit
procedure. For the sake of synthesis we only outline thefgmaioomit the details for
which we refer to [4]. We firstintroduce the time step of ouclkaard finite differences
schemer := T/N, N being a fixed positive integer. Hence, the time discretersehe
for the problem (31)-(38) relies on the approximation of)(8&3) by

@i _ ®i,]_

(co — O (@ X, tdivuiTh + koA®' + (k * T; Ab;)!

Xi _ Xifl ) ) ) ) Xi _ Xifl
=Lt 1 L@ WOl -—getdvu 122
T T

. divU —divui-t

42) 40 WEHXT———— 4 F +H inV
T
Xi17Xi171 I i *
: iy —1(© —6%) L2
43) ¢ x‘zjx';l + 0l (X7, X3) 3 ( (@) divui-1 > in H

T

(44) HU +B@@®HX,) =G +S inw,

whereZ; in (42) denotes the one step backward translation operatorZi.a(t) =
a(t — 7)) andd; the piecewise constant function related to the vector aftEmis®'

by
(45) 0, (t) =0, ifte(i—Dr,it],

fori =1,..., N. Note that the terntk * Z, Ad;)! turns out to be explicit in the scheme
(see [1]). Finally,F', H', G', andS stand for suitable time independent functions

discretizing the dat#&, H, G, andS (i.e. F' = r~1 (iir_l)r F(s)ds). Thus, if we let

@0 = 09, Xio = x? fori = 1,2, andUP the corresponding unique solution of (44)
written fori = 0 (cf. Lemma 1), by use of a fixed point theorem we are able teero
existence of a discrete solution for (42)-(44) for any 1, at least forr sufficiently
small. Henceforth, we perform suitable estimates on therelis solutions independent
of the parametet, in order to pass to the limit as N\, 0 by use of weak and weak
star compactness arguments or by direct Cauchy proof. 3aifm, let us introduce the
following notation: given a\ + 1-vector of time independent functiota?, ..., aN) we
term bya, the related piecewise constant functamn(cf. (45)) and byg, the piecewise
linear in time interpolation function, namely

i i—1

(46) () =a +%(t—it), teli—Dr, ).
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Thus, if we use the above notation, it is straightforwardawrite the discrete system
(42)-(44), as follows

(Co—1: (era”(@t)XZIdivur))atgr + koAd; + (k Z:(ABy)): =
He + Fr 4 Lot x1e + Zo (60 (0r) — a(67))divuy ) 3t X2r

(47) +Z: (-0’ (0:) x20) B divl

48 ¢ ( ey ) T alK (xte. x2r) ( e )
(49) Hu + B(a(6;)x2:) = Gt + St

with

(50) 6:(0=0% %.0=x? i=12

Hence, by exploiting suitable a priori estimates on theesysi42)-(44), we can prove
that there exists: > 0 such that forr < o the following bounds hold independently
ofr

(51) |6z H1OT: L= T:v) T 10zllLeTv) =€
2
(52) Z | Xiz IH10,T:H)NL>Q) + ||)N(’if”L“’(Q) =cC
i=1
(53) [T |l Hi.T:w) T IUzllLeTw) + divu: |l =) < cC.

The reader can refer to [8] and [10] for a detailed presesniadf an estimating pro-
cedure as that we have used to prove (51)-(53) and to [1] farsaiple argument to
handle the convolution produck * Z, (Ad;)),. Thus, by use of compactness argu-
ments from (51)-(53), and (45), (46), we can deduce up toespEnces the following
convergence results, as\, 0

.50 in HL(0, T; H) N L>®(0, T: V),

(54) 6, — 6 inC%0, T]; H)

(55) 0,40 inL®O0,T:V), 6, — 6 inL>0,T;H)

(56)  Xje—xjin HYO, T: H)NL®(Q), xjr—xj iNL®(Q), j=1.2
U, ~ uinHYO, T; W), u,—uinL>®®O,T:W),

(57)  divu,—divuin L®(Q).

In addition, by direct Cauchy arguments, we are able to ithiar

(58) Xir = xj inCY[0, T H),  xjr — xj In L0, T; H).

Thus, by (54)-(58), and thanks to the Lebesgue dominatedecgance theorem, we
are allowed to pass to the limit in (47)-(49) and get existemica solution for the limit
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system of PDE’s (36)-(38). In particular, let us stress tyathe above argumentation
(cf. (54), (58)) the Cauchy conditions (34) and (35) are avalty satisfied by virtue of
(50). Henceforth, the regularity result (32) (cf. (56)) ceproved thanks to the mono-
tonicity of d I and the regularity results (31) and (33). Finally, conaggniniqueness,
we base our proof on a contradiction argument which is simaiéathat introduced in
[6]. Now, we outline the proof and stress some mathematieaces we have used to
exploit the contracting estimates and get uniqueness. \Wecbnsider two solutions
S1 = (01, x11, x21, U1) andSz = (02, x12, x22, U2), write the corresponding equations
(37) and (38), take the difference and test(by1 — x11, x21 — x22) andu; — up,
respectively. After integrating in time, we perform stardlastimates as that detailed
i.e. in [6, 9]. Hence, to deal with the energy balance, we havewrite (36) in a more
convenient form

3 (Cof — Ly1 + (@(0) — 6 () x2divu) + koA9 + k x A9
(59) =F + H + a(0) x28: (div u).

Thus, we write (59) foS; andSy, integrate in time, take the difference, and test it by

01 — 62. After integrating once more ové®, t), and by use of some integration by
parts, due to (40) we get

ko
Collr — BalEz oy + 5 1% V0L — DI
t
< / / (L(x11 — x12) — (@(F2) — 620/ (62)) div U1 (x21 — x22)
0 JQ

—(a(62) — 620/ (62)) x22(div ug — divup)) (61 — 62)

t
+/o /Q(l * (00(01) x21 — @(02) x22) 3¢ div Uy
+1 % a(02) x220t (div ug — divuz)) (61 — 62)

t
(60) - /0 /Q(l * (Kx V(01 —62)) - V(61 — 62).
We note that

—(a(62) — 620 (62)) x22(divug — divug) + 1% a(62) x220t (div uz — div up)
(61) =620/ (62) x22(divug — divuz) — 1 s 3¢ (@ (62) x22) (divuy — divup),

and
t
/ / 1x(kx V(01— 02)- V(01— 02)
0 Ja
(62) = /Q(l * (Kx V(01— 62)(1) - (1 V(61— 02))(1)

t
—/ /(k*V(Ql—Qz)) (1% V(61— 62)).
0 Je
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Thus, thanks to the regularity of the solutions (cf. (313)j3and (61)-(62), by use of
the Holder’s inequality, well-known properties on convtdbn product, and exploiting
in particular (30) and (41), we finally can prove that theriset < [0, T] such that
the following inequality holds at least fore (O, f)

2
161 = 62117 2 g 1.y + 115 VEL = 62 ONF + D I1(xix = xi2) O 20,41y
i=1
+ flug — u2|)? + [[divug — divug|?
L2(0,t; W) L2(0,t;V)
2 2
2 . :
=cC 1 + “1 * V(Ql - 92) ” LZ(O,I; H) + Z H Xjl— Xj 2” L2(0,t; H)
j=1
Hence, it is straightforward to apply the Gronwall lemma ¢aldce

01 =102, x11= X12, X21= x22, U1= U2,

a.e. inQ x (0, f). Hence, since we can iterate our argument on the int¢tyaf) and
so on, we get uniqueness on the whole intef@lT), which concludes the proof of
the Theorem 1.
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