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MODULI OF CURVES VIA ALGEBRAIC GEOMETRY

Abstract. Here we discuss some open problems about moduli spaces of curves
from an algebro-geometric point of view. In particular, we focus on Arbarello
stratification and we show that its top dimentional stratum is affine.

The moduli spaceMg,n of stablen-pointed genusg curves is by now a widely explored
subject (see for instance the book [10] and the references therein), but many interesting prob-
lems in the field are still unsolved, both from a topological and a geometrical point of view.
Even though various methods have been fruitfully applied (e. g. Teichmüller spaces, Hodge
theory, G.I.T., . . . ), a purely algebro-geometric approachseems to be quite powerful and rather
promising as well. We wish to mention at least the recent paper [3] by Enrico Arbarello and
Maurizio Cornalba: as the authors point out in the introduction, what is really new there is the
method of proof, which is based on standard algebro-geometric techniques.

Indeed, the only essential result borrowed from geometric topology is a vanishing theorem
due to John Harer. Namely, the fact thatHk(Mg,n) vanishes fork > 4g − 4 + n if n > 0 and
for k > 4g − 5 if n = 0 was deduced in [9] from the construction of a(4g − 4+ n)-dimensional
spine forMg,n by means of Strebel differentials. On the other hand, it is conceivable that
Harer’s vanishing is only the tip of an iceberg of deeper geometrical properties. For instance,
a conjecture of Eduard Looijenga says thatMg is a union ofg − 1 open subsets (see [7],
Conjecture 11.3), but (as far as we know) there are no advances in this direction. Another
strategy (see [8], Problem 6.5) in order to avoid the use of Strebel’s differentials in the proof of
Harer’s theorem is to look for an orbifold stratification ofMg with g − 1 affine subvarieties as
strata.

A natural candidate for such a stratification is provided by aflag of subvarieties introduced
by Enrico Arbarello in his Ph.D. thesis. Namely, for each integern, 2 ≤ n ≤ g, he defined
the subvarietyWn,g ⊂ Mg as the sublocus ofMg described by those points ofMg which
correspond to curves of genusg which can be realized asn-sheeted coverings ofP1 with a point
of total ramification (see [2] p. 1). The natural expectation(see [1] p. 326 but also [12] p. 310)
was thatWn,g \ Wn−1,g does not contain any complete curve. About ten years later, Steven
Diaz was able to prove that a slightly different flag of subvarieties enjoys such a property and he
deduced from this fact his celebrated bound on the dimensionof complete subvarieties inMg
(see [5]). It remains instead an open question whether or notthe open strata of the Arbarello flag
admit complete curves (see [10] p. 291).

Perhaps an even stronger conjecture could be true: sinceW2,g is the hyperelliptic locus,
which is well-known to be affine (see for instance [11] p. 320), one may wonder whether all the
open strataWn,g \ Wn−1,g are affine. We were not able to prove this statement in full generality;
however, we found an elementary proof that the top dimensional stratum is indeed affine.

THEOREM1. If g ≥ 3 thenMg \ Wg−1,g is affine.
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Proof. SinceMg \ Wg−1,g = Mg \
(

supp(Wg−1,g) ∪ ∂Mg
)

, it is sufficient to prove that

supp(Wg−1,g)∪∂Mg is the support of an effective ample divisor onMg. The class ofWg−1,g

in the Picard group ofMg was computed by Steven Diaz in his Ph.D. thesis (see [6]), so we
know that

[

Wg−1,g
]

= aλ −
∑

i

bi δi

where

a :=
g2(g − 1)(3g − 1)

2

b0 :=
(g − 1)2g(g + 1)

6

bi :=
i (g − i )g(g2 + g − 4)

2
(i > 0).

In particular, notice that ifg ≥ 3 thena > 11 andbi > 1 for everyi . Consider now the following
divisor onMg:

D := Wg−1,g +
∑

i

(bi − 1)1i .

Sincebi > 1 we see thatD is effective; moreover, we have supp(D) = supp(Wg−1,g) ∪ ∂Mg.
We claim thatD is ample. Indeed,

[D] =
[

Wg−1,g
]

+
∑

i

(bi − 1)δi

= aλ −
∑

i

bi δi +
∑

i

bi δi −
∑

i

δi

= aλ − δ.

Sincea > 11 we may deduce thatD is ample from the Cornalba-Harris criterion (see [4],
Theorem 1.3), so the proof is over.
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