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Preface

The study of Liaison in Algebraic Geometry has flourishedimghuring the last years,
thanks to the contributions of many authors. On one hanctisean interest in the theory in
itself, on the other liaison is a powerful tool for producisyecific examples.

On October 1-5, 2001 J. Migliore and U. Nagel were the mairalpes of the School/
Workshop “Liaison and related topics” held at the DepartnoéiMathematics of the Politecnico
di Torino.

The first part of this issue contains the notes of their laswith an open problems section.
The second part contains annoucements by some of the jpaméxof results which will appear
elsewhere in complete form. In the last part we collect sonegtsesearch papers.

The organizers would like to thank all the partecipants &Sbhool/Workshop, the contrib-
utors to this issue, and the Dipartement of Mathematicshiemtarm hospitality. Special thanks
go to the main speakers for their work before, during and #fie School/Workshop.

The School/Workshop was partially supported by Italian RIUh the framework of the
national project “Geometry on algebraic varieties” and B\GER.

G. Casnati, N. Chiarli, S. Greco, R. Notari, M.L. Spreafico
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Liaison and Rel. Top.

J.C. Migliore - U. Nagel

LIAISON AND RELATED TOPICS: NOTES FROM THE
TORINO WORKSHOP-SCHOOL

Abstract. These are the expanded and detailed notes of the lectuess lgywthe

authors during the school and workshop entitled “Liaisoch iaatated topics”, held
at the Politecnico of Torino during the period October 1-802 In the notes
we have attempted to cover liaison theory from first priresplthrough the main
developments (especially in codimension two) and the stahdpplications, to
the recent developments in Gorenstein liaison and a discus§ open problems.
Given the extensiveness of the subject, it was not possilge {nto great detail in
every proof. Still, it is hoped that the material that we @hesll be beneficial and
illuminating for the principants, and for the reader.

1. Introduction

These are the expanded and detailed notes of the lectusssigivthe authors during the school
and workshop entitled “Liaison and Related Topics,” helthatPolitecnico di Torino during the
period October 1-5, 2001.

The authors each gave five lectures of length 1.5 hours eaetatdémpted to cover liaison
theory from first principles, through the main developméagpecially in codimension two) and
the standard applications, to the recent developments rertein liaison and a discussion of
open problems. Given the extensiveness of the subjectsitaBpossible to go into great detail
in every proof. Still, it is hoped that the material that wesé will be beneficial and illuminating
for the participants, and for the reader.

We believe that these notes will be a valuable addition tditheature, and give details and
points of view that cannot be found in other expository wasksthis subject. Still, we would
like to point out that a number of such works do exist. In pattr, the interested reader should
also consult [52], [72], [73], [82], [83].

We are going to describe the contents of these notes. In flesigry Section 2 we discuss
the origins of liaison theory, its scope and several resultsproblems which are more carefully
treated in later sections.

Sections 3 and 4 have preparatory character. We recallaeesults which are used later
on. In Section 3 we discuss in particular the relation betwleeal and sheaf cohomology, and
modules and sheaves. Sections 4 is devoted to Gorenstais idbere among other things we
describe various constructions of such ideals.

The discussions of liaison theory begins in Section 5. Bessglving the basic definitions
we state the first results justifying the name, i.e. showiras indeed the properties of directly
linked schemes can be related to each other.

Two key results of Gorenstein liaison are presented in 8eéti the somewhat surprisingly

59



60 J.C. Migliore - U. Nagel

general version of basic double linkage and the fact thatlily equivalent divisors on “nice”
arithmetically Cohen-Macaulay subschemes are Gorengt&ad in two steps.

The equivalence classes generated by the various condditsame are discussed in Sec-
tions 7 - 10. Rao’s correspondence is explained in Sectiofit s a relation between even
liaison classes and certain reflexive modules/sheaveshvgiies necessary conditions on two
subschemes for being linked in an even number of steps.

In Section 8 it is shown that these conditions are also sefftdior subschemes of codimension
two. Itis the main open problem of Gorenstein liaison to dedi this is also true for subschemes
of higher codimension. Several results are mentioned wiiotide evidence for an affirmative

answer. Examples show that the answer is negative if one bgkcomplete intersections only.

In Section 9 we consider the structure of an even liaisorscl&or subschemes of codimen-
sion two it is described by the Lazarsfeld-Rao property. ddwer, we discuss the possibility of

extending it to subschemes of higher codimension. In Sedtibwe compare the equivalence
relations generated by the different concepts of linkaggalrticular, we explain how invariants

for complete intersection liaison can be used to distifga@mnplete intersection liaison classes
within one Gorenstein liaison class.

Section 11 gives a flavour of the various applications oftaitheory.

Throughout these notes we mention various open problemsneSd them and further
problems related to liaison theory are stated in Section 12.

Although most of the results are true more generally for shbses of an arithmetically
Gorenstein subscheme, for simplicity we restrict ourseteesubschemes &f".

Both authors were honored and delighted to be invited tothiedectures for this workshop.
We are grateful to the main organizers, Gianfranco CasNatija Chiarli and Silvio Greco, for
their kind hospitality. We are also grateful to the partiifs, especially Roberto Notari and
Maria Luisa Spreafico, for their hospitality and mathenadtidiscussions, and for their hard
work in preparing this volume. Finally, we are grateful todRoHartshorne and Rosa Miro-
Roig for helpful comments about the contents of these nated,especially to Hartshorne for
his Example 22.

2. Overview and history

This section will give an expository overview of the subjetliaison theory, and the subsequent
sections will provide extensive detail. Liaison theory fiagoots dating to more than a century
ago. The greatest activity, however, has been in the lastaquaentury, beginning with the work
of Peskine and Szpird [91] in 1974. There are at least theegpectives on liaison that we hope
to stress in these notes:

e Liaison is a very interesting subject in its own right. Thare many hard open problems,
and recently there is hope for a broad theory in arbitraryroedsion that neatly encom-
passes the codimension two case, where a fairly completggicas been understood for
many years.

e Liaison is a powerful tool for constructing examples. Sames a hypothetical situation
arises but it is not known if a concrete example exists to 6tttieoretical constraints.
Liaison is often used to find such an example.

e Liaison is a useful method of proof. It often happens that caie study an object by
linking to something which is intrinsically easier to studyis also a useful method of
proving that an object does not exist, because if it did thiamkavould exist to something
which can be proved to be non-existent.
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Let R = K[Xp, ..., Xn] whereK is a field. For a sheaF of Opn-modules, we set

HLF) = P H @", F1)
teZ

This is a gradedr-module. One use of this module comes in the following notion

DEFINITION 1. A subscheme XC P" is arithmetically Cohen-Macaulaif R/Ix is a
Cohen-Macaulay ring, i.edim R/l = depthR/1, wheredim is the Krull-dimension.

These notions will be discussed in greater detail in comaugiens. We will see in Section
3 thatX is arithmetically Cohen-Macaulay if and onlykfl(Zx) = O for 1 < i < dim X. When
X is arithmetically Cohen-Macaulay of codimensigrsay, the minimal free resolution &% is
as short as possible:
O—-F—>F._1—> --—>F—>Ix—0

(This follows from the Auslander-Buchsbaum theorem anddéfinition of a Cohen-Macaulay
ring.) The Cohen-Macaulay typef X, or of R/Ix, is the rank ofFc. We will take as our
definition thatX is arithmetically Gorensteiiif X is arithmetically Cohen-Macaulay of Cohen-
Macaulay type 1, although in Section 4 we will see equivafentulations (Proposition 6).
For example, thanks to the Koszul resolution we know thatraptete intersection is always
arithmetically Gorenstein. The converse holds only in gaaision two. We will discuss these
notions again later, but we assume these basic ideas foutfent discussion.

Liaison is, roughly, the study of unions of subschemes, arphrticular what can be de-
termined if one knows that the union is “nice.” Let us begihaa very simple situation. Let
C; andC; be equidimensional subschemesPfhwith saturated idealsc,, Ic, C R (i.e. g,
andlc, are unmixed homogeneous idealsfh We assume that; andC, have no common
component. We can study the unigh= C; U Cp, with saturated idealx = Ic; N Ic,, and
the intersectiorz = Cq N Cy, defined by the idedlc, + Ic,. Note that this latter ideal is not
necessarily saturated, $g = (Ic, + Icz)sat. These are related by the exact sequence

1) 0—lc,Nlg, = Ig; @1, = Ic; +1c, — 0.
Sheafifying gives

0—>1Ix - 1Ic,®1Ic, > 1z — 0.
Taking cohomology and forming a direct sum over all twists, get

0— Ix = Ig,®lc, — 1z — HXZx) - Hl@c)e®HLTc,) — -
NS
Ic, +1c,
/N
0 0

So one can see immediately that somehﬂ;ﬂn(Ix) (or really a submodule) measures the failure
of I¢, + I, to be saturated, and that if this cohomology is zero thenddaliis saturated. More

observations about how submodulesl-d}}(Ix) measure various deficiencies can be found in
[72].

REMARK 1. We can make the following observations about our uog Cq U Cj:
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1. If HL(Zx) = 0 (in particular ifX is arithmetically Cohen-Macaulay) thép, +1c, =1z
is saturated.

2. Ix C g, andly C Ig,.

3. [Ix : Ig] = I, and [Ix : Ic,] = Ic, sinceCq andCp have no common component
(cf. [30] page 192).

4. ltis not hard to see that we have an exact sequence
0— R/Ix = R/Ic, ® R/Ic, — R/(I¢, + Ic,) = 0.
Hence we get the relations

degC1 +degC, = degX
paC1+ paC2 = paX+1—degZ (if C;yandC5 are curves)

where pa represents the arithmetic genus.

5. EvenifXis arithmetically Cohen-Macaulay, itis possible tlatis arithmetically Cohen-
Macaulay butC, is not arithmetically Cohen-Macaulay. For instance, cdeisthe case
whereC, is the disjoint union of two lines if*3 andCy is a proper secant line . The
union is an arithmetically Cohen-Macaulay curve of degree 3

6. If C, andC, are allowed to have common components then observationd 8 ahove
fail. In particular, even ifX is arithmetically Cohen-Macaulay, knowing something @bou
C1 and something abouX does not allow us to say anything helpful ab@y. See
Example 3.

The amazing fact, which is the starting point of liaison tlyeés that when we restrick
further by assuming that it is arithmetically Gorenstehert these problems can be overcome.
The following definition will be re-stated in more algebréaguage later (Definition 3).

DEFINITION 2. Let G, C; be equidimensional subscheme®daving no common com-
ponent. Assume that %= C1 U C5 is arithmetically Gorenstein. TheniGnd G are said to
be (directly) geometrically G-linked by, and we say that £is residualto C; in X. If X is a
complete intersection, we say that @nd G are (directly) geometrically Cl-linked

ExampPLE 1. If X is the complete intersection P of a surface consisting of the union of
two planes with a surface consisting of one plane thdimks a lineC4 to a different lineC.

Figure 1: Geometric Link
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REMARK 2. 1. Given a schem€y, it is relatively easy (theoretically or on a computer)
to find a complete intersectiod containingC4. It is much less easy to find one which gives a
geometric link (see Example 2). In any cadeijs arithmetically Cohen-Macaulay, and if one
knows the degrees of the generatord ptthen one knows the degree and arithmetic genus of
and even the minimal free resolution g, thanks to the Koszul resolution.

2. We will see that wheiX is a complete intersection, a great deal of information gspd from
C1 to C,. For exampleC4 is arithmetically Cohen-Macaulay if and only@; is arithmetically
Cohen-Macaulay. We saw above that this is not true wKkds merely arithmetically Cohen-
Macaulay. In fact, much stronger results hold, as we shall e important problem in general
is to findliaison invariants

3. While the notion of direct links has generated a theliajson theory that has become an
active and fruitful area of study, it began as an idea thandidquite work. Originally, it was
hoped that starting withnycurveC; in P> one could always find a way to link it to a “simpler”
curve C, (e.g. one of smaller degree), and use information aluto studyC,. Based on
a suggestion of Harris, Lazarsfeld and Rao [63] showed thiatidea is fatally flawed: for a
general curveC C P3 of large degree, there is no simpler curve that can be olstdioen C in
anynumber of steps.

However, this actually led to a structure theorem for codisien two even liaison classes
[4], [68], [85], [90], often called thé.azarsfeld-Rao propertywhich is one of the main results
of liaison theory.

We now return to the question of how easy it is to find a comletrsection containing
a given schem€4 and providing a geometric link. Since our schemes are ordyraed to be
equidimensional, we will consider a non-reduced example.

EXAMPLE 2. LetCy be a non-reduced scheme of degree twdna so-callediouble line
It turns out (see e.g. [69], [48]) that the homogeneous ide&l; is of the form

Ic, = (xg, X0X1, xf, XgF (X2, X3) — X1G (X2, X3))

whereF, G are homogeneous of the same degree, with no common facfpoSeithat de§ =
degG = 100. Then it is easy to find complete intersectibgswhose generators have degree
< 100; a simple example isx = (xg, xf). However, any such complete intersection will have
degree at least 4 along the ling = x; = 0, so it cannot provide a geometric link f@: it is
impossible to writeX = C1 U C, as schemes, no matter wiag is. However, once we look in

degrees> 101, geometric links are possible (since the fourth genethen enters the picture).

As this example illustrates, geometric links are too regué. We have to allow common
components somehow. However, an algebraic observatiominaade above (Remark 1 (3))
gives us the solution. That is, we will build our definitiondatheory around ideal quotients.
Note first that ifX is merely arithmetically Cohen-Macaulay, problems casearas mentioned
in Remark 1 (6).

ExAamMPLE 3. Letlx = (Xg, x1)2 C K[xp, X1, X2, X3], let C1 be the double line of Exam-
ple 2 and leC be the line defined byc, = (Xp, X1). Then

[Ix 1 lgl =1, but [Ix :lc,] =lc, # lc;.

As we will see, this sort of problem does not occur when oukdliare byarithmetically
Gorensteirschemes (e.g. complete intersections). We make the faltpaeéfinition.
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DEFINITION 3. Let Cj, Co C P" be subschemes with X arithmetically Gorenstein. Assume
that Ix C Ic, NI, and that[lx : Ic,]1 = Ic, and[lx : Ic,] = Ic,. Then G and G, are said
to be(directly) algebraically G-linked by, and we say that £is residualto Cq in X. We write

C1 X C,. If X is a complete intersection, we say that &d G, are (directly) algebraically
Cl-linked. In either case, if @ = C, then we say that the subschemseédf-linkedby X.

REMARK 3. An amazing fact, which we will prove later, is that whXnis arithmetically
Gorenstein (e.g. a complete intersection), then such dgaroas illustrated in Example 3 and Re-
mark 1 (5) and (6) does not arise. That id,f C I, is arithmetically Gorenstein, and if we de-
fine Ic, = [1x : Ic,] then it automatically follows that
[Ix : Ic,] = Ic, wheneverC, is equidimensional (i.elc, is unmixed). It also follows that
degCq + degC, = degX.

One might wonder what happenddf is not equidimensional. Then it turns out that

Ix :[Ix : Ic,] = top dimensional part of,

in other words this double ideal quotient is equal to thersgetion of the primary components
of Ic, of minimal height (see [72] Remark 5.2.5).

EXAMPLE 4. Letlx = (XoX1,Xg + X1) = (X2, X0 + X1) = (X2, X9 + Xx1). Letlc, =
(X0, X1). Thenlg, :=[Ix : Ig;] = Ic,;. Thatis,Cy is self-linked byX (see Figure 2). The

Figure 2: Algebraic Link

question of when a scheme can be self-linked is a difficulttbathas been addressed by several
papers, e.g. [9], [27], [38], [60], [69], [96]. Most schema® not self-linked. See also Question
4 of Section 12, and Example 22.

Part of Definition 3 is that the notion of direct linkage is syetric. The observation above
is that for most schemes it is not reflexive (i.e. most scheanesot self-linked). It is not hard
to see that it is rarely transitive. Hence it is not, by itsetf equivalence relation. Liaison is the
equivalence relatiogenerateddy direct links, i.e. the transitive closure of the direcks.

DEFINITION 4. Let C c P" be an equidimensional subscheme. TBwrenstein liaison
class ofC (or theG-liaison class o€) is the set of subschemes which can be obtained from C in
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a finite number of direct links. That is,/ @ in the G-liaison class of C if there exist subschemes
C1. ..., Cr and arithmetically Gorenstein schemes, X. ., Xy, X;1 such that

X1 . X2 X Xr41
crC~.. R R

Ifr + 1is even then we say that C and @re evenly G-linked and the set of all subschemes
that are evenly linked to C is theven G-liaison classf C. If all the links are by complete
intersections then we talk about ti@-liaison class ofC and theeven Cl-liaison class o€
respectivelyLiaisonis the study of these equivalence relations.

REMARK 4. Classically liaison was restricted to Cl-links. The mosinplete results have
been found in codimension two, especially for curve§1’1°’n([4], [68], [94], [95], [85], [90]).
However, Schenzel [99] and later Nagel [85] showed that éteip and basic results for com-
plete intersections continue to hold for G-liaison as welany codimension.

As we noted earlier, in codimension two every arithmetic@lbrenstein scheme is a com-
plete intersection. Hence the complete picture which issknm codimension two belongs just
as much to Gorenstein liaison theory as it does to complétesiection liaison theory!

The recent monograph [61] began the study of the importdferedhces that arise, and
led to the recent focus on G-liaison in the literature. W délscribe much of this work. In
particular, we will see how several results in G-liaisonottyeneatly generalize standard results
in codimension two theory, while the corresponding statamor Cl-liaison are false!

Here are some natural questions about this equivalencs, eldsch we will discuss and
answer (to the extent possible, or known) in these lectureshe last section we will discuss
several open questions. We will see that the known resutig eften hold forevenliaison
classes, so some of our questions focus on this case.

1. Find necessary conditions f@; andC» to be in the same (even) liaison class (i.e. find
(even) liaison invarianfs We will see that the dimension is invariant, the propefthe
ing arithmetically Cohen-Macaulay is invariant, as is theperty of being locally Cohen-
Macaulay, and that more generally, for an even liaison ¢tesgraded modules! (Z¢)
are essentially invariant (modulo shifts), for<li < dimC. The situation is somewhat
simpler when we assume that the schemes are locally CoheatNégy. There is also a
condition in terms of stable equivalence classes of cerédiaxive sheaves.

2. Find sufficient conditions fo€4 andC, to be in the same (even) liaison class. We will
see that for instance being linearly equivalent is a sufftadendition for even liaison, and
that for codimension two the problem is solved. In particuiar codimension two there
is a condition which is both necessary and sufficient for talwesnes to be in the same
even liaison class. An important question is to find a coaditivhich is both necessary
and sufficient in higher codimension, either for Cl-liaismrfor G-liaison. Some partial
results in this direction will be discussed.

3. Is there a structure common to all even liaison classes®Athis is known in codimen-
sion two. It is clear that the structure, as it is commonlyextan codimension two, does
not hold for even G-liaison. But perhaps some weaker stractaes hold.

4. Are there good applications of liaison? In codimension e will mention a number
of applications that have been given in the literature, bete are fewer known in higher
codimension.
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5. What are the differences and similarities between Géiaiand Cl-liaison? What are the
advantages and disadvantages of either one? See RemarlSéetiwh 10.

6. Do geometric links generate the same equivalence relasoalgebraic links? For CI-
liaison the answer is “no” if we allow schemes that are noal@omplete intersections.
Is the answer “yes” if we restrict to local complete intetgats? And is the answer “yes”
in any case for G-liaison?

7. We have seen that there are fewer nice properties whenyte &llow links by arith-
metically Cohen-Macaulay schemes. It is possible to defineggivalence relation using
“geometric ACM links.” What does this equivalence relatlook like? See Remark 5.

REMARK 5. We now describe the answer to Question 7 above. Clearlg iirg going to
studygeometricACM links, we have to restrict to schemes that are locally @sMacaulay in
addition to being equidimensional. Then we quote the fdlhgwhree results:

e ([106]) Any locally Cohen-Macaulay equidimensional sutimmeC c P" is ACM-
linked in finitely many steps to some arithmetically Coheaddulay scheme.

e ([61] Remark 2.11) Any arithmetically Cohen-Macaulay solees CM-linked to a com-
plete intersection of the same dimension.

e (Classical; see [101]) Any two complete intersections & #ame dimension are ClI-
linked in finitely many steps. (See Open Question 6 on pagddrl#h interesting related
question for G-liaison.)

The first of these is the deepest result. Together they shatithiere is only one ACM-liaison
class, so there is not much to study here. Walter [106] dogsagbound on the number of steps
needed to pass from an arbitrary locally Cohen-Macaulagreehto an arithmetically Cohen-
Macaulay scheme, in terms of the dimension. In particular,ctirves it can be done in one
step!

So the most general kind of linkage for subschemes of piegespace seems to be Goren-
stein liaison. Recent contributions to this theory havenbe&de by Casanellas, Hartshorne,
Kleppe, Lesperance, Migliore, Mir6-Roig, Nagel, NotdPeterson, Spreafico, and others. We
will describe this work in the coming sections.

REMARK 6. To end this section, as a partial answer to Question 5, widdie to mention
two results about G-liaison from [61] that are easy to stelegnly generalize the codimension
two case, and aralsefor Cl-liaison.

e Let S ¢ P" be arithmetically Cohen-Macaulay satisfying prope@y (so that linear
equivalence is well-defined; see [50]). L@&f, C, C Sbe divisors such that, € |[C1 +
tH|, whereH is the class of a hyperplane section arelZ. ThenCq andC; are G-linked
in two steps.

e Let V C P" be a subscheme of codimensiorsuch thatly is the ideal of maximal
minors of at x (t + ¢ — 1) homogeneous matrix. Th&n can be G-linked to a complete
intersection in finitely many steps.

3. Preliminary results

The purpose of this section is to recall some concepts amdtsege will use later on. Among
them we include a comparison of local and sheaf cohomologymegtric and algebraic hyper-
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plane sections, local duality alkdsyzygies. Furthermore, we discuss the structure of defigie
modules and introduce the notion of (cohomological) minigtft.

Throughout we will use the following notatiorA will always denote a (standard) graded
K-algebra, i.eA = ®j>o[Alj is generated (as algebra) by its elements of degred]g, £ K
is a field and R; is the vector space of elements of degrée A. Thus, there is a homogeneous
ideall ¢ R = K[Xxg,...,Xn] such thatA = R/I. The irrelevant maximal ideal oA is
m = mp = @i o[ Al;.

If M is a graded module over the ringit is always assumed thadl is Z-graded andA
is a gradedK -algebra as above. AI-modules will be finitely generated unless stated other-
wise. Furthermore, it is always understood that homomamhibetween grade@modules are
morphisms in the category of grad&modules, i.e. are graded of degree zero.

Local cohomology

There will be various instances where it is preferable toosal conomology instead of the
(possibly more familiar) sheaf cohomology. Thus we redal definition of local cohomology
and describe the comparison between both cohomologiefybrie

We start with the following
DEFINITION 5. Let M be an arbitrary A module. Then we set
H%(M) ={meM | mkA -m = 0 for some ke N}.

This construction provides the functbh%(_) from the category oA-modules into itself. It
has the following properties.

LEMMA 1.
(a) The functor H,() is left-exact.
(b) H(M) is an Artinian module.
(c) If M is graded then I;QI(M) is graded as well.
EXAMPLE 5. Letl C R be an ideal with saturatiol®3! ¢ R then
HO(R/1) = 158y,

This is left as an exercise to the reader.

Since the functng(_) is left-exact one can define its right-derived functors gsmective
resolutions.

DEFINITION 6. The i-th right derived functor of ﬁ(_) is called the i-th local cohomology
functor and denoted by H(-).
Thus, to each short exact sequencéahodules
0-M—->M—->M =0
we have the induced long exact cohomology sequence

0> HAM") - HO (M) > HO(M") - HE (M) — ...
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We note some further properties.

LEMMA 2.
(& All H]in(M) are Artinian A-modules (but often not finitely generated).
(b) If M is graded then all Iﬂl(M) are graded as well.
(c) The Krull dimension and the depth of M are cohomologjceliaracterized by
max(i | Hiy(M) # 0}
min{i | Hl,(M) # 0}

dimM
depthM

Slightly more than stated in part (b) is true: The cohomolsgguence associated to a short
exact sequence of graded modules is an exact sequence eflgradiules as well.

Part (a) implies that a local cohomology module is Noetheifaand only if it has finite
length. Part (c) immediately provides the following.

COROLLARY 1. The module M is Cohen-Macaulay if and only ifnl(-l\/l) = 0 for all
i #dimM.

As mentioned in the last section, a subschexne- P" is calledarithmetically Cohen-
Macaulay if its homogeneous coordinate rifRy | x is Cohen-Macaulay, i.e. a Cohen-Macaulay-
module over itself.

Now we want to relate local conomology to sheaf cohomology.

The projective spectrunX = ProjA of a gradedK -algebraA is a projective scheme of
dimension(dim A — 1). Let F be a sheaf of modules ovet. Its cohomology modules are
denoted by

HL(X, 7) = @ H (X, F(j)).
j€Z
If there is no ambiguity on the scher¥ewe simply writeH, (F).

There are two functors relating gradédmodules and sheaves of modules oXer One
is the “sheafification” functor which associates to each gradmoduleM the sheaM. This
functor is exact.

In the opposite direction there is the “twisted global sawil’ functor which associates to
each sheaf of modules oveiX the gradedA-moduIer(X, F). This functor is only left exact.

If F is quasi-coherent then the shea?(x, F) is canonically isomorphic t&. However, ifM

is a gradedA-module then the moduIHE(X, M) is not isomorphic toM in general. In fact,
even if M is finitely generatedHf(X, M) needs not to be finitely generated. Thus the functors
Zand HE(X, _) do not establish an equivalence of categories between @rxarodules and
quasi-coherent sheaves of modules oerHowever, there is the following comparison result
(cf. [105)).

PrRopPoOsSITIONL. Let M be a graded A-module. Then there is an exact sequence
0— Ho(M) > M — H(X, M) > HL(M) - 0
and for all i > 1 there are isomorphisms

HI(X, M) = HiFL (V).
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The result is derived from the exact sequence
0— HJ(M) > M — HO(M) - HL (M) - 0

whereHO(M) = lim Homg(m", M). Note thatHO(M) = HO(X, M).
n

COROLLARY 2. Let X ¢ P" = ProjR be a closed subscheme of dimensios ah — 1.
Then there are graded isomorphisms

Hi(Zx) = HIl (R/1x) foralli =1,....d+1.
Proof. SinceHlin(R) = 0ifi < nthe cohomology sequence of
0—>Ix > R—> R/Ix -0
implies an(R/IX) = Hf{rl(lx) for alli < n. Thus, the last proposition yields the claim.O

REMARK 7. LetM be a gradedR-module. Then it€astelnuovo-Mumford regulariig the
number

regM :=minfm e Z | [H]in(M)]j,i =0 forall j > m}.

For a subschemi c P" we put re@fx = regly. The preceding corollary shows that this last
definition agrees with Mumford’s in [84].

It is convenient and common to use the following names.

DEFINITION 7. Let X C P" be a closed subscheme of dimension d. Then the graded R-
modules H(Zx), i =1,...,d, are called the deficiency modules of X. If Xlisimensional
then I—;}(Ix) is also called théHartshorne-Rao modulef X.

The deficiency modules reflect properties of the scheme. ¥&mnple, as mentioned in the
first section, it follows from what we have now said (Corofldr and Corollary 2) thak is
arithmetically Cohen-Macaulay if and only H.(Zx) = 0 for 1 < i < dimX. Note that a
schemeX c P" is said to beequidimensionaif its homogeneous idedly C Ris unmixed, i.e.
if all its components have the same dimension. In particalaequidimensional scheme has no
embedded components.

LEMMA 3. For a subscheme X P" we have

(a) Xisequidimensional and locally Cohen-Macaulay if antydf all its deficiency modules
have finite length.

(b) Xisequidimensional ifand only iflim R/ Ann HL(IX) <i-1foralli =1,...,dimX.
By a curve we always mean an equidimensional scheme of dioreds In particular, a

curve is locally Cohen-Macaulay since by definition it does have embedded components.
Thus, we have.

COROLLARY 3. A 1-dimensional scheme X P" is a curve if and only if its Hartshorne-
Rao module Ij(IX) has finite length.
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Hyperplane sections

Let H c P" be the hyperplane defined by the linear fdrem R. Thegeometric hyperplane
section(or simply thehyperplane sectignof a schemeX ¢ P" is the subschemX N H. We
usually considetX N H as a subscheme d¢f = P"~1, i.e. its homogeneous idedkny is
an ideal ofR = R/IR. Thealgebraic hyperplane sectioof X is given by the idealx :=
(Ix +IR)/IR c R. Tx is not necessarily a saturated ideal. In fact, the saturatidy is just
IxnH . The difference between the hyperplane section and thémligehyperplane section is
measured by cohomology.

LEMMA 4. e
HA(R/Ix +1R) = I /Tx

If the ground fieldK contains sufficiently many elements we can always find a ipjaee
which is general enough with respect to a given schemén particular, we get dinX N H =
dim X — 1 if X has positive dimension. In order to relate propertiesXafo the ones of its
hyperplane section we note some useful facts. We use tlwevialy notation.

For a gradedA-moduleM we denote by and py its Hilbert function and Hilbert poly-
nomial, respectively, whetgy (j) = rank[M];. The Hilbert function and Hilbert polynomial of
a subschem& c P" are the corresponding functions of its homogeneous coatelitngR/1x .
For a numerical functioh : Z — Z we define its first difference byxh(j) = h(j) —h(j — 1
and the higher differences by' h = A(Al~1h) andA% = h.

REMARK 8. Suppos is an infinite field and leHd c P" be a hyperplane.
(i) If dim X > 0 andH is general enough then we have

IxnH = Tx ifandonlyif H1(Zx)=0.

(i) If X c P"islocally or arithmetically Cohen-Macaulay of positiverdinsion therXNH
has the same property for a general hyperpldn& he converse is false in general.

(i) Suppose X < PN is arithmetically Cohen-Macaulay of dimensich Let
I1,...,lg11 € R be linear forms such thah = R/(Ix + (I1,...,lgy1)) has dimension
zero. ThenA is called anArtinian reductionof R/1x. For its Hilbert function we hava; =
Ad+1hR/|X .

Minimal free resolutions

Let R = K[Xg, ..., Xn] be the polynomial ring. By our standard conventions a homwmem
phismg : M — N of gradedR-modules is graded of degree zero, pg.M]j) C [N]; for all
integersj. Thus, we have to use degree shifts when we consider the hompbismR(—i) — R
given by multiplication byxb. Observe thaR(—i) is not a grade& -algebra unless = 0.

DEFINITION 8. Let M be a graded R-module. Then 0 is said to be a k-syzygy of M
(as R-module) if there is an exact sequence of graded R-e®dul

O>NoFR X R 1—>...oF A M0

where the modulesjF = 1, ..., k, are free R-modules. A module is called a k-syzygy ifitis a
k-syzygy of some module.
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Note that ak + 1)-syzygy is also &-syzygy (not for the same module). Moreover, every
k-syzygy N is a maximalR-module, i.e. dinN = dim R.

Chopping long exact sequences into short ones we easilinobta
LEMMA 5. If N is a k-syzygy of the R-module M then
HL(N) = HIZKM) foralli < dimR.

If follows that the depth of &-syzygy is at leask.
The next concept ensures uniqueness properties.

DEFINITION 9. Lety : F — M be a homomorphism of R-modules where F is free. Then
¢ is said to be a minimal homomorphisnyif® idr/m : F/mF — M/mM is the zero map in
case M is free and an isomorphism in cases surjective.

In the situation of the definition above, N is said to be a malikrsyzygy of M if the
morphismspj,i = 1,...,k, are minimal. If N happens to be free then the exact sequsnce
called a minimal free resolution of M.

Nakayama'’s lemma implies easily that mininkagyzygies ofM are unique up to isomor-
phism and that a minimal free resolution is unique up to isqhism of complexes.

Note that every finitely generated projecti®Remodule is free.
REMARK 9. Let
Ps P1
O>Fs—>Fsg1—>...0FL—>F—>M-=>0

be a free resolution df1. Then it is minimal if and only if (after choosing bases f&y, . . ., Fs)
the matrices representing, . . ., ¢s have entries in the maximal ideal = (xg, . .., Xn) only.

Duality results

Later on we will often use some duality results. Here we gtaen only for the polynomial
ring R = K[Xo, ..., Xxn]. However, they are true, suitably adapted, over any gr&imenstein
K -algebra.

Let M be a gradedr-module. Then we will consider two types of dual modules,Rhdual
M* := Homgr(M, R) and theK -dualM" := ®jez Homg ((M]_j, K).
Now we can state a version of Serre duality (cf. [100], [105])

PROPOSITION2. Let M be a graded R-module. Then for allé Z, we have natural
isomorphisms of graded R-modules

HIL(M)Y = Ext® T (M, R)(=n — 1).
The K-dual of the top cohomology module plays a particular role.

DEFINITION 10. The module K := Ext’l‘;rl_dim M (M, R)(—n — 1) is called the canoni-
cal module of M. The canonical modulexkof a subscheme X P" is defined as IR/1x-
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REMARK 10. (i) For a subschem¥ c P" the sheafvy := @ is the dualizing sheaf of
X.

(i) If X c P"is arithmetically Cohen-Macaulay with minimal free regaa
0> Fe 5 Feqg—...>F—>lx—0

then dualizing with respect tR provides the complex

0> R—->Ff—>..— F(;’Ll&) F& — cokerp — 0

which is a minimal free resolution of cokgf = Kx (n + 1).

If the schemeX is equidimensional and locally Cohen-Macaulay, one caateehe co-
homology modules oK and its canonical module. More generally, we have ([100}oCary
3.1.3).

PrRoPOSITION3. Let M be a graded R-module such thain[-M) has finite length if i£
d = dim M. Then there are canonical isomorphisms feei2,...,d — 1

HIF (K = HEL (W)Y,
Observe that the first cohomologﬁl(M) is not involved in the statement above.

Restrictions for deficiency modules

Roughly speaking, it will turn out that there are no resiwics on the module structure of
deficiency modules, but there are restrictions on the degmere non-vanishing pieces can
occur.

In the following result we will assume < n — 1 because subschemesPfwith codimen-
sionn are arithmetically Cohen-Macaulay.

PrRoPOSITION4. Suppose the ground field K is infinite. Let c be an integer @ithc <
n—1andlet M,..., Mh—c be graded R-modules of finite length. Then there is an integra
locally Cohen-Macaulay subschemecXP" of codimension ¢ such that

H(Zx) = Mj(—t) foralli=1,....n—c

for some integer t.

Proof. Choose a smooth complete intersectibrc P" such that

n—cCc
lv = (f1..... fe_2) € () AnnM;
i=1
wherely =0ifc = 2.

Let Nj denote a(i + 1)-syzygy of M as R/ly-module and let be the rank ofN =
@®"FNj. Fors <« 0 the cokernel of a general mgp: R’ — N is torsion-free of rank
one, i.e. isomorphic td (t) for some integet wherel c A = R/ly is an ideal such that
dimA/l = dim A — 2. Moreover,| is a prime ideal by Bertini’s theorem. The preimagel of
under the canonical epimorphisf— A is the defining ideal of a subschertec P" having
the required properties. For details we refer to [79]. |
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REMARK 11. (i) The previous result can be generalized as followst Mg, ..., Mn_¢
be graded (not necessarily finitely generatBdnodules such tha(t/liv is finitely generated of
dimension< i —1foralli =1, ..., n—c. Then there is an equidimensional subschéme P"
of codimensiorc such that

HL(Zx) = Mj(-t) foralli=1,....n—c

for some integet. Details will appear in [86]. Note that the condition on thedulesMq, .. .,
Mn—c is necessary according to Lemma 3.

(ii) A more general version of Proposition 4 for subschemiesodimension two is shown
in [36].

Now we want to consider the question of which numbecan occur in Proposition 4. The
next result implies that with alsot + 1 occurs. The name of the statement will be explained
later on.

LEMMA 6 (BASIC DOUBLE LINK). LetO# J C | C R be homogeneous ideals such that
codiml = codimJ + 1and R/J is Cohen-Macaulay. Let & R be a homogeneous element of
degree d such that 3f = J. Then the ideal := J + f| satisfiescodiml = codiml and

HI(R/T) = Hl (R/1)(—d) foralli <dimR/I.
In particular, | is unmixed if and only if is unmixed.

Proof. Consider the sequence

@) 0> J—d) % Jal(—d) 5T =0

wheregp andy are defined by (j) = (fj, j) andy (j,i) = j — fi. Itis easy to check that this
sequence is exact. Its conomology sequence implies tha olathe dimension and cohomology
of R/I. The last claim follows by Lemma 3. a

PROPOSITIONS. Suppose that K is infinite. LetM= (M1,...,Mpn_¢c) (2 < ¢ < n)
be a vector of graded (not necessarily finitely generatedpdtiules such that M is finitely
generated of dimensiog i — 1foralli = 1,...,n — c and not all of these modules are
trivial. Then there is an integeptsuch that there is an equidimensional subscheme K" of
codimension ¢ with _

Hi(Zx) = Mj(—t) foralli=1,...,n—c

for some integer t if and only if £ tg.

Proof. If the ground fieldK is infinite we can choose the elemehtin Lemma 6 as a linear
form. Thus, in spite of this lemma and Remark 11 it sufficeshtmnsthat

H (Zx) = Mj(-t) foralli=1,....n—c

is impossible for a subschemec P" of codimensiore if t « 0. But this follows if dimX = 1
because we have for every cu@ec P"

3) hY(Zc(j — 1) < max0, h’(@Zc(j) -1 ifj<0

by [21], Lemma 3.4 or [70]. By taking general hyperplane et of X, the general case is
easily reduced to the case of curves. See also Propositiaf [18]. |
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The last result allows us to make the following definition.

DerFINITION 11. The integer ¢, which by Proposition 5 is uniquely determined, is called
the (cohomological) minimal shift of M

EXAMPLE 6. LetM, = (K). Then the estimate (3) for the first cohomology of a curve in
the last proof shows that the minimal sHiftof M, must be non-negative. Since we have for a
pair C of skew IinesH*l(Ic) = K we obtaintg = 0 as minimal shift of K).

4. Gorenstein ideals

Before we can begin the discussion of Gorenstein liaisonwileneed some basic facts about
Gorenstein ideals and Gorenstein algebras. In this sestosill give the definitions, properties,
constructions, examples and applications which will belwseliscussed in the coming sections.
Most of the material discussed here is treated in more datgiR].

We saw in Remark 8 that iX is arithmetically Cohen-Macaulay of dimensidrwith co-
ordinate ringA = R/l then we have thértinian reductionA of X (or of R/1x). Its Hilbert
function was given ab ; = Ad+1h R/Ix- SinceA is finite dimensional as K -vector space, we
have thah 4 is a finite sequence of integers

1Ch2 h3 hso

This sequence is called thevectorof X, or of A. In particular.c is theembedding codimension
of X. In other wordsc is the codimension oX inside the smallest linear space containing it. Of
course, the Hilbert function ok can be recovered from threvector by “integrating.”

Now suppose thaX is arithmetically Cohen-Macaulay and non-degeneraf@inof codi-
mensionc, and thatR/1x has minimal free resolution

0> Fc—>Fe_1—>:+—>F—>R—>R/lx >0

Suppose thae = EBirzl R(—a;) and leta = max {a; }. As mentioned in Section 2,= rankF¢
is called theCohen-Macaulay typef X (or of A). Furthermore, we have the relation

(4) a—c=s=reglyx —1

wheres is the last degree in which thevector is non-zero and rék is the Castelnuovo-
Mumford regularity ofZx (cf. Remark 7). We now formally make the definition referredrt
Section 2:

DEFINITION 12. The subscheme X P" is arithmetically Gorensteif it is arithmeti-
cally Cohen-Macaulay of Cohen-Macaulay type 1. We oftertlsatyly is Gorenstein or ¥ is
arithmetically Gorenstein.

ExAMPLE 7. Aline inP3 is arithmetically Gorenstein since its minimal free resiolu is
0— R(=2) - R(=1)2 = Ix — 0,

andR(—2) has rank 1. More generally, any complete intersectid®is arithmetically Goren-
stein thanks to the Koszul resolution. The last free modalthe resolution of the complete
intersection of forms of degredy, ..., dcis R(—d; — --- — d¢).
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REMARK 12. In Remark 8 (ii) it was noted that X is arithmetically Cohen-Macaulay of
dimensior> 1 then the general hyperplane sectdnH is also arithmetically Cohen-Macaulay.
(In fact this is true for any proper hyperplane section.) aswemarked that the converse is false
in general. However, there are situations in which the caevdoes hold.

First, if X is assumed to be equidimensional (l.g.is unmixed) and locally Cohen-Macau-
lay of dimension> 2 then it is not hard to show that the converse holds. Indexd, be a
general linear form defining the hyperplalhleand consider the exact sequence

HI @Zx(s— 1) =5 HI(Zx(9) = H @xanjn (9) = H 1 (Ix(s— 1) 25 HI(I(9))

If X N H is arithmetically Cohen-Macaulay and4d i < dmX N H = dimX — 1 then the
multiplication map on the left is surjective for aland the one on the right is injective for all
Both of these are impossible unlexss itself arithmetically Cohen-Macaulay, becau$&(Zy)

has finite length for ki < dim X (cf. Lemma 3).

Obviously if X is the union of an arithmetically Cohen-Macaulay schemesggpmaint (possi-
bly embedded) then it is not arithmetically Cohen-Macatdayits general hyperplane section is
arithmetically Cohen-Macaulay. Also, clearlyXfis a curve which is not arithmetically Cohen-
Macaulay then its general hyperplane section is arithrayicCohen-Macaulay since it is a
finite set of points, but agairX is not arithmetically Cohen-Macaulay. A fascinating qi@st
is whether there are conditions 6N H which force a curve X to be arithmetically Cohen-
Macaulay. The best results in this direction come wben H is arithmetically Gorenstein.
Several authors have contributed to this question, but waiorein particular [58] and [103].

There are several other conditions which are equivalentetogbarithmetically Cohen-
Macaulay with Cohen-Macaulay type 1, and which could be useithe definition of arith-
metically Gorenstein subschemesPof.

PROPOSITIONG. Let X ¢ P be arithmetically Cohen-Macaulay. The following are equiv
alent:

(i) X has Cohen-Macaulay type 1 (i.e. is arithmetically Gwtein);

(i) R/1x = Kx(¢) for somet € Z, where Ky is the canonical module of X (cf. Definition
10);

(iif) The minimal free resolution of R x is self-dual up to twisting by # 1.

Proof. Note that¢ is whatever twist moves the module so that it starts in de@re€he main
facts used in the proof are that

Kx = Exti(R/Ix,R)(-n—1)
and Ix = Annr(Kx)
Details of the proof can be found in [72]. |

COROLLARY 4. Let X be arithmetically Gorenstein. Théhy = wyx (£) for somel € Z.
COROLLARY 5. Let X be arithmetically Gorenstein. Then the h-vector of Xyimmetric.
Proof. This follows from the fact that the Gorenstein property ieg@rved in passing to the

Artinian reduction, and the Hilbert function of the canalimodule of the Artinian reduction is
given by reading thé-vector backwards (cf. [72]). |
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The integer in Proposition 6 is related to the integers in the equatigni(fact, we have
COROLLARY 6. Let X be arithmetically Gorenstein with minimal free resmn
0> R(-a)—>F._1—> ---—>F—>R—>R/Ix—>0
and assume thabx = wx (¢). Thend =n+1—a.

If Ais Gorenstein then the integsrthe last degree in which thevector is non-zero, is
called thesocle degreef A, the Artinian reduction oA = R/lx.

There is a very useful criterion for zeroschemes to be agtiwally Gorenstein. To explain
it, we will need a new notion. For now we will assume that ourosehemes are reduced,
although the necessity for this was removed by Kreuzer [62].

DEFINITION 13. Let Z C P" be afinite reduced set of points. Assume thiat s= req(Zx),
i.e. s is the last degree in which the h-vector of Z is non-Z€nen Z has th€ayley-Bacharach
property(CB) if, for every subset X Z consisting of Z| — 1 points, we have k|, (s — 1) =
hRr/1,(s—1). Z has theUniform Position propertyUPP) if any two subsets, ¥’ of (the same)
arbitrary cardinality have the same Hilbert function, whinecessarily is

hr/iy (1) = minfhg,, (1), Y]} forallt.

ExamMpPLE 8. The Cayley-Bacharach property is a weaker version of thiéotm Position
Property. For example, iR? consider the following examples.

h-vector 1 2 2 1 (complete intersection
on a conic)
This has UPP.

———o— h-vector 1 2 2 1 (complete intersection)

——o—o— This has CB but not UPP.

- - h-vector1221

- - . . This has neither CB nor UPP.

THEOREM1 ([31]). A reduced set of points Z is arithmetically Gorenstein if andy if
its h-vector is symmetric and it has the Cayley-Bacharacperty.

EXAMPLE 9. A set ofn + 2 points inP" in linear general position is arithmetically Goren-
stein. In particular, a set of 5 pointslﬁ?’ is arithmetically Gorenstein, so we see that 4 points
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in linear general position are G-linked to one point. Thiswuiae first illustration of the fact
that G-liaison behaves quite differently from Cl-liaissmce it follows from work of Ulrich and
others that 4 points in linear general position are not Gkdd to a single point in any number
of steps.

REMARK 13. Theorem 1 was used by Bocci and Dalzotto [12] to produce Yarify) nice
concrete examples of arithmetically Gorenstein sets aftpon P3, and this work is described
in this volume. Generalizations of this construction hagerbgiven by Bocci, Dalzotto, Notari
and Spreafico [13].

A very useful construction of arithmetically Gorensteilemes is the following.

THEOREM 2 (SUMS OF GEOMETRICALLY LINKED IDEALS). Let V4, Vo C P" be arith-
metically Cohen-Macaulay subschemes of codimension cneitommon component. Assume
that Vj UV, = X is arithmetically Gorenstein, i.ey] NIy, = Ix with R/1x Gorenstein. Then
Iy, + lv, is Gorenstein of codimensiorHe 1 (i.e. V) N V5 is arithmetically Gorenstein).

Proof. From the exact sequence (1) we can build up the diagram

0 0
i \

R(-a) Ac & B
i U

FC—l AC—l (&) BC—l
i \
i \
Fl A]_ (&) B]_
i "

0 — I —> lV:L (&) |V2 —> |V1+|V2 - 0

i -
0 0

The mapping cone then gives the long exact sequence
0—- R(-a) > FeL1®AcPBc—> Fe oD Ac_1®Be1— ...

el > F1®A2®BZ_>A1®B]. —> R — R/(IV1+IV2)_)O

NS
v, + v,
SN
0 0

Of course there may be some splitting. Howewér,N Vo has codimensior ¢ + 1 sinceVy
andV, have no common component. This resolution has homologig@rmkion at most + 1.
Therefore it has homological dimension exadtly- 1 andVi N Vs is arithmetically Cohen-
Macaulay of codimension + 1 with Cohen-Macaulay type 1, i.e. is arithmetically Goteirs
O

This construction has been used to good effect in constgicrithmetically Gorenstein
schemes with nice properties. To illustrate, let us comsidme natural questions.
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QUESTION 1. What are the possible Hilbert functions (resp. minimakfresolutions) of
Artinian Gorenstein ideals?

QUESTION 2. What are the possible Hilbert functions (resp. minimeakfresolutions) of
the ideals ofeducedarithmetically Gorenstein subscheme$P8f

The general question of which Artinian ideals, or which mnjgs of Artinian ideals, can
be lifted to reduced sets of points is a very interesting aile.will discuss some of the known
answers to Questions 1 and 2 according to the codimension.

Case i Codimension 2

What are the possible arithmetically Gorenstein subschexite We know the beginning
and the end of the resolution:

0— R(—a) - (??) > R— R/lx — 0.

By considering the rank, the middle term in this resoluti@s o have rank 2. Therefore, we
have established the well known fact (mentioned beforef) eékary arithmetically Gorenstein
subscheme @&" of codimension two is a complete intersecti@his answers the question about
the minimal free resolution, so the Hilbert functions arekn as well. In fact, thda-vectors
must be symmetric of the form

123...s—1ss...ss-1...321

Case Il Codimension 3

Everything that is known in this case follows from the famatrsicture theorem of Buchs-
baum and Eisenbud [22]. For a Gorenstein ideale have a minimal free resolution

0— R(-a) = Fy - F; - R— R/l — 0.

One can choose bases so tiats skew-symmetric. In particular, the number of generators
must be odd! Diesel used this result to completely desclibegpbssible graded Betti numbers
for Artinian Gorenstein ideals. De Negri and Valla (and oshelescribed the possible Hilbert
functions. In particular, not only must it be symmetric, the “first half” must be a so-called
differentiable O-sequencelhis means that the first difference of the “first half” of tHébert
function must grow in a way that is permissible for stand&réhlgebras. For example, the
sequence

136797631

is not a possible Hilbert function for an Artinian Gorenatalgebra (even though it itself satisfies
Macaulay’s growth condition) since the first difference lué tfirst half” is

12312

and the growth from degree 3 to degree 4 in the first differema®eds Macaulay’s growth
condition (cf. [66]). This describes the answers to Questio

For Question 2, Geramita and Migliore [44] showed that anyograded Betti numbers
which occurs at the Artinian level in fact occurs for a redliset of points (or for a stick figure
curve, or more generally a “generalized stick figure” configion of linear varieties). The idea
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was to use Theorem 2 and add the ideals of geometricallydiskiek figure curves iP3 (or
suitable surfaces iit4, etc.) in suitable constructed complete intersectiongua and Zappala
[92], [93] have used the “sum of geometrically linked idéalsnstruction to obtain other nice
results on the Hilbert functions and resolutions of codigiem three Gorenstein ideals.

Case |l Codimensiorn> 4

To date no one has determined what Hilbert functions canrpscucertainly we do not
know what minimal free resolutions can occur. In codimemnsio5 it is known that the Hilbert
function of an Artinian Gorenstein algebra does not evereltasbe unimodal [10], [14], [15].
This is open in codimension 4. However, the situation thatwould expect to be the “general”
one is better understood:

DEFINITION 14. An Artinian algebra R has theWeak Lefschetz properif; for a general
linear form L, the multiplication map

xL: (R/Di = (R/Diy1

has maximal rank, for all i.

When the socle degree is fixed, a result of Watanabe [108]teayshe “general” Artinian
Gorenstein algebra has the Weak Lefschetz property.

When the whole Hilbert function is fixed, a similar result & possible in general because
the parameter space for the corresponding Gorensteinrakyebn have several components if
the codimension is at least four. However, since having teakN.efschetz property is an open
condition by semicontinuity, the general Artinian Gorestalgebra of a component has the
Weak Lefschetz property if and only if the component corga@ine algebra with this property.

In any case, Harima [46] classified the possible Hilbert fioms for Artinian Gorenstein al-
gebras with the Weak Lefschetz property, in any codimendioparticular, he showed that these
Hilbert functions are precisely the Stanley-larrobing) @&quences, namely they are symmetric,
unimodal and the “first half” is a differentiable O-sequence

For Question 2, Migliore and Nagel [77] have shown that ang&juence is thk-vector
of some arithmetically Gorenstein reduced set of pointsnore generally a reduced union of
linear varieties. The method of proof again used sums of géaeally linked ideals, but the
new twist here was that the ideals were G-linked and not iielil. Furthermore, they gave
sharp bounds on the graded Betti numbers of Gorensteinsi@éadny codimensionamong
ideals with the Weak Lefschetz properBartial results along these lines had been obtained by
Geramita, Harima and Shin [40]. In codimension 4, larroldnd Srinivasan (in progress) have
some results on the possible resolutions. There remairssa deal to do in this area.

REMARK 14. Theorem 2 shows how to use geometrically linked, codgiosrc, arith-
metically Cohen-Macaulay subschemesP8fto construct a codimension+ 1 arithmetically
Gorenstein subscheme. Later, in Corollary 12, we will seg twouse very special linked arith-
metically Cohen-Macaulay codimensiosubschemes (not necessarily geometrically linked) to
construct an arithmetically Gorenstein subscheme whielsis of codimension. In fact, every
Gorenstein ideal arises in this way (Remark 18)!

One problem with the construction of Theorem 2 is that it is/\d@esirable, from the point
of view of liaison, to be able to start with a scheieand find a “good” (which often means
“small”) Gorenstein schemx containing it. This is not so easy to do with sums of geomalic
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linked ideals. Another very useful construction for Goteisideals potentially will solve this
problem (based on experimental evidence). To describe Willaeed a little preparation.

Consider a homogeneous map

t+r

t
D R-a) 2 P R-bj).
i—1 =1

The mapyp is represented by a homogeneous(t +r) matrix. We assume furthermore that the
ideal of maximal minors of defines a scheme of the “expected” codimensienl. Let By be
the kernel ofp. ThenBy is aBuchsbaum-Rim moduléet My be the cokernel op. We have
an exact sequence

¢
0 - By — @IR-a) > @_;R-b) — My — O
Il I
F G
Sheafifying this gives
_ t+r 4 t )
0— By — @OP”(—?’N) — @Opn(—bj) — Mg — 0.
i=1 j:]_

If r = nthenM = 0 and B, is locally free. In any caseB, is the Buchsbaum-Rim sheaf
associated t@.

THEOREM 3 ([78], SECTIONS OFBUCHSBAUM-RIM SHEAVES). Assume that r is odd.
Let s be aegularsection oﬂ_5>¢. Let | be the ideal corresponding to the vanishing of s. Then t
top dimensional part of | is arithmetically Gorenstein oflamension r. Denoting by J this top
dimensional part, the minimal free resolution of Rcan be written in terms of F and G.

This can be used to find an arithmetically Gorenstein schefithé same dimension) con-
taining a given one by means of the following corollary.

COROLLARY 7. If codimV =r, aregular section of I;?(]P’“, L5>¢®IV) has top dimensional
part which is an arithmetically Gorenstein scheme, X, ciitg V.

Theorem 3 is just a small sample (the application relevahaison) of the possible results
on sections of Buchsbhaum-Rim sheaves, and we refer theegtéel reader to [78] for more
general results.

Our final construction requires a little preparation.

DEFINITION 15. A subscheme & P" satisfies condition Gif every localization of Rig
of dimensiork r is a Gorenstein ring. G is sometimes referred to as “Gorenstein in codimen-
sion<r”, i.e. the “bad locus” has codimensiom r + 1.

DEFINITION 16. Let SC P" be an arithmetically Cohen-Macaulay subscheme and let F be
a homogeneous polynomial of degree d not vanishing on anpaaent of S (i.e.d: F = Ig).
Then Ht is the divisor on S cut out by F. We callrHhe hypersurface section @& cut out by
F. As a subscheme Bf', HE is defined by the ideak|+ (F). Note that this ideal is saturated,
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since S is arithmetically Cohen-Macaulay. (The idea is #reesas that in Lemma 4 and Remark
8.)

Hartshorne [50] has developed the theory of divisors, apaiticular linear equivalence, on
schemes having at leaSt . Using the notion of linear equivalence, the following thera gives
our construction. In subsequent sections we will give samortant applications for liaison.

THEOREM4 ([61], TWISTED ANTICANONICAL DIVISORS). Let SC P" be an arithmeti-
cally Cohen-Macaulay subscheme satisfying @d let K be a canonical divisor of S. Then
every effective divisor in the linear systétrH — K |, viewed as a subschemeRS, is arithmeti-
cally Gorenstein.

Proof. (Sketch) LetX € |[dH — K| be an effective divisor. Choose a sufficiently large integer
such that there is a regular section.gf(¢) defining a twisted canonical divisof. LetF € Iy

be a homogeneous polynomial of degree- ¢ such thatF does not vanish on any component
of Sand letHg be the corresponding hypersurface section.

ThenX is linearly equivalent to the effective divisétg — Y and we have isomorphisms
(Ix/TI9) (d) = Ixs(d) = Os((d+ OHH — X) = Os(Y) = ws(f).
BecauseSis arithmetically Cohen-Macaulay, this gives
0 Ig— Ix — HYws)(¢ —d) — 0.

Then considering a minimal free resolutionlgfand the corresponding one firg = Hf(ws)
(cf. Remark 10) we have a diagram (ignoring twists)

0

\
0 R
\: \
Fc Ff
) \
} !
Fq Fék
\: \

0 - Isgs - Ix —» Kg — 0

) \
0 0

Then the Horseshoe Lemma ([109] 2.2.8, p. 37) showslthdias a free resolution in which the
last free module has rank one. Since codira- c, this last free module cannot split off, 30is
arithmetically Gorenstein as claimed. |

EXAMPLE 10. LetSbe a twisted cubic curve iB3. Then a canonical divisdt has degree
—2, so the linear system- K + dH| (for d > 0) consists of all effective divisors of degree2
(mod 3). Any such scheme is arithmetically Gorenstein.



82 J.C. Migliore - U. Nagel

5. First relations between linked schemes

In this section we begin to investigate the relations betwidked ideals. In particular, we will
compare the Hilbert functions of directly linked ideals amder some of the results announced
in Section 2.

All the ideals will be homogeneous ideals of the polynomiagrR = K[Xxg, ..., Xn].
Analogously to linked schemes we define linked ideals. Tigtudes linkage of Artinian ideals
corresponding to empty schemes.

DEFINITION 17. (i) Two unmixed ideals,IJ c R of the same codimension are said to
be geometrically Cl-linked (resp. geometrically G-linkég the idealc if | and J do not have
associated prime ideals in common angt | N J is a complete intersection (resp. a Gorenstein
ideal).

(i) Two ideals |, J ¢ R are said to be (directly) Cl-linked (resp. (directly) Gitied) by the
ideal ¢ if ¢ is a complete intersection (resp. a Gorenstein ideal) and

c:1=J and ¢:J=1I.
In this case we write I~ J.

If a statement is true for Cl-linked ideals and G-linked ideae will just speak of linked
ideals.

REMARK 15. (i) If we want to stress the difference between (i) andwi say in case (i)
that the ideals are algebraically linked.

(ii) If two ideals are geometrically linked then they areca#dgebraically linked.

(iif) Since Gorenstein ideals of codimension two are congplatersections Cl-linkage is
the same as G-linkage for ideals of codimension two.

If the subscheme¥ andW are geometrically linked by then degX = degV + degW.
We will see that this equality is also true \f and W are only algebraically linked. For this
discussion we will use the following.

Notation. I, ¢ C R denote homogeneous ideals wheiis a Gorenstein ideal of codimen-
sionc. Excluding only trivial cases we assuroe- 2.

LEMMA 7. If | g ¢ thenc : | is an unmixed ideal of codimension c.

Proof. Letc = g1 N ... N gs be a shortest primary decompositioncofThen the claim follows

because
S
il = ﬂ(qi D)
i=1

and
o R if 1 C qj
9 -1 =1 Radgj) — primary otherwise

|

The next observation deals with the difference between géierand algebraic linkage.
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COROLLARY 8. Suppose the ideals | and J are directly linkedecbihen we have:
(@) Radl N J) = Radc.
(b) 1 and J are unmixed of codimension c.

(c) If1 and J do not have associated prime ideals in common thend J are geometrically
linked byc

Proof. (a) By definition we have
I-JccecCInd
Since Radl - J) = Rad| n J) the claim follows.
(b) is an immediate consequence of the preceding lemma.
(c) We have to show thdtN J = c.

The inclusione C | N J is clear. For showing the other inclusion assume on the apntr
that there is a homogeneous polynomfal=2 O in (I N J)\¢. Letc = g1 N...Ngs be a
shortest primary decomposition of We may assume that ¢ q1 and Radj; € Assr(R/1).
The assumption on the associated prime idealsaofd J guarantees that there is a homogeneous
polynomialg € J such thag ¢ p for all p € Assg(R/1). Sincel =c¢: J we getfg e ¢ C q1.
Thus,g ¢ Radgq implies f € q1, a contradiction. |

Claim (a) of the statement above says for schexhed/ linked by X that we have (as sets)
Vied Y Wred = Xred-

In order to identify certain degree shifts we need the follgwumber. It is well-defined
because the Hilbert function equals the Hilbert polynormalll sufficiently large degrees.

DEFINITION 18. The regularity index of a finitely generated graded R-moddlas the
number
r(M):=min{t e Z | hpy(j) = pm(j) forall j >t}

ExampLE 11. (i)r(K[Xg, ..., Xn]) = —n.

(ii) If Ais an Artinian grade -algebra withs = max{j € Z | [A]j # 0} thenr(A) =
s+ 1.

(iii) Let ¢ € R be a Gorenstein ideal with minimal free resolution

O->R(-t) > Fe.1—>...> Ff—>c¢—>0

Then it is not to difficult to see that R/c) =t — n (cf. also Corollary 6).

The index of regularity should not be confused with the Gas®/o-Mumford regularity.
There is the following comparison result.

LEMMA 8. Let M be a graded R-module. Then we have
regM —dimM + 1 <r (M) <regM — depthM + 1.
In particular, r(M) =regM — dimM + 1if M is Cohen-Macaulay.

This lemma generalizes Example 11(ii) and is a consequeftbe &llowing version of the
Riemann-Roch theorem [102] which we will use again soon.
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LEMMA 9. Let M be a graded R-module. Then we have for adl 7.

hm () — pm() = > (~D) rankc [HEM)];

i>0
We are now ready for a crucial observation.

LEMMA 10 (STANDARD EXACT SEQUENCEY. Suppose that ¢ | and both ideals have
the same codimension c. Put=3 ¢ : |. Then there are exact sequences (of graded R-modules)

O—=>¢c—J— KR/|(1—r(R/c))—>O

and
0— Kgyi(1—r(R/¢)) > R/c > R/J — 0.

Proof. We have to show thal/c = Kg/j (1 —r(R/c)).
There are the following isomorphisms

J/e = (c:1)/c = Homr(R/I, R/¢) = Homg,((R/1, R/c)
and
KR/| AI-r(R/o) = Ext%(R/I, R)(—r (R/¢) — n).

Thus, our claim follows from the isomorphism
Homr(R/I, R/¢) = Ext%(R/I, R)(—r (R/¢) — n),

which is easy to see if is a complete intersection. In the general case it followsnfa more
abstract characterization of the canonical module. O

Before drawing first consequences we recall that the Hitbagtnomial of the graded mod-
ule M can be written in the form
i

o _ j
Pm () = hO(M)<d _1) +hl(|\/|)<d_2

)+...+hd_1(|v|)

whered = dimM andhg(M), ..., hg_1(M) are integers. Moreover, & > 0 then degVl =

ho(M) is positive and called the degree bf. However, ifM = R/I for an ideall then
by abuse of notation we define deg= degR/I. For a subschemX c P" we have then
degX = degl .

COROLLARY 9. Let | be an ideal of codimension ¢ which contains the Gorémstieal c.
Put J:=c: | ands:=r(R/c) — 1. Then we have

@)
degJ = degc — degl,

and if c < n and | is unmixed then

h1(R/J) = %(s— n+ c+ 1)[degl — degJ] + h1(R/I).
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(b) If I is unmixed and RI is locally Cohen-Macaulay then also/R is locally Cohen-
Macaulay and

HI(R/J) = HIH=C— I (R/1)V(—=s) (=1,....n—0)

and
PrR/3(J) = PR/c(}) + (=D pRr/i (s — )).
(c) If R/l is Cohen-Macaulay then also/R has this property and

hr/3(i) = hrye(i) + (=" hgr/ (s — ).
Proof. Consider the version of Riemann-Roch (Lemma 9)

hr/ (1) = PRy (1) = Y (=D ranke [Hi,(R/D]}.
i>0
Since the degree of the Hilbert polynomial }dfn(R/I ) is at most — 1, we obtain for allj < 0
—pr/1 () = (=DM Crank[HEC(R/D]j + O("179)
= (=)™ Crank[KRry]-j + O("17).

Combined with the standard exact sequence this provides

PRI = Pryc(]) + (=D Cpr/i (s — ) + O "7,
Comparing coefficients we getdf< n

degJ = degc — degl.

Assume now that the idealis unmixed. Lemma 3 implies that then the degree of the Hilber
polynomial of H},,(R/1) is at mosti — 2. Thus, we obtain as above

PR/IS() = PR/c() + (=D Cpr/i (s — |) + O("279).
Hence, we getit < n
hi(R/J) = (s—n+1+c)degl +hy(R/1) + hy(R/¢).

But by duality we have
h1(R/¢) = (s—n+ 1+ c) degc.
Combining the last two equalities proves the second staitiméa).
The isomorphisms

Hi(R/J) = HIFIT(R/1)Y(=s) (1=1.....n—0)

follow essentially from the long exact cohomology sequeindeiced by the standard sequence
taking into account Proposition 3.

The remaining claims in (a) - (c) are proved similarly as abo¥or details we refer to
[85]. |

REMARK 16. If | is unmixed but not locally Cohen-Macaulay then the formualalaim
(b) relating the local cohomologies bfandJ is not true in general. For example, itis never true
if 1 defines a non-locally Cohen-Macaulay surfac®fn
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The last statement applies in particular to directly linkdehls. Thus, we obtain.

COROLLARY 10. Let V and W be directly linked. Then we have:

(a) V is arithmetically Cohen-Macaulay if and only if W isthrnetically Cohen-Macaulay.
(b) V islocally Cohen-Macaulay if and only if W has this prage

Before turning to examples we want to rewrite Claim (a) indlary 9 for curves in a more
familiar form.

REMARK 17. LetCq,Cy, C P" be curves linked by an arithmetically Gorenstein sub-
schemeX. Let g; and gy denote the arithmetic genus 6 and Cy, respectively. Since by
definitiong; = 1 —hy(R/lx;), Corollary 9 provides the formula

1
G-0=5rR/Ix)-D- [degCq — degCy].
In particular, if X is a complete intersection cut out by hypersurfaces of éatyre . ., dy_1 we
obtain 1
01— 02 = E(dl +...4+dy—1 —n—1)-[degCy — degC»]

because the index of regularity ¥fis
r(R/Ix) =dy+...+dy_1—n.

ExAMPLE 12. (i) LetC c IP3 be the twisted cubic parameterized(sy, s°t, st, t3). Itis
easy to see thal is contained in the complete intersecti¥rdefined by

¢ := (XpX3 — X1X2, XgX2 — x%) Clc.

Then Corollary 9 shows that : Ic has degree 1. In fact, we easily get Ic = (Xg, X1)
defining the lineL. Thus,C andL are geometrically linked bX andC is arithmetically Cohen-
Macaulay.

(i) Let C  P3 be the rational quartic parameterized(s§, s3t, st3, t4). C is contained in
the complete intersectioX defined by
¢ 1= (XgX3 — X1X2, x0x§ - xfx;;) Clc.

Hencec : Ic has degree 2. Indeed, it is easy to see that

¢ lc = (X, X1) N (X2, X3).

This implies thatC is geometrically linked to a pair of skew lines. Theref@és not arithmeti-
cally Cohen-Macaulay (thanks to Example 6).

(iif) We want to illustrate Corollary 9 (c). Let := (x2, XY, y4) Cc R := K[x, y] and let
¢ ;= (x3,y% c |. We want to compute the Hilbert function &/J. Consider the following
table

j |01 2 3 4 5 6
hR/|(j) 1 2 1 1 0 0 O
hr/e(J) 1 2 3 3 2 1 0

0O 0 2 2 2 1 O

hr/a(6-1)
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The second row shows thatR/c) = 6. Thus by Corollary 9 (c), the last row is the second
row minus the first row. We get th&/J has the Hilbert function,12, 2, 2,0, .. ..

We justify now Remark 3.

COROLLARY 11. Suppose | is an unmixed ideal of codimension c. If the Goséngteal
c is properly contained in | then the ideals | and | are directly linked by.

Proof. We have to show the equality
c:(c:)y=1.
Itis clearthatl C c: (c: 1). Corollary 9 (a) provides
degk : (¢ : 1)] =dege —degc : I) = degl.
Sincec : (c: 1) andl are unmixed ideals of the same codimension they must be.equal O

Finally, we want to show how ClI-linkage can be used to prodsoeenstein ideals. To this
end we introduce.

DEFINITION 19. An ideal | ¢ R is called an almost complete inter if/Ris Cohen-
Macaulay and | can be generated bydim| + 1 elements.

ExamMPLE 13. The idealxg, x1)2 is an almost complete inter.
The twisted cubicC c P3 is also an almost complete inter.

COROLLARY 12. Let | c R be an almost complete inter and tetC | be a complete
intersection such thatodiml = codimcand | = ¢+ f R forsome fe R. Then Ji=¢:lisa
Gorenstein ideal.

Proof. Consider the standard exact sequence
0—c¢—c+ fR—> Kgr/g@-r(R/0)— 0.

It shows thatk g3 has just one minimal generator (Rsmodule).
Let
05 Fe X 5 F—>J-0

be a minimal free resolution. Then the beginning of the matifree resolution oK, ; has the
form

o B DS FE S Krpa(n+ D) > 0.

It follows that Fc must have rank 1, i.el is a Gorenstein ideal. O

REMARK 18. Every Gorenstein ideal arises as in the previous caoyolla

We only sketch the argument. Given a Gorensteof codimensiorc we choose a complete
intersectionc of codimensiorc which is properly contained id. Thenl := ¢ : J is an almost
complete interand =c: |.
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6. Some basic results and c3onstructions

We begin this section by proving one of the results mentianétemark 6.

THEOREMS. Let S P" be arithmetically Cohen-Macaulay satisfying property Go
that linear equivalence is well-defined; see Definition 18 #re discussion preceding Theorem
4). Let G, Cy C S be divisors such thatCe |C1 + tH|, where H is the class of a hyperplane
section and te Z. Then G and G are G-linked in two steps.

Proof. LetY be an effective twisted canonical divisor. Choose an intage Z such that [y ]a
contains a formA not vanishing on any component 8f HenceHp — Y is effective onS.

Now, recall that

Co e |Cq| & Cy— Cqisthedivisor of a rational function o8
& there existF, G of the same degree such trég) =C—C;

(where(g) is the divisor of the rational functiof)

& there exists a divisob such that
HE = Cy+D
He = C1+D
(in particular,F € Ic, andG € Ic,).

Similarly,

Cyoe|Cy+tH| < there existF, G with degF = degG +t and a divisorD such that
HE = Cy+D
He = C1+D
(in particular,F € Ic, andG € Ic,).

Note that the effective divisdHar — Y is arithmetically Gorenstein, by Theorem 4. Then one
checks ifSis smooth that

(HAF=Y)—Co=MHa-Y)+(HF=Cp) =(HA-Y)+D

and

(Hag—-Y)-Ci=Ha-Y)+(He-Cp)=Ha-Y)+D
ThereforeC, is directly linked to(Hp — Y) + D by the Gorenstein idediar — Y andCy is
directly linked to the saméH — Y) + D by the Gorenstein idedipag — Y. This concludes the
proof in the special case. For the general case we refer jpPédposition 5.12. |

Theorem 5 was the first result that really showed that Goeeméiison is a theory about
divisors on arithmetically Cohen-Macaulay schemes, jastiartshorne [50] had shown that CI-
liaison is a theory about divisors on complete intersestioht is fair to say that most of the
results about Gorenstein liaison discovered in the lastyleavs use this result either directly or
at least indirectly.

REMARK 19. As pointed out to us by R. Hartshorne, there is an inteiggoint lurking
in the background here. Following [68] and [50], we say thatibschem&/, c P" is obtained
from a subschem¥; c P" by anelementary Cl-biliaisorif there is a complete intersecti@in
P such thatv, ~ V; + hH on Sfor some integeh > 0, where~ denotes linear equivalence.
It is not hard to show, and has long been known, ¥aandV, are Cl-linked in two steps. Itis
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a theorem ([50]) that the equivalence relation generateeldayientary Cl-biliaisons is the same
as the equivalence relation of even Cl-liaison (see Dedimifi1).

Now, Theorem 5 naturally suggests the idea of saying hat obtained fromV, by an
elementary G-biliaisonf there is an arithmetically Cohen-Macaulay scheBwith property
G1 such thatvo ~ V1 + hH on Sfor some integeh > 0. It is an open problem to determine
if the equivalence relation generated by elementary Gibiins is the same as the equivalence
relation of even G-liaison. It is conceivable that scheresnd V, could be evenly G-linked,
but no sequence of elementary G-biliaisons beginning Witban arrive ai/s.

As mentioned above, many of the results about Gorenstagolidan fact use elementary
G-biliaisons, so the results are actually slightly strarigehis sense.

Theorem 5 clearly needs tl@&; assumption since linear equivalence was used. In general,
without G1, it is not always possible to talk about divisors of the foHp — Y. However, we
will see now that there is a notion of “adding” a hypersurfaeetion even if th&1 assumption
is relaxed. This construction was given in Lemma 6 and wdsa&Basic Double Link” there.
Now we will see why this name was chosen. In Lemma 6 almost soenagtion was made on
the idealJ. Here we present it in more geometric language, and we haasstame at leasg
in order to get a liaison result.

PROPOSITION7 (BASIC DOUBLE G-LINKAGE). Let Sc IP" be an arithmetically Cohen-
Macaulay subscheme satisfying/G_et C C S be an equidimensional subscheme of codimen-
sion 1 and let A R be homogeneous witg | A = Ig(i.e. A does not vanish on any component
of S). Then¢ and Is + A - I are G-linked in two steps.

REMARK 20. As we will see, the idedls + A - I¢ represents the divis@ + Ha on S. If
degA = d and S satisfiesG; then the schem¥ defined by the idedly + Ig+ A - I¢ is in the
linear systemC + dH|. But in our level of generality, linear systems may not makesge. See
[73] for a more detailed discussion of these divisors.

Proof of Proposition qsketch)

The unmixedness statement in Lemma 6 shows that in pantidyla= Is+ A Ic is
saturated. Furthermore, from the exact sequence (2) we ake aHilbert function calculation:

hr/ly ) = hr/1g(t) — hRyigt —d) + hRyic (t —d).

It follows that

degY degC + d - degS

degC + degHAa.

The idea of the proof is to mimic the proof of Theorem 5 in arellgic way. We proceed in
four steps:

Step | Letc = codimS. TheGg hypothesis is enough to guarantee that there exiStsranstein
idealJ ¢ Rwith Is ¢ J, codimJ = ¢ + 1 andJ/Ig is Cohen-Macaulay of Cohen-Macaulay
type 1 (cf. [61]). Since codir® > codimS, there existB € I¢ of some degreeg, such that
Is: B = Ig(i.e. B does not vanish on any componentS)f

Step It One checks thats + B - J is Gorenstein andis+ B - J C Ic. Hencelg+ B - J links
Ic to some ideah which is unmixed.
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Step lIt Is+ AB- J is Gorenstein and is containedlip = Is+ A - Ic. Hencelg+ AB - J
links Iy to some ideab which is unmixed.

Step IV One can check that ¢ b and compute that deg= degb. Since both are unmixed of
the same dimension, it follows that= b. Hencelc is G-linked toly in two steps. |

REMARK 21. A special case of Proposition 7 is worth mentioning. SgppthatS is a
complete intersectionls = (Fq,...,Fc), andly = A-lc + (F1,...,Fc). Then all the
links in Proposition 7 are complete intersections. Thisstarction is calleBasic Double Cl-
Linkage cf. [63], [18], [43]. As an even more special case, suppbse¢d = 1 and hence
codimC = 2. LetF € I¢ and assume th&, F have no common factor. Thég = A-Ic+(F).
This construction is central to the Lazarsfeld-Rao prgpevhich we will discuss below. This
property is only known in codimension two.

A different way of viewing Basic Double Linkage, as a specase of Liaison Addition,
will be discussed next.

Liaison Addition was part of the Ph.D. thesis of Phil Schaarfl01]. The problem which
he originally considered was the following. Consider csr@, C, c P3. Suppose that
H*l(Icl) = Mz and H*l(Icz) = My. Find an explicit construction of a curn@ for which
H(Zc) = M1 @ My,

The first observation to make is that this is impossible inegell! We give a simple exam-
ple.

ExAamMPLE 14. LetCq and C, be two disjoint sets of two skew lines. We have noticed
(Example 6) thatHl(Zc,) = HL(Zc,) = K, a graded module of dimension 1 occurring in
degree 0. So the question is whether there exists a @iwith H1(Z¢) = K2, a 2-dimensional
module occurring in degree 0. Suppose that such a curvesekistL be a general linear form
defining a hyperplanél. We have the long exact sequence

0— HO%Z¢) — HOZc (1) - HOZeAnn (D) — HYTZc) — H1Zc ) — ...

I Il Il I
0 0 2 0

Note thath®(Zc(1)) = 0 since otherwiseC would be a plane curve, hence a hypersurface
and hence arithmetically Cohen-Macaulay. But this meaasGhis a curve whose general
hyperplane section lies on a pencil of linesfii This forces de@ = 1, henceC is a line and

is thus arithmetically Cohen-Macaulay. Contradiction.

However, an important idea that we have seen in Section &ighbshift of the modules is
of central importance. Hence the refined problem that Sdlawaonsidered is whether there is
a construction of a curv€ for which H*l(Ic) = M1 & My up to shift As we will see, he was
able to answer this question and even a stronger one (atjalvénmodules to individually have
different shifts), and his work was for codimension two imgeal. The version that we will give
is a more general one, however, from [43]. The statementnauthe proof, were inspired by
[101], which proved the case= 2.

THEOREMG6. Let Vi, ..., V; be closed subschemesRf, with2 < r < n. Assume that
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codimV; > r for all i. Choose homogeneous polynomials

Fie ﬂ ly, fort<i<r
l<j=r
i #i
such thai(F4, ..., Fy) form aregular sequence, hence defining a complete inteéosedst C P".

Letd = degF;. Define the ideal I= F1 - Iy, +---+ Fr - Iy, . Let Z be the closed subscheme
of P defined by | (which a priori is not saturated). Then

(&) Assets, =V, U---UVr UV;
(b) Foralll < j <n-—r =dimV we have

Hi(T2) = Hl (@) (—d) @ -+ @ H) Ty, ) (—dr):

(c) | is saturated.

We will not give the proof of this theorem, but refer the reaideg43] or to [72].

REMARK 22. Note that we allow/y, ..., V; to be of different codimensions, we allow
them to fail to be locally Cohen-Macaulay or equidimensipaad we even allow them to be
empty. In fact, this latter possibility gives another amio to Basic Double Cl-Linkage (cf.
Remark 21). Indeed, ifwe l&f, = --- = V; =@, withly, =--- =1y, = R,andsetV; = C
andV = Sas in Remark 21, then the ideal

I = Fr-ly+--+F-ly
= Fi-lyy+(F2 ... F)

is precisely the ideal of the Basic Double Cl-Linkage.

An application of Liaison Addition is to the construction afithmetically Buchsbaum
curves, or more generally arithmetically Buchsbaum subisas of projective space. We will
give the basic idea here and come back to it in Section 11.

DEFINITION 20. A curve C C P" is arithmetically Buchsbaurif H*l(Ic) is annihilated
by the “maximal ideal’m = (Xp,...,Xn). A subscheme W P" of dimension d> 2 is
arithmetically Buchsbaum if HZy) is annihilated bym for 1 < i < d and furthermore the
general hyperplane section ™ H is an arithmetically Buchsbaum scheme in=HP"—1.

Buchsbaum curves i, especially, are fascinating objects which have beeneatiehiten-
sively. A rather large list of references can be found in [72Rison Addition can be used to
construct examples of arithmetically Buchsbaum curveb wibdules whose components have
any prescribed dimensions, up to shift. Indeed, Schwartadginal work [101] already pro-
duced examples of modules of any dimension, concentratedendegree. The more general
result was obtained in [17]. The idea is to use sets of two dkeg as a “building block” to
build bigger curves. We will give the basic idea with an extampmitting the proof of the
general result.

ExampLE 15. Recall (Example 6) that the deficiency module of a set ofdleew lines is
one-dimensional as ld-vector space, and the non-zero component occurs in degfeatder-
more, this is the minimal shift for that module. L& andC5 be two such curves. Ho@; and
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C, meet (i.e. whether they are disjoint from each other, meénitely many points or contain
common components) is not important. IEgte Ic, andF;, € Ic, such thatr; andF, have no
common factor. Note that dé¢g > 2. Then the curv€ obtained byic = F1-Ic; + F2-Ic, is
arithmetically Buchsbaum and its deficiency module is theadisum of twists of the deficiency
modules ofC1 andC». In particular, this module is 2-dimensional a¥avector space. The
components occur in degrees dggand ded=». In particular, the components can be arbitrar-
ily far apart, and regardless of how far apart they are, tfimtest component occurs in degree
> 2. Furthermore, an example can be obtained for which thispoment is in degree exactly
2 (for instance by choosing; with degF; = 2 and thenF, of appropriate degree). Note that
2=2.2—2(see Proposition 8).

An arithmetically Buchsbaum curve whose module is 3-dirarad as aK -vector space
can then be constructed by taking the Liaison Additio©afith another set of two skew lines,
and it is clear that this process can be extended to producenadule (up to shift) which is
annihilated bym. Furthermore, if we produce in this way a curve whose defggienodule has
dimensionN as aK -vector space, a little thought shows that this can be dosacdh a way that
the leftmost non-zero component occurs in degre2N — 2, and that a sharp example can be
constructed. We refer to [17] for details.

This approach was also used in [43] to construct arithmigti@uchsbaum curves i#*,
and in [19] to construct certain arithmetically Buchsbaurfaces ifP* with nice properties.

One would like to have an idea of “how many” of the Buchsbaumvesi can be constructed
using this approach together with Basic Double Linkage ¢Wigreserves the module but shifts
it to the right, adding a complete intersection to the curide first step was obtained in [41]:

PROPOSITIONS. Let C c PP3 be an arithmetically Buchsbaum curve. Let

N =dimHl(Zc) = Y h'@c ).
teZ

Then the first non-zero component Q}(Hc) occurs in degree> 2N — 2.

Proof. The proof is an easy application of a result of Amasaki ([42]) which says tha€ lies
on no surface of degree 2N. We refer to [41] for the details. |

It follows that the construction of Example 15 provides @gwvhich are in the minimal
shift for their module. We will see below that the Lazarsf&®do property then gives an incred-
ible amount of information about all arithmetically Buchsion curves, once we know even one
curve in the minimal shift. It will turn out that this consttion together with Basic Double
Linkage, givesall arithmetically Buchsbaum curves #¥ up to deformation. Furthermore, this
construction will even give us information about arithmatly Buchsbaum stick figures.

7. Necessary conditions for being linked

Since (direct) linkage is symmetric, the transitive clesofrthis relation generates an equivalence
relation, called liaison. However, it will be useful to syuslightly different equivalence classes.

As in the previous sections we will restrict ourselves tosshigmes oP" and ideals oR =
K[Xo, . .., Xn], although the results are more generally true for subselseshan arithmetically
Gorenstein scheme.
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DEeFINITION 21. Let | C R denote an unmixed ideal. Then the even G-liaison classf | i
the set
C C; C;
L=(cRII1=12.. 2y
wherecq, ..., co are Gorenstein ideals. If we require that all ideals . . ., cox are complete
intersections that we get the even Cl-liaison class of |.

The even G-liaison class and the even Cl-liaison class ofcandemensional subscheme
V c P" are defined analogously.

REMARK 23. It is clear from the definition that every G-liaison clasmsists of at most
two even G-liaison classes and that every Cl-liaison classists of at most two even Cl-liaison
classes.

A liaison class can agree with an even liaison class, for @kani it contains a self-linked
element. On the other hand, it was shown by Rao [96] that #ueréiaison classes that coincide
with even liaison classes but contain no self-linked eles)eghe simplest being the liaison class
of two skew lines iriP3.

The next result has been shown in various levels of gengtafitChiarli, Schenzel, Rao,
Migliore.

LEMMA 11. If V c P"is an equidimensional locally Cohen-Macaulay subschente an
W e Ly then there is an integer t such that

Hi (Zw) = Hi@y)(t) forall i =1,...,dimV.

Proof. This follows immediately from the comparison of the cohoogyl of directly linked
locally Cohen-Macaulay subschemes (Corollary 9) becagsbawe for every finitely generated
gradedR-moduleM that(MVY)Y = M. O

Our next goal is to show that there is a stronger result wtidhuie even itV is not locally
Cohen-Macaulay. For this we have to consider certain typesaxt sequences. The names have
been coined by Martin-Deschamps and Perrin [68].

DEFINITION 22. Let | C R be a homogeneous ideal of codimensicn 2.
(i) An E-type resolution of | is an exact sequence of finitelyegated graded R-modules

O E—>F.1—>...oF—>1->0

where the modulesqF. . ., F._1 are free.
(ii) An N-type resolution of | is an exact sequence of finitgperated graded R-modules

0-Gc—> ...~ Go—>N—->1->0

where G, ..., G¢ are free R-modules andri;;(N) =0foralliwithn+2—-c<i <n.

REMARK 24. (i) The existence of ak-type resolution is clear because it is just the be-
ginning of a free resolution of. For the existence of ahN-type resolution we refer to [85].
However, we will see that for an unmixed ideal the existemtiews by liaison.

(ii) It is easy to see that

an(N) = Hf{l(R/I) forall i <n+1-c
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and . .
HL(E) = HITC(R/1) forall i <n.

This shows that the modulésandN “store” the deficiency modules d&t/1.

(iii) The sheafifications€ and N are vector bundles if and only f defines an equidimen-
sional locally Cohen-Macaulay subscheme.

By definition, the moduleE is ac-syzygy. It is not to difficult to check thatl must be a
torsion-free module. However, if the idelis unmixed then these modules have better proper-
ties.

LEMMA 12. Using the notation of Definition 21 the following conditicare equivalent:

(&) Theideal I is unmixed.

(b) The module N is reflexive, i.e. the bilinear map<NN* — R, (m, ¢) — @(m), induces
an isomorphism N—> N**.

(c) The module E is & + 1)-syzygy.
Proof. This follows from the cohomological characterization aésk concepts. |

The next result establishes the crucial fact tRatype andN-type resolutions are inter-
changed under direct linkage.

PROPOSITIONI. Let I, J C R be homogeneous ideals of codimension ¢ which are directly
linked byc. Suppose | has resolutions of E- and N-type as in DefinitiorL21

0O—->Dc—...> D1 —>¢c—0
be a minimal free resolution af Put s=r (R/¢) + n. Then J has an N-type resolution
0— Ff(—8) > D1 @ F5(—8) »> ... > D@ Fl_1(—s) > D1 B E*(-s) > J —> 0
and an E-type resolution
0— N*(—s) > De_1 ®G5(—s) > ... > D1 ® G{(—s) > J = 0.

Proof. We want to produce aN-type resolution of]. We proceed in several steps.
(I) ResolvingE we get an exact sequence

B e LSy i -y RN )
NS
E
/N
0 0

Dualizing with respect tdr gives a complex

«
% % Pec x Yol
0>R—>F —>...>F 1 —F —F,
and an exact sequence

7
* % Porl x
0—-E" - F — F 1.
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If follows ker(,oj;rl =~ E*, thus Exf?(R/I, R) = E*/im¢¢. Moreover, we get by duality that

kerg, 1/ imgf = Exta(R/1I, R) = HFY(R/DYA-r(R) =0 ifi <c

because dinR/I = n+ 1 — c. Therefore we can splice the two complexes above togettter an
the resulting diagram

0->R->F'—-..>F, — FE*->E}R/IR—-0
N\
im g
/
0 0

is exact.

() The self-duality of the minimal free resolution &/c and Corollary 6 providdD¢ =
R(—s) andD}_; = Dj(s) foralli =1,...,c—1.

(Il Putr :=r(R/c) — 1. The standard exact sequence provides the following ahagyith
exact rows and column:

0
|
Krya(=r)
|
0—- R(-s)—>D¢.1— ... D1 —> R— R/c -0
|
O-E—->F.1—>...FF—>R—> R/I -0

{
0.

Since the module®1, ..., D._1 are free the epimorphisiR/c — R/I lifts to a morphism of
complexes. Thus, using steps (1) and (I1) we get by dualiiith respect taR the commutative
exact diagram:

Ext H(KRry3. R)(—T)

\

0—-> R— FF —»...» F.,,— FE'— Ext%(R/1, R) -0
l \ \ \ Vo

0—- R— D¢i1(8—...— Di(s9—= R(S) — ExtL(R/c, R) — 0.

SinceK R,y has dimensiom + 1 —c we obtain by duality E)%_l(KR/\], R) = 0. Moreover, we
have already seen that ExtR/1, R) = Kg/| (n + 1) and Ex§ (R/c, R) = R/c(s). It follows
that « is injective and, by comparison with the standard exact eecg, coker = R/J(S).
Thus, the mapping cone procedure provides an exact sequdricie begins withR/J(s) and
ends withR. However, it can be shown that this last module can be cathcdlee result is the
N-type resolution of as claimed becaude* meets the cohomological requirements (cf. [3],
Theorem 4.25 and [37], Theorem 3.8).

The claimedE-type resolution of] can be obtained by similar arguments. |

Using Remark 24 we obtain as first consequence the gendiatizd Lemma 11.
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COROLLARY 13. Let V, W C P" be equidimensional subschemes. IfaALy, then there
is an integer t such that

H @w) = Hl@y)®) forall i =1,..., dimV.

This result gives necessary conditions YoandW being in the same even liaison class. In
order to state a stronger consequence of Proposition 9 wk nee

DEFINITION 23. The E-type and the N-type resolution, respectively, of Isaid to mini-
mal if it is not possible to cancel free direct summands. Ereyniquely determined by | up to
isomorphism of complexes.

Leto(l) denote the last non-vanishing module in a minimal E-typele®n of I, and let
¥ (1) denote the second non-vanishing module in a minimal N-tgpelution of I.

We considefpy andyr as maps from the set of ideals into the set of maxiRahodules.
If the E-type andN-type resolutions in Definition 22 are minimal then we haxé¢) = E and
¥ () = N. Basically we will ignore possible free direct summands0f) and (1). This is
formalized as follows.

DEFINITION 24. Two graded maximal R-modules M and N are said to be stablyabgunt
if there are finitely generated, free R-modules@and an integer t such that

M@ F = N(t) &G.
The stable equivalence class of M is the set

[M]:={N | N is stably equivalent to ¥

Using Proposition 9 repeatedly we get the following relati@tween even liaison and cer-
tain stable equivalence classes.

THEOREM 7 (RAO’S CORRESPONDENCE The mapy induces a well-defined map :
Mc — MEg, L) — [e(1)], from the setM of even liaison classes of unmixed ideals in R
of codimension c into the se@ilg of stable equivalence classes of finitely generdted 1)-
syzygies.

The mapy induces a well-defined mag : M¢ — M, £; — [¢ ()], from the set
M of even liaison classes into the skty of stable equivalence classes of finitely generated
reflexive modules N which satisf;{nlle) =O0foralliwithn—c+2<i <n.

REMARK 25. (i) Rao’s correspondence provides the following diegreith two commut-
ing squares

Me 2 Mg
| a A
Me 5 My
| a A
Me 2 Mg

whereq is induced by direct linkage anlis induced by dualization with respect B

(i) Combining Rao’s correspondence with Horrocks’ cléisation of stable equivalence
classes of vector bundles @Y in terms of cohomology groups and extensions [55] gives a
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stronger result than Corollary 13 in the case of locally GeMacaulay subschemes. Hor-
rocks’ result gives for example: i€ is a curve then the stable equivalence clasg ¢fc) is
determined by—|*1(Ic) = H%(t//(lc)). For a locally Cohen-Macaulay surfaec P" the sta-
ble equivalence class @f(lg) is determined by the tripIeH]%(llf(ls)), H%(l//(ls)), n) where

n € Ex(H3 (v (1), HZ(¥ (Is))). For the modules associated to schemes of dimensign

Horrocks’ classification becomes less elegant.

In particular, the modulebl*l(Is) and H*Z(IS) are not enough to determine the even liaison
class. This is illustrated, for instance, in Example 16.

The next result gives more information on Rao’s correspooee

PrRoPOSITION10. For every c> 2 the mapsb and ¥ occurring in Rao’s correspondence
are surjective.

Proof. Fixing c it suffices to show the claim for one of the maps according &ogdtevious
remark.

Letc = 2. LetM € My be a module of rank. Then fors 3> 0 a sufficiently general map
R ~1(—s) — M provides an exact sequence

0> R - =M= 1t)—0

wheret is an integer and is an unmixed ideal of codimension two. This result is somes
referred to as Theorem of Bourbaki.

Forc > 3 the claim is shown in [2]. |

Rao’s correspondence gives the strongest known necessaditions for two subschemes
belonging to the same even G-liaison class. For even Gldiaclasses of ideals of codimension
¢ > 3 there are additional necessary conditions (cf. [57],)[61]

The next example illustrates the fact that Rao’s correspooel provides stronger necessary
conditions than Corollary 13.

EXAMPLE 16. The Koszul complex resolves the ideak= (g, ..., X4) over
R:=K[xp, ..., X4]

0—> R(-5 —R-4 — RIY9%-3-5R9%-2 — R(-1)>m-o0

0 0 0 0

The module23 and2! are defined as the indicated syzygy modules.
There is a surfac& c P4 admitting an exact sequence

0— (2%(-1)%2 % R @ (Q1(=3)2 > Ig—> 0.

If the mape is general enough theBis a smooth rational surface of degree 10 ([32], Example
B1.15). Moreover, its deficiency modules are

K2(-3)

K2(-1).

H1(Zs)
H2(Zs)

~
~
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Denote bsz the second syzygy module of in the Koszul complex above. There is a surface
T ¢ P4 such that there is an exact sequence

0— R4 > @28 (Q'(-2)% - IT — 0.
The deficiency modules &f are

K2(-2)
K2,

HL(ZT)
H2(ZT)

~
~

Thus, we obtain _ .

Hl(Zs) = HLEZT(-1 fori=12
This leaves open the possibility th&tand T are evenly linked. But in factS andT belong to
different even liaison classes becaygés) andg(I1) are not stably equivalent ([87], Example
7.4). Taking concrete examples f8rand T this can be checked by looking at their hyperplane
sections. LeH c P* be a general hyperplane. Itis not difficult to see tBat £1 would imply
SN H € L1nH, but the latter is impossible because

m-HYZraH) =0, but m-Hl(Ts) #0.

In other words, the surfack is arithmetically Buchsbaum, but the surf&8s not arithmetically
Buchsbaum. Using Rao’s correspondence one can show thaiaperty of being arithmetically
Buchsbaum is preserved under direct linkage (cf. [99].)@Hich again impliesS ¢ L.

8. Sufficient conditions for being linked

In Section 7 we have seen that Rao’s correspondence relatiesi@son classes to certain stable
equivalence classes. Moreover, this correspondencejectue. Thus, an ideal result would be
an affirmative answer to the following.

MAIN QUESTIONL. Arethe map® andW¥ in Rao’s correspondence injective foraf> 2?

In this section we will discuss this question. It is worthighio point out special cases of
the Main question. We begin with a definition.

DEFINITION 25. A subscheme \ P" is licci if it is in the Cl-liaison class of a complete
intersection. V iglicci if it is in the G-liaison class of a complete intersection.

REMARK 26. (i) Since for an arithmetically Cohen-Macaulay subsoh®’ the modules
®(ly) and ¥(ly) are free, i.e. stably equivalent to the zero module, in thisecthe Main
guestion takes the form:

Question 1: Is it true that a subschemé is arithmetically Cohen-Macaulay if and only if
itis glicci, i.e. in the G-liaison class of a complete inezgon?

(i) Let C, D c P" be two curves. Then it is not to difficult to see, and it is a &glexase of
Horrocks’ results [55], that the following conditions amgué/alent:

(@) @(Ic) and®(Ip) are stably equivalent.
(b) w(lc) and¥(Ip) are stably equivalent.
(€) HX(Zc) = HL(Zp)(t) for somet € Z.
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Hence, for curves the main question specializes to:

Question 2:1s it true that two curve€, D  P" belong to the same even G-liaison class if
and only ifH1(Z¢c) = H1(Zp)(t) for somet € Z?

(iii) Strictly speaking we should ask the Main question ahd two questions above for
G-liaison and Cl-liaison, separately. We state only therMpiestion for Cl-liaison.

Question 3:LetV, W C P" be two equidimensional subschemes of the same codimension.
Is it true thatV andW belong to the same even Cl-liaison class if and onfy (fy, ) and® (1)
are stably equivalent?

For subschemes of codimension two the answer to all thesstigne is ‘yes’ because of
the following result which is essentially due to Rao [94] @fo [90], [85]).

THEOREMS8. Let |, I’ ¢ R be unmixed homogeneous ideals of codimersigith N -type
resolutions

S
0> @PR-a) > N->1-0
i=1

and
S

0> P R-b) - Ny - 1" > 0.
i=1
Then | and [ belong to the same even liaison class.

Proof. We only outline the proof but give enough details to see wlhieeeproblems are in ex-
tending the argument for ideals of higher codimension.

Case 1:SupposeN is a freeR-module. Thenl and |’ are standard determinantal ideals
and the claim follows from the more general Theorem 9.

Case 2:Suppose thall is not free. Then, possibly after linkingand!’ in an even number
of steps to new ideals, we may assume thatoes not have a free direct summand.

Write im§ = (mq, ..., mg) and ime = (nq, ..., hs) wherem; R = §(R(—g;)) andnj R =
e(R(—b;)). Suppose than; =n; fori <t <s.

We want to show that we can find idedls e £, and Ii € L) having N-type resolutions
wherem; = n; fori < t. Then, repeating this process at mesimes our statement follows.

Choose an integep > 0 and elements, v € [N]p whose imaged, fo in | andgy, gp
in 1’ generate complete intersectionand ¢/, respectively. Putl = ¢ : | andJ’ = ¢ : I.
According to Proposition 9 these ideals hdsype resolutions as follows:

S
0— N*(-2p) > R¥(-p) & D R(@ —2p) > J - 0,
i=1
S
0— N*2h—2p) — R — p) & P R +2h —2p) > I —> 0.
i=1
Let f e J be the generator of the image Bfa; — 2p) in J and letg € J’ be the generator
of the image ofR(bt + 2h — 2p); f andg are not zero becaudé does not have a free direct
summand. Sincéfq, fo} and{g;, go} are regular sequences it is possible to fingk € K
such that = (f, ') and?’ = (g, g) are complete intersections whefé = Af; 4+ ufy and

g = Ag1+ ug. Putly =0 : Jandl; =0 : J'. SinceN does not have a free direct
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summand theE-type resolutions ofl and J’ above must be minimal. It follows thet f’ are
minimal generators of and thatg, g’ are minimal generators af . Therefore we can split off
R(—p) & R(at — 2p) respectivelyR(h — p) & R(bt + 2h — 2p) in the N-type resolution of {
respectivelyii given by Proposition 9. The resulting resolutions are:

0— P R@ —a — p) @ R@ —2p) — N(a — p) > 11 >0,
i £t

0 P Ribx — by +h— p) @ Ribx + 20 — 2p) > N(by +h— p) — 1] > 0

i £t
where the image af is generated byng, ..., my_1, M4 1, ..., Mg, AU+ po and the image of
o' is generated by, ..., Ng_1, Nt11, ..., Ns, AU + po. This means that we have reached our
goal by replacingn: andnt, respectively, by.u + uv. |

Let us look at this proof in case the codimension aind |’ is at least three. We can still
split off terms in theN-type resolutions of;and I; at the end of these resolutions (as in the
proof above). But since the resolutions are longer this inough to guarantee the splitting at
the beginning of the resolution which would be needed to detagthe argument.

As pointed out in Remark 26, the last result has an implicgio space curves.

COROLLARY 14. Let C, D c P2 be two curves. Then B Lc if and only if Hl(Z¢) =
HL(Zp)(t) for some te Z.

We still have to prove Case 1 in the previous propositioncilis a result of Gaeta. It can
be generalized to arbitrary codimension [61]. For this wealghe following.

DEFINITION 26. If A is a homogeneous matrix, we denote lg) the ideal of maximal
minors of A. Ifp : F — G is a homomorphism of free graded R-modules then we define
I (p) = I (A) for any homogeneous matrix A representimgfter a choice of basis for F and
G. A codimension ¢ lideal | ¢ R will be called astandard determinantal ida&l x = | (A)
for some homogeneouskt(t 4+ ¢) matrix, A. In a similar way we define standard determinantal
subscheme d@".

It is well-known that every standard determinantal subsehés arithmetically Cohen-
Macaulay.

Now we can state one of the main results of [61]. The case afrmatsion two was due to
Gaeta, and this generalization thus bears his name.

THEOREM9 (GENERALIZED GAETA THEOREM). Every standard determinantal ideal is
glicci.

Proof. The proof is essentially an algorithm describing how theinegl links can be achieved.
We outline the steps of this algorithm but refer to [61], Tieeo 3.6 for the complete proof. The
interested reader is invited to run the algorithm with a cetecexample.

Let | c R be a standard determinantal ideal of codimensianl. Thus, there is a homo-
geneous x (t 4+ ¢) matrix A with entries inR such thatt = | (A). If t = 1 thenl is a complete
intersection and there is nothing to prove. tet 1. Then our assertion follows by induction on
t if we have shown thatt is evenly G-linked to a standard determinantal schéhgenerated by
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the maximal minors of & — 1) x (t + ¢ — 1) matrix A’. Actually, we will see thath’ can be
chosen as the matrix which we get after deleting an apprepraav and column of the matrix
A and that therl and |’ are directly G-linked in two steps. In order to do that we gt in
several steps.

Stepl: Let B be the matrix consisting of the first+ ¢ — 1 columns ofA. Then the ideal
a := | (B) has codimension, i.e. it is a standard determinantal ideal.

Possibly after elementary row operations we may assumehbanaximal minors of the
matrix A’ consisting of the first — 1 rows of B generate an ideal of (maximal) codimension
¢ + 1. Denote this standard determinantal ideal by= | (A').

Stepll: Possibly after elementary column operations we may mssthat the maximal mi-
nors of the matrixA; consisting of the first — 1 columns ofA generate an ideal of (maximal)
codimension two. Pul = | (A1). Letd be the determinant of the matrix which consists of the
first (t — 1) and the last column oA. Then one can show that

@) a:d=a.
(i)  =(@+dR :J.
(i) a+dJ%1is a Gorenstein ideal of codimension- 1.
(iv) dega+dJ® 1 =degd - dega + dega + J¢1).
Steplll: Consider fori =0, ..., cthe idealslg + Ji. These are Cohen-Macaulay ideals of

degree )
dega +J') =i -[degd - dega — degl].

The proof involves in particular a deformation argument.

SteplV: Comparing degrees it is now not to difficult to check that

(@+dJI> Y1 =a4 JC

StepV: Let d’ be the determinant of the matrix which consists of the first 1) columns
of A'. Then, similarly as above,+ d’ 31 is a Gorenstein ideal of codimensionr+ 1 and

(a+d I Y1 =a+ J°

StepVI: Step V says that the ided[ is directly G-linked toa 4+ J© while Step IV gives that
| is directly G-linked toa + J¢. Hence the proof is complete. |

EXAMPLE 17. LetC c P" denote a rational normal curve. It is well-known that after
a change of coordinates we may assume that the homogenemlof€ is generated by the
maximal minors of the matrix
Xo ... Xn—1 )
X1 ... Xn

Hence,C is standard determinantal and therefore glicci by Gaet@srem.
On the other hand the curé has a linear free resolution, i.e. its minimal free resoluti
has the shape
0— RPr-1(—n) > ... > RPL(=2) > Ic > 0.
Hence, [57], Corollary 5.13 implies for > 4 that the curveC is not licci, i.e. not in the CI-
liaison class of a complete intersection.
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Let us look back to the questions posed at the beginning sfgéction. The previous
example shows that the answer to Question 3 is ‘no’, i.e. Rearrespondence is not injective
for Cl-liaison in codimensiorr 3. Gaeta’s theorem indicates that the situation might ereift
for G-liaison. In fact, there is more evidence that Questia@ould have an affirmative answer.
To this end we consider certain monomial ideals.

DEFINITION 27. A monomial ideal JC R is said to bestableif
X

—-meJ
X

m=x3°---x3" € J and g > 0imply

foralll1<j <i=<n.

THEOREM 10. Suppose that the ground field K is infinite. Then every CohacaMay
Borel-fixed monomial ideal is glicci.

Proof. The main tools are basic double links and liftings of mondridaals (cf. [75]). We
only outline the main steps of the proof and refer for det&ilfr6]. Moreover, we assume for
simplicity thatK has characteristic zero.

Step | Let J ¢ R be a Cohen-Macaulay stable monomial ideal of codimensignl.
Denote by
a:=minft e Z |[l]t #0}

its initial degree. Then there are uniquely determinedrifaiti stable idealsy, ..., lo, C T 1=
K[X1, ..., Xc] such that
lpCli1C...Cleg=T

and
J = IgR+xXI1R+X3I2R+ - +x¢14R

= IgR+Xgl !
wherel’ = 11R+XgloR+ - + X3 114 R.
It follows that
(i) IgRis a Cohen-Macaulay ideal of codimensian
(i) 1pRc I’ becausdgR Cc I{RC I".

(iii) 1’ is a Cohen-Macaulay ideal of codimension- 1.

Step It Now we want to lift monomial ideals it to reduced ideals i := T[Xg]-
Consider the lifting map. : {monomials inT} — {monomials inS} given by

aj—1

c c
l_[lej > 1_[ l_[ (Xj +ixo0)
J:

j=1 \i=0

(Here the assumption on the characteristic is used. In gkrmere just has to choose sufficiently
general linear forms in order to replace monomials by prtxlo€linear forms as above.) For
example, we get(x3x3) = X1(X1 + X0) (X1 + 2X0)X2(X2 + X0).

The properties of the lifting map ensure thatg) is a reduced ideal defining a set of points
in P¢. Therefore this set has the prope@y.
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Step It Using the stability ofJ one can show that(lg)R c 1’ and
J=x1(lg)R+xgl’.

Thus, J is a basic double link of” and Proposition 7 shows thkt € £ ;. But the initial degree
of I’ isa — 1. Repeating this argument successively we seelgfRit+ XgR € £3. Hence it is
sufficient to show thatgR + xgR is glicci. But this follows becauskR is glicci by induction
on the codimension. The claim is clearly true for ideals afiogension one. |

Theorem 10 is of a more general nature than it is apparentitoformulation.

REMARK 27. LetV c P" be an arithmetically Cohen-Macaulay subscheme. It is well-
known its generic initial ideagin(ly) is a stable ideal and defines an arithmetically Cohen-
Macaulay subscheme which is a deformation of the originaés®eV. Indeed, the fact that
gin(ly) is stable is due to Galligo [39]; that it gives a flat deforroatis due to Bayer [6];
that it is again Cohen-Macaulay follows from a result of Baged Stillman (cf. [35], Theorem
15.13). Thus our result says that every arithmetically @eklacaulay subscheme admits a flat
deformation which is glicci. In other words, we have foundaffirmative answer to Question 1
“up to flat deformation.”

In view of Remark 27, we consider Theorem 10 as the strongéd¢ce that Question 1
might have an affirmative answer. However, there is alsor@¥ieence.

REMARK 28. The results about linear systems (Theorem 5) can be astaiv that many
arithmetically Cohen-Macaulay subschemes are gliccis Beicomes particularly effective for
divisors on arithmetically Cohen-Macaulay subschemek kvibwn Picard group. Some typical
results of this approach are

(i) All arithmetically Cohen-Macaulay curves on a genenalosth rational arithmetically
Cohen-Macaulay surface f* are glicci ([61], Corollary 8.9).

(i) Let S c PP* be a general arithmetically Cohen-Macaulay surface suataihthe entries
of its Hilbert-Burch matrix have positive degree. Then élttanetically Cohen-Macaulay
curves onSare glicci ([26]).

(i) Effective arithmetically Cohen-Macaulay divisors @ smooth rational normal scroll are
glicci ([24)).
(iv) Every general set of points A3 on a nonsingular quadric surface is glicci ([53]). More

generally, every general set of points on a smooth ratiamdhse scroll is glicci ([24],
Theorem 3.4.2).

One of the few sufficient conditions for linkage in higher tndnsion was mentioned in
Remark 5, and now we sketch the proof.

PrRoPOSITION11. Any two complete intersections of the same codimension laiaked.

Proof. (Sketch of proof from [101])

The proof rests on the following observation: Itf, = (Fy,..., Fc_1, F) andlx, =
(Fq, ..., Fc_1, G) are two complete intersections of codimensidhen they are directly linked
by the complete intersectiorx = (Fq, ..., Fc—_1, FG). Then the proof follows by changing
one entry at a time. |
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From this it would follow that if one could show that everythmetically Gorenstein scheme
is glicci, then all arithmetically Gorenstein schemes aréhe same G-liaison class. However,
this is not known. Itis true if the codimension is at most ¢hr€hen an arithmetically Gorenstein
subscheme is even licci ([107]).

Moreover, Hartshorne [53] has proposed interesting exasnpfie suspects that a set of 20
general points i3 as well as the general curve in the irreducible componenhefHilbert
scheme of curves if?* of degree 20 and genus 26 containing standard determiramtads is
not glicci.

There are also some results for non-arithmetically Cohaaddlay subschemes indicating
that even the Main question might have an affirmative answer:

e Hartshorne [53] and Lesperance [64] independently shohagdhny two sets of two skew
lines inP* are G-linked. (See also the Conjecture at page 111.) Hartstadso obtained
partial results on other curves with Rao modkle

e Lesperance [64] showed that curvegthconsisting of unions of two plane curves are (at
least “usually”) linked if and only if they have the same Raodule.

¢ Lesperance [65] showed thatifandC’ are degenerate arithmetically Buchsbaum curves
in P# (not necessarily in the same hyperplane) tBeandC’ are evenly G-linked if and
only if they have isomorphic Rao modules up to shift.

e Casanellas and Mir6-Roig [25], [26] showed the same foryreubschemes of small
degree (not necessarily curves), especially unions oétinarieties; their idea was to
view them as divisors on a suitable rational normal scroll.

e Nagel, Notari and Spreafico [89] proved for double line®hand for some other non-
reduced curves on lines, that they are evenly linked if arly ibithey have isomorphic
Rao modules up to shift.

The proof of the last result differs from the others by nohgghe result about the G-liaison
classes of divisors on arithmetically Cohen-Macaulay shbsies with the propertg;. Indeed,
the non-reduced curves that are considered are not evesodivon a generically Gorenstein
surface.

Note also that the Hartshorne-Rao modules of the curvesdemesl in the first results men-
tioned above are rather simple while the curves studiedd]j [89] can have a rather complicated
Hartshorne-Rao module.

9. The structure of an even liaison class

We have seen a rather complete description of when two sabmhare linked in codimension
two. The main result is Theorem 8, and it is one of the mainlteai liaison theory. We
have discussed to some extent the possibility of extendlisgésult to higher codimension (e.g.
Theorem 9), and we will continue to discuss it below. As we,stis more natural to consider
evenliaison.

Another natural question is whether the even liaison ctapsesess a common structure of
any sort. We will see that in codimension two there is a nicgxemn. Again, one can try to extend
it to higher codimension, and we will also discuss the evigefor and against this idea. The
following remark sets up the background.

REMARK 29. LetV C P" be an equidimensional closed subscheme of codimemsipet
M; = HL(Zy) for 1 <i <dimV = n —c. Let Ly be the even liaison class bf. Note that
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e The vector of graded moduléd, = (M1, ..., Mp—_¢) is an invariant ofCy/, up to shift
(Lemma 11).

e There is a minimal shift of this vector that can occur amorigsshemes oP" (Proposi-
tion 5; see Definition 11 for the definition of minimal shift).

e Hence there is a minimal shift of this vector among elemehté\p (which is not neces-
sarily the same as the minimal shift among all subschem8 imith vector £y, except
for curves inP3).

e Although leftward shifts oM, may not exist, any rightward shift dfl, does exist thanks
to Basic Double Linkage (Lemma 6, Remark 22).

DEFINITION 28. If an element We Ly has cohomology which achieves the minimal shift,
among elements dfy/, guaranteed by Proposition 5, we say that W imi@imal element of its
even liaison classor that Wis in the minimal shift ofZy,. We write We E%.

EXAMPLE 18. LetZ; be the disjoint union ifP3 of a line, A, and a conicyY. We have the
exact sequence

0 - Iz, —» hialy — R — HiZz) — 0
N /!
I+ ly
/! N
0 0

Sincel, + Iy contains three independent linear forms, we concludel-lltﬂale) = K[x]/(xz)
for some linear formx. Therefore the module is one-dimensional in each of degdesmsd 1,
and zero everywhere else. However, notice that the moduletste is not trivial: multiplication
from the degree 0 component to the degree 1 component byntree liormx is not zero.

Note further that this curve is in the minimal shift of its aeviaison class, thanks to the
bound (3) which says that in negative degree the dimensiawes to be strictly increasing.

Now consider a Buchsbaum cur¥e, obtained via Liaison Addition as in Example 15, with
deficiency module which is 1-dimensional in each of two censige degrees. The smallest such
curve that can be so constructed is obtained by chod3irandC- in Example 15 to each be a
pair of skew lines, and ddg; = 2, degFo = 3. Then the first non-zero component}ebf(Izl)
occurs in degree 2 which, thanks to Proposition 8, is themmahshift.

Note that thestructureof these two modulesH*l(Izl) and H*l(Izz), is different (the latter
is annihilated by all linear forms), even though dimensliyrthey are the same. Hence they are
not in the same (even) liaison class.

For an example of surfaces where even the modules are ishindnpt the liaison classes
are different, see Example 16.

REMARK 30. LetV c P" be temporarily an equidimensional scheme of codimensisn
2. Then it is clear how to adapt the above definitiort@f. Note, that we have already defined
the (cohomological) minimal shift in Definition 11. Striggpeaking we should distinguish even
a third notion of minimal shift suggested by Rao’s corresfgnte. This provides the following
list:

(i) The (cohomological) minimal shift o¥ is the integer

. . There is a subschenw c P" of codimensiorc with
c(V):=min{teZ| .

HI@w) = HL@y) ()



106 J.C. Migliore - U. Nagel

(i) The minimal Rao shift oV is the integer

rV) =minlt ez | There is a subschenW c P" of codimensiorc with
T o(ly) ® F = ¢(lyw)(—t) ® G for free R-modulesF, G
(iii) The minimal shift of the even G-liaison clagy, is the integer

[(V) := min {t cZ| There is a subschenWw e Ly with }

o(ly) & F = ¢(lw)(—t) & G for free R-modulesF, G

According to Remark 24 and Rao’s correspondence we havelbe/ing inequalities
c(V) <r (V) <I(V).

Moreover, ifV is a curve ther(V) =r (V), but if the dimension o¥ is at least 2 we can have
c(V) <rV).

If the codimension oV is two we getr (V) = (V) due to Theorem 8. It would be in-
teresting to know if this equality is also true in codimems®> 3. This would follow from
an affirmative answer to the Main question 1, but it is coralgliz’ that the Main question has a
negative answer andV) = I (V) is still always true.

In [85], Proposition 5.1 a lower bound forV) is given which cannot be improved in
general. It would be interesting to have a priori estimatesfV) andl (V) as well.

We now describe a structure of an even liaison class, génealled theLazarsfeld-Rao
property. As remarked above, this property is only known to hold inicwhsion two, so we
now make this assumption. Later we will discuss the possilaf extending it.

Let £ be an even liaison class of codimension two subschem#&$ .ofor simplicity we
will assume that the elements df are locally Cohen-Macaulay, and of course they must be
equidimensional. (The locally Cohen-Macaulay assumptias removed by Nagel [85] and by
Nollet [90].)

As we have seen (e.g. Theorem 9), the arithmetically CohanaMlay codimension two
subschemeforman even liaison class. (In this case any two schemes are bettyeand oddly
linked.) We thus assume that the elements afrenotarithmetically Cohen-Macaulay, 94, is
not zero (i.e. at least one of the modules, not necessaltijlisaon-zero). Then it follows from
Remark 29 that we can partitioh according to the shift oM,:

L=r%vctuc?u...uchu....

Here,ﬁ0 was defined in Definition 28 and consists of the minimal elasefhen.” consists of
those elements of whose deficiency modules are shiftedegrees to the right of the minimal
shift.

In Remark 21 we saw the notion of Basic Double Cl-Linkage angarticular we gave
the version for codimension two: L&t be a codimension two subschemeRf and choose
Fo € |y, of degreed, andF; € R of degreed; such that(F, F») forms a regular sequence
(i.e. a complete intersection). Thés - Iy, + (F,) is the saturated ideal of a sche@avhich is
Cl-linked to V4 in two steps. Furthermore,

HL(Z7) = HL@y)(—dy) fori=1,...,n—2

As sets,Z = V; UV whereV is the complete intersection defined @y;, F2). Note that if
Vi e £hthenz e £M+d1. A concrete description of the two links can be given as fedifirst
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noted in [63]): LetA € Iy, be any homogeneous polynomial having no component in common
with Fo. Then linkV4 to some intermediate scherfeusing the complete intersectigi, F»),
and linkY to Z using the complete intersectigAF, F).

One can also check, using various methods, thatBhgpe resolutions of/q and Z are
related as follows. Iy, has anE-type resolution

m
0 &— P Opn(—a) > Iy, > O,
i=1

WhereH*l(g) = 0, thenZz has anE-type resolution

m
(5) 0 E(—dy) ® Opn(—dy — dz) > @D Opn(—dy — &) & Opn(—dp) - Iz — O,
i=1

Note that the stable equivalencefand€ (—dp) & Opn(—d; — dp) is obvious.

The Lazarsfeld-Rao property says, basically, that in am &egson class, all the minimal
elements look alike and that the entire class can be builtap fin arbitrary minimal element
using Basic Double Linkage and deformation. More precjsed/have the following statement.

THEOREM 11 (LAZARSFELD-RAO PROPERTY). Let £ be an even liaison class of codi-
mension two subschemesPt.

(@) IfVy, Vo € £0 then there is a flat deformation from one to the other througtsshemes
allin 0.

(b) If Vg € £9and Ve ch (h > 1) then there is a sequence of subschemgds, ..., Vi
such thatforalli,1 <i <t,V, is abasic double link of \ 1, and V is a deformation of
\t through subschemes all i,

We stress that the deformations mentioned in Theorem 1laared out entirely within the
even liaison clasg£. They preserve cohomology, not only dimensionally but estemcturally.

Theorem 11 was first proved for codimension two locally CeNataulay subschemes of
P" in [4]. At approximately the same time, it was proved (as p&a much broader theory) for
curves inP3 in [68]. It was proved for codimension two subschemes of actiharithmetically
Gorenstein subscheme in [20]. Finally, in codimension ttwvds later extended to arbitrary
unmixed ideals in [85] and [90]. We now give the general idithe proof of [4], and refer the
reader to that paper for the details, as well as to [68], [88][&0].

Proof. (Sketch) There are three basic components of the proof.

1. (Bolondi, [16]) If V1, Vo € £" (in particular they have the same deficiency modules) and
if they have the same Hilbert function then the desired de&tion can be found. Soitis
reduced to a question of Hilbert functions.

2. IfVy, Vo € £h and if they donot have the same Hilbert function then by studying locally
free N-type resolutions one can show that there is a “smaNgrih the even liaison class
(i.e.V' e LN for someh’ < h). Combined with the first part, this proves that the minimal
elements all lie in the same flat family.
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3. Given\p € £9andVv e ch, by studying (5) and knowing thafy andV are linked in
an even number of steps, it is possible to “predict” what ddsiuble links are needed
to start withV and arrive at a schemé with E-type resolution which agrees (except
for the maps) with that o¥/, up to trivially adding free summands to both modules in
the resolution. This means thdtandV; have the same Hilbert function and deficiency
modules, so we again apply the first part.

|

REMARK 31. (i) From the name “Lazarsfeld-Rao property” one woultlirelly expect that
the paper [63] of Lazarsfeld and Rao was important in theldpweent of the above theorem. In
fact, it really inspired it (although many people doubtedtthomething so general would hold).
We can state the main result of [63] in the following way. FauaveC C P3, let

e(C) := max(t|h®(Zc (1) # 0} = max(t|h}(Oc (1)) # 0} = max(t|h®(wc (—1)) # 0}.

Then

a. If C lies on no surface of degreC) + 3 thenLc has the Lazarsfeld-Rao property and
c el
c

b. If C lies on no surface of degre€C) + 4 then furthermor€ is theonly element ofﬁg.

For example, suppose thatc P3 is a set of> 2 skew lines. Ther(C) = —2. Thus since
C cannot lie on a surface of degree 1, part a. gives@hat Eg. If C furthermore does not lie
on a quadric surface thédis the only minimal element of its even liaison class.

Similarly, one can apply it to rational curves, whe&(€) = —1, and get analogous state-
ments: a rational curve lying on a quadric surface is not méhi(it is linked to a set of skew
lines), one lying on a cubic surface is minimal but not uniguenoves in a linear system) and
one not lying on a cubic surface is the uniqgue minimal curvedifferent, more geometric ap-
proach to the minimality of skew lines and rational curvest (asing [63]), and other related
questions, can be found in [70].

(ii) Let us recall the concept of elementary Cl-biliaison ffie case of curves). L& c P"
be a curve which is an effective divisor on a complete intiise surfaceS c P". Let Fy be a
hypersurface meeting transversally such th& c SN Fy. LetC’ be the curve linked t€ by
SN F1. Choose a hypersurfa¢e such that it meetStransversally an€’ ¢ SN F,. Denote by
C” the curve linked teC’ by SN F,. Thenitis said tha€” is obtained fronC by anelementary
Cl-biliaison on S. It is calledascendingf degF, — degF; > 0, otherwisedescending As
already indicated in Remark 1@ is obtained fronC by an elementary Cl-biliaison o&if and
only if C” ~ C + hH. Observe that elementary Cl-biliaison is a generalizatibipasic double
Cl-linkage (cf. Remark 21). Recently, in [104] R. Strano leéained the following variant
of the Lazarsfeld-Rao property: L& C P2 be a curve which is not arithmetically Cohen-
Macaulay. TherC can be obtained from a minimal curve in its even liaison clasinitely
many ascending elementary Cl-biliaisons. Thus, using tbeergeneral elementary biliaison
instead of basic double links we can avoid the possible fir&brehation which is allowed in
Theorem 11.

REMARK 32. If one knows the Hilbert function of a cur@in P3 (or of a codimension two
subscheme in general) then one can write the Hilbert funaifall possible basic double links
from C. Hence the Lazarsfeld-Rao property can be used to give aleterijst of all possible
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(d, g) = (degree,genus) combinations that occur in an even liaisss @ is the arithmetic
genus), if one only knows it for a minimal element.

For example consider curves B? that are arithmetically Buchsbaum but not arithmeti-
cally Cohen-Macaulay. In Example 15 we saw one way to coasthem, such that the result
has its leftmost component in degrel 2- 2 (whereN = dimy H*l(IC)), which according to
Proposition 8 makes it a minimal element of its even liaistass Hence its degree, genus,
and even its Hilbert function, are uniquely determinedpksato the Lazarsfeld-Rao property.
The following, from [72], is a complete list of the possiki#, g) that can occur for arithmeti-
cally Buchsbaum curves iB3 whend < 10. It includes two curves for whichl = 2: one
with (d, g) = (8,5) and H*l(IC) concentrated in degree 2, and one withg) = (10, 10) and
dimg H1(Zc)2 = dimg H1(Zc)3 = 1. The rest have dipH1(Z¢) = 1.

)]

degree| 2 3 4|5 7 8 9 10
genus| -1 |dne.|0| 1| 3|46 5,6,810]| 8,9,15]| 10, 11, 13, 15, 21

Note that there is no such curve of degree 3.

As was the case with the necessary and sufficient condition&flinkage, the biggest
open problem is to find a way to extend these results to highgimension. One intermediate
situation was studied in [20] (cf. also [85]), where liaissas studied not in projective space but
rather on a smooth arithmetically Gorenstein subvarietf projective space. It was shown that
codimension two liaison here behaves almost identicallh&d in P, even though of course
the objects being linked have codimension greater than mi'i These results have been
further generalized in [85] to codimension two subschenfies arbitrary integral arithmetically
Gorenstein subscheme.

One interesting difference concerns arithmetically Celarraulay subvarieties. Here we
mean arithmetically Cohen-Macaulay in projective space the deficiency modules vanish),
but such a subvariety need not have a finite resolution oeeGtirenstein coordinate ririgy/ | x .

It was shown that the notion of minimality still makes sengewed not in terms of the shift of
the modules (which are zero) but rather in termdNefype resolutions. Then it was shown that
the Lazarsfeld-Rao property holds in such a situatiorxon

Note that the linkage orX is by complete intersections o4, which however are only
arithmetically Gorenstein as subscheme®bf But if we turn to Gorenstein liaison &" with
no such restriction, the situation becomes much less ogtimi

First, we can see right away that there is no hope for a statewtgch is identical to that
for codimension two. The following example was taken fror2][Tonsider the non-degenerate
curve inP# in the following configuration:
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This curve is arithmetically Gorenstein. As such, it linkstskew lines to a curve of degree 3
consisting of the disjoint union of a line and two lines megtin a point. One checks that both
of these curves have Rao module which is one dimensionalyidieg in degree 0. Since this is
the minimal shift, it is clear that the elements@f do not all have the same degree, hence are
not in a flat family.

Soif there is a nice structure for an even liaison class uGaeenstein liaison, what should
the statement be? The next natural guess, due to HartsH8his that perhaps the elements of
L0 satisfy the property that while there may be curves of diffeérdegrees, those curves of the
same degree at least lie in a flat family. He showed this folitligon class of two skew lines.
However, it was shown to be false in general by Lesperancg \@# gave an example of two
sets of curves “usually” in the same even liaison class whiehin the minimal shift and have
the same degree and even arithmetic genus, but which doenwt the same flat family. His
example was extended somewhat by Casanellas [24], whodaikbe same kind of curves but
in PS. (Lesperance was not able to show that all of his curves ateeisame even liaison class,
even though they do have the same Rao module. Casanellasatuat this obstacle disappears
in P°.)

So at the moment no one has a good idea of how to find an analbg toatzarsfeld-Rao
property for Gorenstein liaison of subscheme®bf codimension> 3. A first problem seems
to be to find a good concept of a minimal element of an even iGelieclass. In the even liaison
classL of a non-arithmetically Cohen-Macaulay subscheme of cedsion two, the minimal
elements are the elements of smallest degre& amd all these elements have the same Hilbert
function. In particular, a non-arithmetically Cohen-Matzsy curve of degree two iB3 must be
minimal in its even liaison class. In higher codimensiongheation is very different. It is still
true that two curves of degree two It are in the same even liaison class if and only if their
Hartshorne-Rao modules are isomorphic according to [88]sbch curves can have different
genera.

A naive idea would be to define the minimal elements in an evdiai€on class as the
ones achieving the minimal shift and having minimal Hilbgotynomial. Consider the curves
of degree two irP" whose Hartshorne-Rao module is isomorphic to the ground KelSuch a

curve can have every arithmetic gertysatisfying—“—z1 < g < —1, but it is non-degenerate

if and only if —”;21 < g < 2-n([88]). Thus, forn > 4 minimal curves in the sense just
discussed were degenerate.

It should be remarked that the authors wonder if the Lazla$tao property, even as it is
stated in codimension two, might hold for Cl-liaison in héglcodimension. There are some
encouraging result in [57].

10. Remarks on the different liaison concepts

We have already seen that for subschemes whose codimersiteast three, G-linkage and
Cl-linkage generate very different equivalence classeshis section we want to discuss these
differences a bit more systematically. Finally, we comgaiefly the equivalence classes gener-
ated by (algebraic) Cl-linkage and geometric Cl-linkage.

As we have mentioned in Section 7, Rao’s correspondence ¢fieeonly known method
for distinguishing between G-liaison classes. The situais different for Cl-liaison. There are
various invariants, numerical ([56]) as well as structfas], [57], [61]), which allow one to
distinguish between Cl-liaison classes of arithmetic@lbhen-Macaulay subschemes. In order
to give the flavour of such invariants, we state a particyleiéan result which has been shown
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in [23] by algebraic means, whereas a more geometric praobban given in [61], Proposition
6.8.

THEOREM 12. Suppose YW C PN, n > 4, are arithmetically Cohen-Macaulay sub-

schemes of codimensidh If V and W belong to the same Cl-liaison class then there are
isomorphisms of graded R-modules

HI(Ky ®R Iv) = HL (Kw @R lw) forall i =1,...,n—3.

In other words, the moduIeH]in(KV ®R ly) are invariants of the Cl-liaison class 9f.
They must vanish i¥ is licci.

COROLLARY 15. Let V C ]P’”., n > 4, be an arithmetically Cohen-Macaulay subscheme of
codimensior8. If V is licci then H,(Ky ®R Iy) =0foralli =1,...,n—3.

Proof. Let| C R be a complete intersection of codimension three. Then we tie/following
isomorphisms (ignoring degree shifts)

Kr/l = R/1;

thus
Kryt ®r1 = 1/12 2= (R/13.

Since H]in(R/I) = O0fori < n — 3 becauser/Il is Cohen-Macaulay, Theorem 12 proves the
claim. |

For example, this result can used to reprove that the rdtimvanal curve inP# is not licci
(cf. Example 17).

In [61], the previous theorem has been used to investigat@iSbn classes of curves on a
Castelnuovo surface.

EXAMPLE 19. LetSc P* be a general Castelnuovo surface, i.e. the blow-up of a s®t of
general points i3 embedded int®* by the linear system4Eg — 2E; — Ep — ... — Eg |.
Note thatS is an arithmetically Cohen-Macaulay surface of degree Thhbntains a rational
normal curveC of P4. Denote byHs the general hyperplane section®fFurthermore, denote
by Cj any curve in the linear systeflC + jHs |. Then we have (cf. [61], Example 7.9)

(@) The curveCj is not licciif j > 0.

(b) The curvesC; andC; belong to different Cl-liaison classes whenevexli < j and
j=>3.

Since we know that all arithmetically Cohen-Macaulay csree S are glicci (cf. Remark 28)
we obtain that the G-liaison class Gfcontains infinitely many Cl-liaison classes.

So far Cl-liaison invariants beyond the G-liaison invatfagiven by Rao’s correspondence
are known only for arithmetically Cohen-Macaulay subschemit seems plausible to expect
such additional invariants also for non-arithmeticallyh@o-Macaulay subschemes. The prob-
lem of finding them deserves further investigation. Heredssibly the simplest situation. In
[71] the following conjecture was made.

Conjecture. If C is a set of two skew lines if*4, spanning a hyperplani, and ifC’ is
another set of two skew lines Iff*, spanning a hyperpland’, thenC is in the Cl-liaison class
of C'ifand only if H = H’.
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This conjecture would say that somehow the hyperpldnis a geometric invariant of the
Cl-liaison class ofC, so there must be some other algebraic invariant in additaihe Rao
module. We have seen above that Hartshorne and Lesperatepeirdently showed th&tand
C’ are in the same G-liaison class, so this invariant would ot for G-liaison.

We have seen that liaison in codimension two has two natwaéglizations in higher
codimension: Cl-liaison and G-liaison. The former can beéaratood as a theory about divisors
on complete intersections while G-liaison is a theory albvisors on arithmetically Cohen-
Macaulay schemes with proper@,. Thus, G-liaison is a much coarser equivalence relation
than Cl-liaison. It has the advantage that it is well suitedstudying linear systems. The even
Cl-liaison classes are rather small. In fact, it seems vifigult to find enough invariants which
would completely characterize an even Cl-liaison class.

It is also worth mentioning two disadvantages of G-liaisdhe first is related to our thin
knowledge of arithmetically Gorenstein subschemes. Gaveubschem¥, it is difficult to find
“good” G-links of V; i.e. “good” arithmetically Gorenstein subschemésgontainingV, where
“good” often means small. For example, it is not too diffidoitdetermine the smallest degree
of a complete intersection containing, while it is not known how to find an arithmetically
Gorenstein subscheme of smallest degree contawing

The second concerns lifting the information on hyperplagetisns. IfV, W c P" are
arithmetically Cohen-Macaulay subschemes &hdc P" is a general hyperplane such that
V N HandW N H are linked by the complete intersectidh c H then there is a complete
intersectionX ¢ P linking V to W such thatX = X N H. The corresponding conclusion fails
if we replace “complete intersection” by “arithmeticallyo@nstein” (cf. [61], Example 2.12).

In Section 5 we defined geometric Cl-linkage. It is also a swtnim relation, thus its tran-
sitive closure is an equivalence relation which is esskytize same as Cl-liaison. However, we
have to be a little bit careful what we mean hereV Iis not a generic complete intersection then
clearly it does not participate in a geometric Cl-link. Thwe make the following definition.

DEFINITION 29. Let H(c, n) denote the set of all equidimensional generic complete-inte
sections of" of codimension c.

Note that this differs from the corresponding definition acfdj94] not only in allowing
arbitrary codimension, but also in removing his assumpitia the schemes are locally Cohen-
Macaulay.

Geometric Cl-liaison is an equivalence relation ldiic, n) while Cl-liaison is an equiva-
lence relation of the set of all equidimensional subschesh@&' having codimensios. But if
we restrict the latter téd (c, n) we get the following:

THEOREM13. Algebraic and geometric Cl-linkage generate the same adgiixce relation
on H(c, n). Thatis, if V, W € H(c, n) are two generic complete intersections such that there is
a sequence of (algebraic) Cl-links

VAV~ Vs~W

with all V; € H(c, n) then there is a sequence of geometric Cl-links from V to W.

For the proof we refer to [61], Theorem 4.14. The result galimes Rao’s Theorem 1.7 in
[94] which deals with the case= 2.

The last result leaves open the following problem. Supplesestare/, W € H(c, n) such
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that there is a sequence of algebraic Cl-links
V~Vy~...Vsg~W

where some of th¥; arenotgeneric complete intersections. Is there still a sequehgeametric
Cl-intersections fronV to W?

The answer is known in codimension two. It uses the obsenvati Rao ([94], Remark 1.5)
that for a givenf € |y whereV € H(2, n) there is always a forny € |y of sufficiently large
degree such that the complete intersection defingd by) links V to a schem&’ which is also
a generic complete intersection. Combining this fact withaaalysis of the arguments which
establish injectivity of Rao’s correspondence in codin@m$wo one gets the following:

THEOREM 14. Let V,W € H(2,n) be two subschemes such that there is a sequence of
(algebraic) Cl-links
V~Vy~...Vs~W.

Then there is a sequence of geometric Cl-links from V to W.

For details of the proof we refer to [61], Theorem 4.16.

It is an open question if the analogue of Theorem 14 is als® fou subschemes of codi-
mensionc > 3.

11. Applications of liaison

In this section we mention some applications of liaison teate been made in the literature. It
is not at all intended to be a complete list.

11.1. Construction of arithmetically Gorenstein schemes ith nice properties

Here we describe in somewhat more detail the result of [7fitioeed on page 79. It represents
one of the few applications so far of Gorenstein liaison gsospd to complete intersection
liaison.

It is an open question to determine what Hilbert functiores@ossible for Artinian Goren-
stein gradedK -algebras. Indeed, this seems to be intractable at the ntorhleawvever, it was
shown by Harima [46] that the Hilbert functions of the ArtiniGorenstein gradeld-algebras
with the Weak Lefschetz propef(sf. Definition 14) are precisely the Sl-sequences (see page
79 for the definition). Another open question is to deternthre possible Hilbert functions of
reduced, arithmetically Gorenstein subscheme&obf any fixed codimension. Again, it is not
clear if this problem can be solved or not, but in the same veatha Artinian case, we have a
partial result. That is, in [77] it was shown that every Sipsence gives rise to a reduced union
of linear varieties which is arithmetically Gorenstein amdose general Artinian reduction has
the Weak Lefschetz property.

REMARK 33. It would be very nice to show that every reduced arithcadl§i Gorenstein
subscheme has the property that its general Artinian redubts the Weak Lefschetz property.
If this were the case, then the result of [77] would give asifasation of the Hilbert functions
of reduced arithmetically Gorenstein subschemeBnamely they would be those functions
whose appropriate difference is an Sl-sequence.



114 J.C. Migliore - U. Nagel

The construction given in [77] is somewhat technical, andyive only the main ideas. One
of the interesting points of this construction is that it W®@m completely the opposite direction
from the usual application of liaison. That is, instead @frtihg with a schem& and finding
a suitable arithmetically Gorenstein scheddecontaining it, we start with a (very reducible)
arithmetically Gorenstein scheméand find a suitable subscherweto link using X. Here are
the main steps of the proof.

(a) Suppose that we havegeometriclink Vq X Vo, whereVy (and hence als®,) are
arithmetically Cohen-Macaulay, and is arithmetically Gorenstein (not necessarily a
complete intersection). Suppose you know the Hilbert fiancof V1 and of X. Then
using Corollary 9 we can write the Hilbert function ¥ (see also Example 12 (jii)).
From the exact sequence

O—lIx = Iy ®ly,— Iy +1ly,—>0

we also can get the Hilbert function &/(ly, + lv,).

(b) Using induction on the codimension, we construct ouharétically Gorenstein schemes
X which are not complete intersections in general. They Hasdédllowing properties.

(i) They aregeneralized stick figuresThis means that they are the reduced union of
linear varieties of codimension (say), and no three components meet in a linear
variety of codimensior + 1. In the case of curves, this is precisely the notion of a
stick figure
There are several advantages to using generalized stidledidor X. First, there
are many possible subconfigurations that we can link uXinigwe can just devise
a way to find the “right” ones. Second, any such link is guaedtto be geometric,
since X is reduced. Third, after making such a link and finding the @ifrthe
linked ideals, the result is guaranteed to be reduced, themthe fact that it is a
generalized stick figure! (This idea was used earlier in fddihe case of Cl-linked
stick figure curves ifP3.)

(i) Their Hilbert functions are “maximal” with a flat part ithe middle. They are con-
structed inductively as a sum of G-linked ideals, by findinguéable subset with
“big” Hilbert function, which in turn is constructed by BasDouble G-Linkage.
For example, here are thevectors of the arithmetically Gorenstein schemes in
low codimension:

flat
codim2: 1 2 3..t-1 t t t t-1...3 2 1
codm3: 1 3 6.3 (%) HH ... Y (.6 3 1
codma: 1 4 10..(‘3) 3 (%) ... (%3 (FH..10 4 1

(c) The schemeX obtained in (b) will be used to link. We will assume that com=c—1
and construct our schemes in codimenstonSuppose that a desired Sl-sequehds
given. We use the formula of part (a) to work backwards, tewheine the Hilbert function
of an arithmetically Cohen-Macaulay subconfiguratignc X that would be needed to
produceh as a sum of linked ideals.
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(d) We use our knowledge of the schemégo prove that an arithmetically Cohen-Macaulay

11.2.

A.

schemeV; C X, as described in (c), in fact does exist. This is the mostrieah part of
the proof.

Smooth curves ifP3

A long-standing problem, with many subtle variationsswadetermine the possible pairs
(d, g) of degree and genus of smooth curveE‘?r(or]P’”). This was solved by Gruson and
Peskine [45] for curves ift3 and by Rathmann [97] for curves Bf andP®. Substantial
progress has been made by Chiantini, Ciliberto and Di Genf2&@] in higher projective
spaces.

One variation of this problem is to determine a bound for theét{metic) genus of a
non-degenerate, integral, degréeurve C c P2 lying on an irreducible surfacé of
degreek, and to describe the extremal curves. This problem was dddyeHarris [47],
who gave a specific bound. Furthermore, he showed that tiveswhich are extremal
with respect to this bound are precisely the curves resitualplane curve via certain
complete intersections. Note that they are thus arithmkti€ohen-Macaulay. (A deeper
problem is to bound the genus of a smooth curv@imot lying on any surface of degree
< k. There is much progress on this problem, beginning with vasrkiartshorne and
Hirschowitz [54].)

. Harris’ work mentioned above used the Hilbert functionhaf general hyperplane section

of the curveC. He showed that the general hyperplane section must havdrtifierm
Position Property (see Definition 13). (Note that Harrigdqirof the uniform position
property for a general hyperplane section required chawiatit zero. It has been proved
in characteristiq for P, n > 4, by Rathmann [97].) This led to natural questions:

Q1. What are all the possible Hilbert functions for the gahbyperplane section of an
integral curve inp3? (Same question fd".)

Q2. What are all the possible Hilbert functions for the gahbyperplane section of an
integral arithmetically Cohen-Macaulay curveRA? (Same question f@".)

Q3. What are all the possible Hilbert function of sets of pmin P2 with the Uniform
Position Property? (Same question Fy~1.)

Q4. Do the questions above (for fixajlhave the same answer?

The answer to these questions is knownrfoe 3, but open otherwise (see also Section
11.4). The answer to Q4 is “yes” when= 3, and the Hilbert functions that arise are
those of so-calledecreasing typeThis means the following. LeZ be the set of points
(either the hyperplane section of an integral curve or a §pbmts with the Uniform
Position Property). Then the Hilbert function of the ArtinireductionA, of R/1z looks

as follows. Letd; be the degree of the first minimal generator f andd, the degree
of the second. Note thaly < dy. Letr be the Castelnuovo-Mumford regularity 8% .
Then

t+1 ift <dg

ha(t) = dy ifdp<t<dry—-1
(strictly decreasing) it —1<t<r
0 ift>r

Work on this problem was carried out in [45], [67], [98]. Theeresting part is to con-
struct an integral arithmetically Cohen-Macaulay curvthlie desiredh-vector, and this
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was done in [67] by a nice application of liaison. A completaifferent approach, using
lifting techniques, was carried out in [29].

11.3. Smooth surfaces if?4, smooth threefolds inP®

In the classification of smooth codimension two subvarsgtéand by Hartshorne’s conjecture, we
stop with threefolds if?®), it has typically been the case that adjunction theory beotethods
have been used to narrow down the possibilities (see fariest[8]), and then liaison has been
used to construct examples.

We give an illustration of this idea by sketching a result afd/Roig from [81]. A natural
question is to determine the degref®r which there exists a smooth, non-arithmetically Cohen-
Macaulay threefold ifP°. It had been shown by Banica [5] that such threefolds daisiny odd
d > 7 and for any eveld = 2k > 8 withk =55+ 1, 55+ 2, 55 + 3 or 55 + 4. It had been
shown by Beltrametti, Schneider and Sommese [7] that anp#mtbreefold inP® of degree 10
is arithmetically Cohen-Macaulay.

It remained to consider the case whdre- 10n, n > 2. Mir6-Roig proved the existence of
such threefolds using liaison. Her idea was to begin witH-gbwn non-arithmetically Cohen-
Macaulay threefolds ifP® and use the fact that the property of being arithmeticalljé@s
Macaulay is preserved under liaison. In addition, she useddllowing result of Peskine and
Szpiro [91] to guarantee smoothness:

THEOREM15. Let X ¢ P", n < 5, be a local complete intersection of codimension two.
Let m be a twist such th&y (m) is globally generated. Then for every paif,dl, > m there
exist forms F € HO(Zx(di)), i = 1,2, such that the corresponding hypersurfacesavnd
V5 intersect properly and link X to a variety’X Furthermore, X is a local complete inter-
section with no component in common with X, anfdissnonsingular outside a set of positive
codimension in Sing X.

(This special case of the theorem is quoted from [33], Thad2el.) Mird6-Roig considered an
arithmetically Buchsbaum threefoMwith locally free resolution

0— Ops ® Ops (D)3 — QL(3) > Ty (6) > 0

(see also Example 16). SinZg (6) is globally generated, Theorem 15 applies. Linking by two
general hypersurfaces of degrees 6 and 7, respectivelghbsaias a smooth residual threefotd

of degree 30, and using the mapping cone construction shéslhe locally free resolution of
TIx. Playing the same kind of game, she is able to obtain flosmooth threefolds of degrees
10n, n > 5, by linking X using hypersurfaces of degree 10 and- 3. The remaining cases,
degrees 20 and 40, are obtained by similar methods, stavithglifferentY.

11.4. Hilbert function questions

We have seen above that liaison is useful for showing theemde of interesting objects. In this
section we will see that liaison can sometimes be used teepron-existence results, as well as
results which reduce the possibilities. For instance, wesicker the question of describing the
possible Hilbert functions of sets of pointsi with the Uniform Position Property.

ExAMPLE 20. Does there exist a set of pointsid with the Uniform Position Property
andh-vector
136586
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and if so, what can we say about it? Suppose that such 4 sgtes exist. Note that the growth
in theh-vector from degree 3 to degree 4 is maximal, according toadkay’s growth condition
[66]. This implies, thanks to [11] Proposition 2.7, that t@mponents|fz]3 and [I z]4 both
have a GCD of degree 1, defining a plade It also follows using the same argument as [11]
Example 2.11 tha¥ consists of either 14 or 15 points d#, plus 6 or 7 points not ol (of
which 4 or 5 are on a line). Suchzclearly does not have the Uniform Position Property!

ExXAMPLE 21. Does there exist a set of pointsii with the Uniform Position Property

andh-vector
13655

and if so, what can we say about it? Létbe such a set. In this case we do not have maximal
growth from degree 3 to degree 4, but we again consider thgpanent in degree 3. This time
we will not have a GCD, but we can consider the base locus dirtear systeni[|z]3|. Suppose
that this base locus is zero-dimensional. Then three geeleraents of [z]3 give a complete
intersectionl x = (F1, Fp, F3). This means thaZ is linked by X to a zeroschem&/, and we
can make a Hilbert functiorh¢vector) calculation (cf. Corollary 9 and Example 12 (c)):

degree|
R/1x
R/1z
R/lw

0
1
1
0

o o oN
N oo N w
R oo oob
w o wlwu
R O rlo
o o o~

1
3
3
0

This means that the residuadly, hash-vector 1 3 1 2, which is impossible (it violates
Macaulay’s growth condition).

Thus we are naturally led to look for an example consisting &t of 20 general pointZ,
on an irreducible curv€ of degree 5. (We do not justify this, although similar coesations
can be found in the proof of Theorem 4.7 of [11], but we hopé tthi clear that this is the
natural place to look, even if it is not clear that it is th@y place to look.) The Hilbert function
of Z has to agree with that & up to degree 4. One can check that a general cQregédegree
5 and genus 1 will do the trick (and no other will). Hence theidl set of points does exist.

11.5. Arithmetically Buchsbaum curves specialize to stickigures

We have seen how to use Liaison Addition to construct miniexéhmetically Buchsbaum
curves (Example 15) and how to use the Lazarsfeld-Rao profregive all the possibléd, g)
combinations possible for arithmetically Buchsbaum carfRemark 32). Now we sketch how
these ideas were refined in [19] and applied to show that emgéttlymetically Buchsbaum spe-
cializes to a stick figure. This is a special case of the Zeughieblem, a long-standing problem
that was solved a few years ago by Hartshorne [51]. The gegasstion is whether every
smooth curve i3 specializes to a stick figure, and Hartshorne showed thatrtbeer is “no.”
This makes it more interesting that the answer is “yes” f@haretically Buchsbaum curves.

Let C be an arithmetically Buchsbaum curve. The basic idea hehaishe Lazarsfeld-Rao
property provides the desired deformation, if we can predastick figure using basic double
links which is cohomologically the same @s So there are two parts to the story. First we have
to produce a minimal element which is a stick figure, and sgéeeom have to study basic double
links and show that we can always keep producing stick figures

For the first part, it is a refinement of the construction giveixample 15. Skipping details,
we merely note here that @, andC, are both pairs of skew lines chosen generically, thgn
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and F> can be chosen to be unions of planes, and for a sufficientlgrgéchoice, the curve
C constructed by Liaison Addition will be a stick figure. To gbat this procedure can give a
minimal element forany Buchsbaum even liaison class is somewhat more techniciis laun
extension of this idea.

For the second part, recall that a basic double link is obthioy starting with a curv€
and a surfacé containingC, and taking the unio of C and a general hyperplane section of
F. If Cis a union of lines andF is a union of planes then clear/will also be a union of lines.
The first problem is to show that we can always arrange thae tixdsts a surfacé which is a
union of planes. For instance,d is a union of> 3 skew lines on a quadric surface (this is not
arithmetically Buchsbaum, but gives the idea), and if wetvdmgF = 2, thenF clearly cannot
be chosen to be a union of planes. So we have to show that a ahjanes can always be
obtained in our case. But there is a more subtle problem.

For example, suppose thats a set of two skew lines, and suppose that we make a sequence
of three basic double links usirfg, Fo and F3 of degrees 20, 15 and 4 respectively, obtaining
curvesYy, Y2 andYs of degrees 22, 37 and 41 respectively. A little thought shtivas one
cannot avoid thats have a triple point! (The key is that dég > degF, > degF3.) Thus this
sequence of basic double linkannotyield a stick figure.

The solution to this dilemma is to show that there aomologically equivalergequence
of basic double links using surfac&s;, G, G3 with degG, < degGo < degGs. Then the
type of problem described in the last paragraph does notofgain, the details are technical,
and we refer the reader to [18] and [19].

11.6. The minimal free resolution of generic forms

An important problem, variations of which have been studigdnany people, is to describe the
Hilbert function or minimal free resolution of an idellc R = K|[x1, ..., xn] generated by a
general set of forms of fixed degrees (not necessarily altéme). The answer to the Hilbert
function problem has been conjectured by Froberg and wenatildescribe it here. It is known
to hold whemn < 3 and when the number of generatorg is 1.

For the minimal free resolution, the answer has been camggtby larrobino. At the heart
of this is the idea that if the forms are general then therailshbe no “ghost terms” in the
minimal free resolution, i.e. there should be no summBadt) that appears in consecutive free
modules in the resolution. One can see immediately thatighiso optimistic, however. For
instance, ifl has two generators of degree 2 and one of degree 4 then thererist R(—4)
corresponding to a first syzygy and a teRG—4) corresponding to a generator. So the natural
conjecture is that apart from such terms which are forceddszl relations, there should be no
ghost terms.

This was proved to be false in [74]. A simple counterexampkhé case of four generators
in K[x1, X2, x3] of degrees 4,4,4 and 8. The minimal free resolution turndmbe

R(-8)3
R(-10) ® R(-43
0— 5] — R(-92 | - &) —- R—-> R/ -0
R(-11)2 - R(-8)
R(-10)

The termR(—8) that does not split arises from Koszul relations, as abowetHe summand
R(—10) shared by the second and third modules also does not splthendoesnot arise from
Koszul relations.
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The paper [74] made a general study of the minimal free résolof n + 1 general forms
in R. The minimal free resolution was obtained in many caseseugipg on the degrees of
the generators) and the main tools were liaison and a teHeimma from [77] giving a bound
on the graded Betti numbers for Gorenstein rings. The kelpitowtork is Corollary 12 above,
which says that our idedl can always be directly linked to a Gorenstein ideal.

Here is the basic idea. Knowing the Hilbert function for the- 1 general forms leads to
the Hilbert function of the linked Gorenstein ideal. Thehteical lemma of [77] then gives good
bounds for the graded Betti numbers of the linked Gorendtieial, and in fact these bounds can
often be shown to be sharp. Then the mapping cone obtainettfr® first sequence of Lemma
10 can be used to give a free resolutionRfl. One can then determine to what extent this
resolution is minimal. In particular, ghost terms in the imial free resolution of the Gorenstein
ideal translate to ghost terms in the minimal free resotutibl . Especially whem = 3, we can
often arrange ghost terms for the Gorenstein ideal (thamiset Buchsbaum-Eisenbud structure
theorem [22] and the work of Diesel [34]).

12. Open problems

In this section we collect the open questions that were roeetl in the preceding sections, and
add some more.

1. Describe the Hilbert functions for general hyperplanetisas of integral curves itP"
(n > 4) and for sets of points ifP"~1 with the Uniform Position Property. (See the
discussion starting on page 115.)

2. Find a description of all the possible Hilbert functiorfsAstinian Gorenstein graded
K -algebras. Find a description of all the possible Hilbenctions of reduced arithmeti-
cally Gorenstein subschemes B?. (Is the answer to this last question precisely the
Sl-sequences?)

3. Classify the possible graded Betti numbers for Gorenstigiebras in codimension 4.
See Questions 1 and 2 and the discussion following them.

4. ltis an old problem (see e.g. [49] Exer. 2.17 (d)) wheth@rg irreducible curveC C
P3 is a set-theoretic complete intersection. It is not trug thaurve which is a set-
theoretic complete intersection must be arithmeticallh&@weMacaulay (see e.g. [96]).
However, the first author has conjectured that such a curat peuinearly normal. Some
progress in this direction was achieved by Jaffe [59]. Infitet draft of these notes we
made the comment here that we were not aware even of a cureh v8ha set-theoretic
complete intersection but is not self-linked. However, Rrtishorne has provided us with
an example, which we have recorded in Example 22 below.

5. Find conditions that are necessary and sufficient for sh@mmes in codimension 3 to
be evenly Cl-linked or evenly G-linked.

6. In particular, is it true that two arithmetically Coherabaulay schemes of the same codi-
mension are G-linked in finitely many steps? As an importast €iase, is it true that two
arithmetically Gorenstein subschemes of the same codiorese G-linked in finitely
many steps?

7. Extend the known Cl-liaison invariants for arithmetigalohen-Macaulay subschemes
(cf., e.g., Theorem 12) to non-arithmetically Cohen-Mdagisubschemes which allow
one to distinguish Cl-liaison classes within an even Gstaiclass of a non-arithmetically
Cohen-Macaulay subscheme.
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8. Compare the equivalence relations generated by geant&iinison and (algebraic) G-
liaison on the set of subschemeddfhaving codimension and being generically Goren-
stein. (cf. Section 10 for results in the case of Cl-liaion.

9. Find a structure theorem similar to the LR-property thaltlk for G-liaison or for Cl-
liaison in higher codimension.

10. Establish upper and lower bounds for the various minshéts attached to an equidi-
mensional scheme (cf. Remark 30).

11. Find a good concept for minimal elements in an even Gdiatclass (cf. Section 9).

12. Find conditions like the theorem of Peskine and Szpidd [@f. Theorem 15) which
guarantee that a G-linked residual scheme is smooth (inigine codimension). Find
applications of this to the classification of smooth codisien 3 subschemes. See [80]
for more on this idea.

EXAMPLE 22. In an earlier draft of these notes we asked if there is amoth curve irP3
which is a set-theoretic complete intersection but notlsalked. We believed that there should
be such a curve, but were not aware of one. This example isodReliin Hartshorne, who has
kindly allowed us to reproduce it here.

A curve is self-linked if it is a set-theoretic complete irstection of multiplicity 2. So here
we will construct, for every integedl > 0, a smooth curve ifP3 that is set-theoretically the
complete intersection of multiplicitg, but of no lower multiplicity.

Start with a smooth plane curve of degigehaving ad-fold inflectional tangent at a point
P. Let X be the cone over that curvel??. Let L be the cone oveP. ThenL is a line onX, dL
is a complete intersection 0K, and no lower multiple of. is a complete intersection of with
another surface. Now |€ be a smooth curve in the linear systéim+ mH]| on X, form > 0.

Note thatdC is linearly equivalent t@lL + mdH = (md + 1)H. ThereforedC is the
intersection ofX with another surface if3, and scC is a set-theoretic complete intersection of
multiplicity d. Note that no smaller multilple & is the complete intersection of with anything
else, becauseC for e < d is not a Cartier divisor orX. But couldeC be an intersection of two
other surfaces? Sinde has degreend + 1, if F is any other surface containing, then the
degree ofX - F isd - degF, so deg= > m. So if C is the set-theoretic complete intersection of
F andG, then ded~ - G is > m?2, and the multiplicity of the structure B is > m2/(md +1),
which form >> 0is> d. (In fact, to obtairm?/(md+ 1) > d, i.e.m(m—d?) > d, it is enough
to takem > d2.)
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M. Casanellas

GLICCI VERSUS GLICOG

Abstract. We discuss the problem of whether arithmetically Gorenstehemes
are in the Gorenstein liaison class of a complete intersectiVe present some
axamples of arithmetically Gorenstein schenes that areeithdn the Gorenstein
liaison class of a complete intersection.

In the recent research on Gorenstein liaison theory, thetiqumewhether any arithmeti-
cally Cohen-Macaulay scheme is in the Gorenstein liaisagscbf a complete intersection, has
been of main importance. The intention of this question ifutty generalize Gaeta theorem
to arbitrary codimension. Gaeta theorem says that in catina 2 any arithmetically Cohen-
Macaulay scheme is in the complete intersection liaisossotd a complete intersection. As it
has been shown in the recent papers on liaison theory, kdlylthat in arbitrary codimension
Gorenstein liaison behaves better than complete intéoselidison. Indeed, some of the the-
orems of complete intersection liaison in codimension 2ndohold for complete intersection
liaison in arbitrary codimension but hold when we link by meaf arithmetically Gorenstein
schemes instead of complete intersection schemes. Soatusahto ask if any arithmetically
Cohen-Macaulay scheme is in the Gorenstein liaison claascofmplete intersection or briefly
glicci.

Since complete intersection schemes have been changdthtoetically Gorenstein sche-
mes in the study of liaison theory in arbitrary codimensibig natural to ask why we formulate
the questiori(1) Is any arithmetically Cohen-Macaulay scheme glicciistead of formulating
first the weaker questiof(2) Is any arithmetically Cohen-Macaulay scheme in the &wtein
liaison class of an arithmetically Gorenstein scheméf?ive use the acronynglicog for the
schemes that are in tl&orensteirLi aisonClassOf an arithmeticallyGorenstein scheme, then
Question (2) asks if any arithmetically Cohen-Macaulayesaé is glicog.

If Question (1) could be answered affirmatively, then Ques{R) would also have an af-
firmative answer. Moreover, if it could be proved that anytamietically Gorenstein scheme is
glicci, then both questions would be equivalent. So one effifst questions that Gorenstein
liaison has to address 163) Is any arithmetically Gorenstein scheme glicciThis is still an
open question. The purpose of this note is to present sorigébat answer this question
affirmatively in some cases.

First of all, the main result that gives a partial affirmatareswer to Question (3) is that any
arithmetically Gorenstein scheme of codimension I&id, i.e. it is in the complete intersection
liaison class of a complete intersection (in particularsiglicci). This result is attributed to
Watanabe because it can be derived from the proof of his rhawrém in [4]. It is known that
in higher codimension there exist arithmetically Goreimsgehemes that are not licci, but it is
not known if they are glicci or not.

To study Gorenstein liaison classes of schemes of arbit@timension, we have used the
results of [3] where there are given useful methods to stuahg@stein liaison classes of divisors
on arithmetically Cohen-Macaulay schemes. In this setting have studied the Gorenstein
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liaison classes of divisors on rational normal scrolls aedcan apply our results to arithmetically
Gorenstein schemes. First of all we have proved:

THEOREM1 ([1], THEOREM3.3.1). Let X and X be two effective divisors on a smooth
rational normal scroll Sc P". Then, X and Xhave isomorphic deficiency modules (up to shift
and dual) if and only if they belong to the same G-liaison €lds particular, any arithmetically
Cohen-Macaulay divisor on a rational normal scroll is glicc

It has been also proved in [1] that any arithmetically CoMaezaulay divisor on a rational
normal scroll, not necessarily smooth, is glicci (this wastfproved for divisors on rational
normal scroll surfaces in [2] and then generalized in [1]editem 3.2.3). In particular, any
arithmetically Gorenstein divisor on a rational normalodids glicci.

This result can be applied to arithmetically Cohen-Macauwarieties that are known to
be divisors on rational normal scrolls: varieties of maximgenus, varieties of maximum
Castelnuovo-Mumford regularity, integral rational cwsyelliptic linearly normal curves, hy-
perelliptic linearly normal curves ... ( see [1]). In padiar, this result can be applied to arith-
metically Gorenstein schemes satisfying one of these tondi As another consequence of
this result we have that arithmetically Cohen-Macaulay Kfa&es, which are arithmetically
Gorenstein schemes, are glicci:

COROLLARY 1 ([1], COROLLARY 3.5.11).Let X c P" be a linearly normal smooth
arithmetically Cohen-Macaulay K3 surface such thagX > 8 and the generic member iy |
is a smooth non hyperelliptic curve. Assume that X contamsraducible elliptic cubic curve
E (or, equivalently, [X) is not generated by quadrics). Then X is arithmetically Getein
and it is glicci.

As one of the main problems of Gorenstein liaison is the difficof constructing arithmeti-
cally Gorenstein schemes containing a given scheme sutlt firaduces a useful Gorenstein
link, it is thought that this is also the main problem to addr@uestion (3) in full generality.
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ON CURVES ON RATIONAL NORMAL SCROLLS

Abstract. This note comes from a communication given by the authomdutie
School “Liaison and related topics”.

We study the Hartshorne - Rao module of curves lying on amatinormal scroll

S of invariante > 0 in P&™3. We calculate the Rao function, we characterize
the arithmetically Cohen - Macauly curves 8a By using a result of Gorenstein
liaison theory, we reduce all curves to two kinds: those istimg of distincts fibers
and those with a “few” of fibers. In such a way, we find a set ofimal ganerators
and the Buchsbaum index of each curveSan

In the last years there has been a great interest on the HareskRao module-l*l(Ic) =
@j <7 H1(Zc())) of curves inP3, because it gives many geometric information. Instead, the
knowledge on this subject about general curves in projectpace of dimension 4 is very
small and only on the Rao function (cf. [1] and [8]). We begim study of curves in projective
space of dimensior 4 lying on a surface by considering a smooth reduced nornnall <& of
invariante > 0 in Pe+3 (cf. [4]). On those particular surfaces we can get many mfiifon on
the Rao module of each curve.

This note is a summary of [2]. We proceed as follows: we cateuthe Rao function of a
curve onSg, we get the optimal bounds for it and we characterizeai@® curves onS. Then
we investigate the multiplicative structure of the Rao medusing a theorem of Gorenstein
liaison theory (cf. [5]) which allows to “shift” the Rao molguof a curve and to reduce our study
to two kinds of curves: those consisting of fibers only andséhbaving “few” fibers. In such a
way we find a set of minimal generators for na@M curves and their Buchsbaum index. At
moment, we are going to study the syzygies module and thenfieienal resolution of the Rao
module.

We are very grateful to S. Greco for important help and to Rakdor interesting conver-
sations about liaison theory.

We work over an algebraically closed figtd(of arbitrary characteristic) and we use the
standard notation and results contained in Hartshornek B}, Ch. V.S:= S C Pet3is a
rational normal scroll of invariarg > 0, namely the embedding of a rational geometrically ruled
surfaceFe (called Hirzebruch surface (cf. [6])) of invariaatvia the very ample linear system
|Co + (e+ 1)f|, which is then the linear system of the hyperplane sectiohsyeCy is a line of
self-intersection:g = —eandf is a fiber, sof 2 = 0 andCy - § = 1. Embedded in such a way,
S is anaCM surface.

Each divisorC on & is linearly equivalent t@Cq + bf, with a, b € Z and it is effective and
non-zero ifand only ifh, b > O anda+ b # 0.

TSupported by GNSAGA - INDAM.
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The first example of rational normal scroll is the quadridP?h(e:O) and the results of [2]
generalize to any invariamt> 0 those appearing in [3], Appendix C.

PrROPOSITIONL. Let C~ aCq + bf and - the arithmetic genus of C. We have:

1. Ifj < min{b—ae+ e—2a-2 Lbfe(ﬂz)ﬂ,then H(Zc(j)) = 0.

2. If b—ae+e—-2<j gmin{a—z, L%J}anda = L#J,then

@) =@-a-D[s@+w-b+j+1].

3. If min{a—z, L%” <j< max{a, (%”,then
M (i) = j@+b)— po+1- 3G + Dl E+2) +2]
4. If max{a, {%—I} <j<b-—aeanda := Lj%bJ,then

hl(Ic(j))=(a+a)[j —b+1+§(a—a—1)].
5 1fj=> max{a, {%W ,b—ae},then H(Zc(j)) =0.

With simple calculations, we give a characterizatiom@M curves onS.

PROPOSITION2. A curve C~ aCq + bf on S is aCM if and only if
(@a-DEe+1) <b<ae+D+1
Finally, we get the following optimal bounds.
COROLLARY 1. Let C~ aCp—+bf be anon-aCM curve oneSthen there are the following
optimal bounds.
1. Ifb<aet+a—-e—-1
hiZc(j) =0 forall j <b—ae+e—1landj>a—1
2. fb>ae+a+1,
hl(Ic(j))zo forall j <a—1landj >b—ae—1
Now, to find a set of minimal generators for the Rao module ofaCM curve the idea
is to apply Theorem below originated from the Gorensteiisdia theory (cf. [5]), to reduce the

study of any curve to a certain number of fibers®nin general position or to a curve with a
“little”number of fibers.

THEOREM1 (CF. [7], COROLLARY 5.3.4). Let S be a smooth, aCM subschemé'f
Let V be a divisor on S, i.e. a pure codimension one subschémaavembedded components.
Let V' be any element of the linear systeévh+ kH|, where H is the hyperplane section class
and ke Z. Then, forl <i <dimV,

HL (V') = HL(V) (k).
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PROPOSITIONS. Let C ~ aCp + bf be anon-aCM curve oneS

1. Ifb>a(e+ 1) + 1lthen
HiZc) = HiZe (~a)

where C is the union of b:=b — a(e + 1) > 1fiberson &.
2. Ifb< (a—1)(e+1),then

17y~ pyl | b
H1(Ze) = H] (IC*( LHJ))

where C ~ a@'Co +rfwitha =a— L%J > 2and0 <r < e andr is the reminder
of the division between b andel.

The following picture is an example on how the Rao module daege” curve “shifted” to
the left corresponds to the Rao module of distinct fibers.

Figure 1: e= C ~ 2Cg+ 10f
o = C~6f

At this point, we find the degrees of the minimal generatothefRao module of any curve
Con&.

THEOREM?2. Let C ~ aCy + bf be a non-aCM curve oneS By Proposition 2, we have
two possibilities:
1. If b > a(e+ 1) + 1 then the Rao module has a set of minimal generators congisfin
b — 1 elements of degree a.

2. Ifb < (a—1)(e+1) and e> 0, then, denoting by r the reminder of the Euclidean division
between b and & 1, the Rao module of C has a set of minimal generators congisfin
a— L%J — 1 elements, each one of degree-rje, foreachl < j <a-— L%J -1
In Figure 2, we show the Rao function both of an union of fiberd ef a curve of the
“second” type, which has a “little” number of fiber and of ariamof fibers.

We can note that the slope of the Rao functionof an union ofdidecreases by 1 eveeysteps
while j decreases b — 1 to %w while the slope of the Rao function of a curve with a

“little” number of fibers increases by 1 eveeysteps whilej increases byp —ae+e— 1to—1.
In these degrees we find a new minimal generator. The two ti/perees are dual.
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Figure2:.0 =C ~5Co+f; e=2
o = degree of minimal generators
e =C~1% '

We denote by ando respectively the smallest and the largest integer sucththid@ (j))
# 0 and dianiC) := o — p + 1, moreover the Buchsbaum index ©fis the smallest integer
k(C) such that(xg, ..., Xn)' - M(C) = 0. If the Buchsbaum index is 1 the curve is called
arithmetically Buchsbauma(B). In this notation we can prove the following

COROLLARY 2. For anon-aCM curve C~ aCqp + bf, the Buchsbaum index is the maxi-
mum, that igliam(C). In particular C is aB if and only if

b=@-DEe+1) -1 or b=ae+1 +2
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MODULI OF CURVES VIA ALGEBRAIC GEOMETRY

Abstract. Here we discuss some open problems about moduli spaceswafscur
from an algebro-geometric point of view. In particular, veedis on Arbarello
stratification and we show that its top dimentional strataraffine.

The moduli spacef\_/lg,n of stablen-pointed genug curves is by now a widely explored
subject (see for instance the book [10] and the referenaesitt), but many interesting prob-
lems in the field are still unsolved, both from a topologicatlaa geometrical point of view.
Even though various methods have been fruitfully appliedg(e Teichmiuller spaces, Hodge
theory, G.I.T., ...), a purely algebro-geometric approsebms to be quite powerful and rather
promising as well. We wish to mention at least the recent pgjeby Enrico Arbarello and
Maurizio Cornalba: as the authors point out in the introdutwhat is really new there is the
method of proof, which is based on standard algebro-geartethniques.

Indeed, the only essential result borrowed from geometpolbgy is a vanishing theorem
due to John Harer. Namely, the fact thét(Mg n) vanishes fok > 49 — 4+ nif n > 0 and
fork > 49 — 5 if n = 0 was deduced in [9] from the construction of4g — 4 + n)-dimensional
spine for Mg n by means of Strebel differentials. On the other hand, it iscetvable that
Harer’s vanishing is only the tip of an iceberg of deeper getoital properties. For instance,
a conjecture of Eduard Looijenga says thiaty is a union ofg — 1 open subsets (see [7],
Conjecture 11.3), but (as far as we know) there are no adsaincthis direction. Another
strategy (see [8], Problem 6.5) in order to avoid the use i@t®et’s differentials in the proof of
Harer’s theorem is to look for an orbifold stratification.bfg with g — 1 affine subvarieties as
strata.

A natural candidate for such a stratification is provided Iffa@ of subvarieties introduced
by Enrico Arbarello in his Ph.D. thesis. Namely, for eactegern, 2 < n < g, he defined
the subvarietyWn g C Mg as the sublocus oMy described by those points @étg which
correspond to curves of gengsvhich can be realized assheeted coverings @ with a point
of total ramification (see [2] p. 1). The natural expectafisee [1] p. 326 but also [12] p. 310)
was thatWh,g \ Wh_1 g does not contain any complete curve. About ten years lateve8
Diaz was able to prove that a slightly different flag of sulei@es enjoys such a property and he
deduced from this fact his celebrated bound on the dimersfi@omplete subvarieties iMg
(see [5]). It remains instead an open question whether aheaipen strata of the Arbarello flag
admit complete curves (see [10] p. 291).

Perhaps an even stronger conjecture could be true: $isggis the hyperelliptic locus,
which is well-known to be affine (see for instance [11] p. 320)e may wonder whether all the
open stratdVh,g \ Wh_1 ¢ are affine. We were not able to prove this statement in fulegality;
however, we found an elementary proof that the top dimemsistnatum is indeed affine.

THEOREML. If g > 3then Mg\ Wy_1 g is affine.
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Proof. Since Mg \ Wy_1,g = Mg \ (suppWgy_1,g) UdMyg), it is sufficient to prove that
suppWg_1,g) Ud Mg is the support of an effective ample divisor &rg. The class ofVg_1 g
in the Picard group of\{g was computed by Steven Diaz in his Ph.D. thesis (see [6]),&s0 w

know that -
[Wg-1.9] =ar - bisi
i
where
. . PO-DGEI-D
- 2
b (9-D29(g+1)
o = —
6
b o l)g(g +g-4 i»0.

In particular, notice that if§ > 3 thena > 11 andb; > 1 for everyi. Consider now the following
divisor on Mg:
D:=Wg_19+ Y (b —DA;.
i

Sinceb; > 1 we see thab is effective; moreover, we have suiip) = supp(Wg_l,g) U aﬂg.
We claim thatD is ample. Indeed,

[D] = [ngl,g]‘f‘Z(bi_l)Si

i

= ak—ZbiSi +Zbi5i —Z(Si
i i i

= ar—3J4.

Sincea > 11 we may deduce thdd is ample from the Cornalba-Harris criterion (see [4],
Theorem 1.3), so the proof is over.
|
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A NOTE ON THE HILBERT SCHEME OF CURVES OF
DEGREE d AND GENUS (43) — 1

Abstract. This note is inspired by a lecture given during the schooh$an theory
and related topics” and contains a summary of the result$5hdbout the con-
nectedness of the Hilbert scheme of curves of dedraed genus{df) —1. The

only novelty is the list of degrees for which smooth and iuretile curves appear.

This short note was inspired by a talk | gave at the PoliterofcTorino during the School
“Liaison theory and related topics” The question of the connectedness of the Hilbert schemes
Hg,g of locally Cohen-Macaulay curves C P3 of degreed and arithmetic genug arose
naturally after Hartshorne proved in his PhD thesis thaHitteert scheme of all one dimensional
schemes with fixed Hilbert polynomial is connected. The ltdsissomewhat too general since,
even to connect one smooth curve to another, it involvesesumith embedded or isolated points.
On the other hand, if the question is addressed under the mestréctive hypothesis of smooth
curves, then the Hilbert scheme need not be connected: aetexample can be found for
(d, 9) = (9, 10). In the recent years, after the developing of liaison theibhyas become clear
that, even though one can be interested in the classificatismooth curves, the natural class to
look at is the class of locally Cohen—Macaulay curves, he.dass of schemes of equidimension
1 with all their local rings Cohen—Macaulay. In other wortley are 1 dimensional schemes
with no embedded or isolated points. The answer to the quresti case of locally Cohen—
Macaulay curves is known, so far, only for low degrees or ljghera. The schemntgy g is non

empty whend > 1 andg = (dgl) (that corresponds to the case of plane curves), sr1 and

g< (dgz). After the paper [9], it is well known thaktly g contains an irreducible component
consisting of extremal curves (i.e. curves having the ktrgessible Rao function). This is the
only component fod > 5 and(d — 3)(d —4)/2+1 < g < (d — 2)(d — 3)/2 while in the cases
d>549g=(d—-3)(d—-4/2+1andd > 4,9 = (d — 3)(d — 4)/2 the Hilbert scheme is not
irreducible, but it is connected (see [1], [12]). The coriadness is trivial fod < 2 since the
scheme is irreducible, see [5], while it has been provedfer 3, d = 4 and any genus in [11],
[13] respectively. Note that fat = 3, 4 there is a large number of irreducible components: they
are approximativel)é|g| ford =3 andz%lg2 for d = 4. The paper [4] has given a new light to
the problem, in fact Hartshorne provides some methods toexirparticular classes of curves to
the irreducible component of extremal curves, while in tapgy [14] Perrin has proved that all
the curves whose Rao module is Koszul can be connected totipgonents of extremal curves.
This note deals with the first unknown case for high genusgi.e (d — 3)(d — 4)/2 — 1 and
its purpose is to give an overview of the results in the fasthing [15]. Since it contains only a
brief state of the art, for a more complete treatment of théctthe reader is referred to [4], [5].

In [15] we have studied the connectedness of the Hilbertraeftdy 4 of locally Cohen—

Macaulay curves ifP3 = P3, wherek is an algebraically closed field of characteristic zero. A
way one can follow to prove the connectednessigfs, is to first identify its irreducible com-
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ponents for everyl and then to connect them to extremal curves using [4] andbitfiruation
[18]. Following this idea, we used the so callggectrumof a curve (see [16], [17]) to find all
the possible Rao functions and then all the possible Rao lesdcurring for curves iy g.
Ford > 9 it is possible to show that there are only four possible nesl(see [15], Theorem
3.3) and that each of them characterizes an irreducibldyfarhcurves. Those families turn out
to be the components ¢y 5 and their general member is described in the following:

THEOREM 1. The Hilbert scheme fflg of curves of degree & 9 and genusj has four
irreducible components:

1. The family H of extremal curves, whose dimensio 9 _q,

2. The closure K of the family of subextremal curves whose general membke idisjoint
union of two plane curves of degrees-2 and2. The dimension of Hlis # + 10.

3. The closure H of the family of curves whose general member is obtained blyagsbn
of heightl on a surface of degree € 2 from a double line of genus2 and corresponds
to the union of a plane curvéy_, of degree d— 2 with a double line of genus-2
intersectingCq_» in a zero—dimensional subscheme of ler@tfrhe dimension of glis
d@=D 49,

4. The closure B of the family of curves whose general member is the union darep
curveCq_» of degree d— 2 with two skew lines, one of them intersecting transversally

Cg_2 in one point. The dimension ofgHs &2_1) +09.

For curves of degred < 8 we have that the Hilbert schemﬂﬂ,g withd =2,g<0is
irreducible hence connected, while the cdse 3 and the casd = 4 were studied for all the
possible values of the genus in [10] and [13] respectiveilyalfy, Hs o was dealt by Liebling in
his PhD thesis [7]. Then we only have to consig&rg) € {(6, 2), (7,5), (8, 9)}. Inthese cases,
we have proved that the Rao modules of the type occurring for9 are still possible but the
spectrum allows more possibilities that were determinéaiguihe notion oftriangle introduced
by Liebling in [7]. Each Rao module is associated to a famflgurves that is not necessarily
a component of the Hilbert schentg 4 as it appears clear by looking at their dimension (see
[15], Theorem 4.3 and 4.5). The components of the Hilberesehare listed in the following

THEOREMZ2. The Hilbert schemes gb, H7 5, Hg g have five components: the four com-
ponents listed in Theorem 1, moreover

1. Hg 2 contains the closure #of the family of curves in the biliaison class of the disjoint
union of a line and a conic.

2. Hy 5 contains the closure of the familygtéf ACM curves.
3. Hg g contains the closure of the familyztéf ACM curves.

Now we can state our main result (see [15], Theorem 4.8) whasa rests on the fact that
all the curves in the families listed in the previous Thead&mi and 0.2 can be connected by flat
families to extremal curves:

THEOREMS3. The Hilbert scheme &Ig is connected for &> 3.

To complete the description éfy g given in [15] we specify where smooth and irreducible
curves can be found. In what followRis the ringk[ X, Y, Z, T] and M denotes the Rao module.
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PropPOsITIONL. The Hilbert scheme &Ig contains smooth and irreducible curves if and

only

1.

2
3.
4

if

d=5and M is dual to a module of the type M R/(X, Y, Z2, ZT, T?)
.d=6and M= R/(X,Y, Z, T?)(-1)

d=7andM=0

. d=8and M=0.

Proof. By the results of Gruson and Peskine [2] there exist smoogdurcible (non degenerate)
curves if and only if either < § < d(d —3)/6+1ord =a+Db, § = (a— 1)(b — 1) with

a, b > 0. This implies that eithetl = 5,6, 7 ord = 8,a = b = 4. Looking at the possible Rao
modules (see [7] for the complete list occurring in the adse 5) the only Rao modules with
cohomology compatible with smooth curves are the oneglliste
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CONSTRUCTION OF CALABI-YAU 3-FOLDS IN P®

Abstract. We announce here the construction of examples of smoottbicéa
3-folds inP® of low degree, up to degree 17. In the last degree their agetiin
is rather complicated, and parametrized by smooth septi® ihaving a agtlj
with d = 13,12, or 10. This turns out to show the existence of three uoimat
components of their Hilbert scheme, all having the same disioa 23+ 48 = 71.

The constructions are based on the Pfaffian complex, chgpesirappropriate
vector bundle starting from their conomology table. Thanslates into studying
the possible structures of their Hartshorne-Rao modules.

We also give a criterium to check the smoothness of 3-foldSin

Constructions of smooth subvarieties of codimension 2 v@maputer-algebra program
have been extensively studied in recent years, mainiyfitig the ideas presented in [4]. There
the authors explicitely provide many constructions of acet inP*, showing that the problem
to fill out all possible surfaces B* not of general type was indeed affordable, and this brought
to a wide series of papers with similar examples. The stpioint of these construction is
based on the fact that a globalized form of the Hilbert-Buteorem allows one to realize any
codimension 2 locally Cohen-Macaulay subscheme as thendeggy locus of a map of vector
bundles. Precisely, for every codimension 2 subvarlety P" there is a short exact sequence

0> F4 6% 0pn — Oy >0,

whereF andg are vector bundles wittkG = rkF + 1 andy is locally given by the maximal
minors ofp taken with alternating signs.

In codimension 3 the situation is more complicated. Indegtié local setting the minimal
free resolution of every Gorenstein codimension 3 quotiieng of a regular local ring is given
by a Pfaffian complex [1], but by globalizing this constroctione obtains only the so called
Pfaffian subschemgbe. subschemes defined locally by threx2 2r Pfaffians of an alternating
map¢ from a vector bundle of odd rank 2+ 1 to a twist of its dual. In particular, a Pfaffian
subscheme i?" has the following resolution:

t
0— Opn(—t—29 % g5t —9) % (=9 % Opn — Oy — 0,

where the mapy is locally given by the & x 2r Pfaffians ofp andy! is the transposed of
¥ . Being Pfaffian, this subscheme is automaticaliypcanonicalin the sense that its canonical
bundle is the restriction of a multiple @pn (1). A recent result of Walter [11] shows that under
a mild additional hypothesis every subcanonical Gorenstedimension 3 subschenxein P"

is Pfaffian (see [5] for a description of the non-Pfaffian §aaad therefore one can attempt to
get its equations starting from constructing its Pfaffizsohetion.

TShort abstract version of the paper [10]
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In [10] we apply this method to build examples of smooth Cialdu 3-folds inP®. In order
to build a Pfaffian resolution of a subcanonical Gorensteitimension 3 subschen, Walter
shows an explicit way to choose an appropriate vector bustheting from its Hartshorne-Rao
modulesH) (Zx): this is a precise hint for constructing a resolution. Bufital out what are
the possible structures for such modules is the hard paterconstruction: indeed from the
invariants ofX one can deduce only the “minimal” possible Hilbert funct@f its Hartshorne-
Rao modules, and their module structures remain obscutbisisense the problems met in the
constructions are the same as in the codimension 2 caseptéhat here the range of examples
where the construction is straightforward (and their Hillssheme component unirational) is
rather short.

We construct examples of smooth Calabi-Yau 3-fo|d§"€’nhaving degreal in the range
12 < d < 17. Such a bound can be better understood by looking at higpersections of
the desired 3-folds. Since an hyperplane section of a Gataibi3-fold is a canonical surface,
a lower bound on the degrekof the desired 3-fold can be obtained easily by @sstelnuovo
inequality if the canonical map of a surfacgis birational, thenK% > 3pg — 7, c.f. 3], p.
24. This gived > 11. Furthermore, the cask= 11 is interesting, but no smooth examples
were found and we believe that they don't exist: every Ca¥hi threefold contructed has an
ordinary double point (Al type), also over finite fields of tigrder; thus this seems to be the
“general”’ case. Thus degree 12 seems to be the good stadingy ®ver degree 17 we don'’t
know a general way to proceed: even constructing the modiderbes too hard. In particular,
for degree 18 we were not able to find even the module struofuiihe canonical surface given by
a general hyperplane section of our hypothetical 3-foldfése which is a smooth codimension
3 subcanonical schemeR? and can therefore be constructed in the same way).

In all the cases examined the Hartshorne-Rao moddlggx) vanish for all 2< i < 3,
and only the module structure dﬂ*l(Ix) has to be determined. This structure is unique in
the initial cases (up to isomorphisms), but not in the dedféease (and in the further cases),
where the module has to be chosen in a subtle way, not at all atethe beginning. In [8]
investigations with small finite fields revealed strangepprties of these special modules, there
searched at random with a computer-algebra program. Inj&@jive a more detailed analysis of
the problem, which provides a completely unexpected geermaethod to produce unirational
families of these modules: at the end we obtain three uoiratifamilies, in which the desired
modules are reconstructed starting from a smooth septi&eciuﬂP’2 endowed with a complete
linear serieg& having degreel = 13, 12, 10 respectively. This strong result, together with the
analysis which brought us to it, gives easily the followihgdrem, which is the main result of
[10].

THEOREM1. The Hilbert Scheme of smooth Calabi-Yau 3-folds of degreia PP has at
least three irreducible connected components. These tor@@onents are reduced, unirational,
and have dimensio@3 + 48. The corresponding Calabi-Yau 3-folds differ in the numbgr
quintic generators of their homogemeous ideals, which aahd 11 respectively.

Note that it is enough to prove the irreducibility of the thifamilies, since it is well known
by the work of Bogomolov [2] and Tian [9] (c.f. also the recessults of Ran [7] and [6]), that
the universal local family of the deformations of a CalakidYnanifold is smooth.

We develope also a criterium for checking the smoothnessaifi3 inP%, which is compu-
tationally affordable, and by far faster than the Jacobi@artum. Indeed the check is subdivided
in different steps, each one involving the computation aifieminors of the Jacobian matrix and
a Grobner basis of ideals with lower codimensions.
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Notation. LetS = K[Xg, .. ., Xg] be the homogeneous coordinate rin@éfand fi, ..., N
a set of homogeneous polynomial such that (fq,..., fy) is the ideal of a codimension 3
variety X c P6. We denote with

J:=<%’1§i §N,O§j§6>

the jacobian ideal of and withly(J) the ideal of thek x k minors of J. Moreover, we denote
with J<e the part of the jacobian matrix formed by the rowsJhaving degree< e and by
Ik (J)<e for thek x k minors of J<e.

If f1,..., fn are different generators of we writel (J(f1, ..., fn)) for thek x k minors
of the jacobian ideal of fq, ..., fn), and withlx(fq, ..., fn) (resp.lx(f1, ..., fn)<e) for the
ideal of thek x k minors ofJ (resp. J<¢) which involve the rows corresponding fa, . .., fn.

Notation. If e € N is a positive integer, we denote wille and Pe(t) the integer and the
polynomial defined by:
Ne  :=ca(Ny(®);
Pe(t) :=degcy(Vx(8) t+ x(Ox) + x QOx (—C1(Ny) — 38)+
— XNR(=c1(NVy) — 20)).

Moreover, given a variety C P8 denote withH P(Z) its Hilbert polynomial.

THEOREM2. Let X c P® be a locally Gorenstein 3-fold and, § two generators of |
having degree e. Suppose that X has at most a finite set oflaimmpints and that

(1) V(li(D=<et+ 1) =9,
(i) V(2(g9)<e+ 1) is finite and

degV(l2(9)<e+ 1) = degV(J(9) + ) = Ne;
(iii ) V(I3(f,g)+1)isacurve and
HPV(3(f,9)+ 1) = HPV(203(f, @) + 1)) = Pe(t).

Then X is smooth.
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NON-SIMPLE VECTOR BUNDLES ON CURVES

Abstract. Let A be a finite dimensional unitary algebra over an algebraicall
closed fieldK. Here we study the vector bundles on a smooth projectiveecurv
which are equipped with a faithful action &f

1. Introduction

Let K be an algebraically closed field a finite dimensional unitariK-algebra,X a smooth
connected complete curve of gengislefined over SpeK), E a vector bundle orX andh :
A — HO(X, End(E)) an injective homomorphism of unitakg-algebras. Hencéd € h(A).
We will say that the paifE, h) is an A-sheaf or anA-vector bundle. A subshed of A will
be called anA-subsheaf of E, h) (or just anA-subsheaf o) if it is invariant for the action
of h(E) on E. Notice that if A # K, thenE is not simple and in particular ragg) > 1
and E is not stable. For any vector bund®on X let i« := degG)/rank(G) denote its slope.
We will say that(A, h) is A-stable (resp.A-semistable) if for everyA-subsheafr of E with
0 < rank(F) < rank(G) we haveu(F) < w(E) (resp. u(F) < w(E)). In section 2 we will
prove the following results which give the connection betweemistability and\-stability.

THEOREM 1. Let (E, h) be an A-vector bundle. E is semistable if and onlyHf h) is
A-semistable.

THEOREM2. Let(E, h) be an A-vector bundle. Assume that E is polystable as anaastr
bundle, i.e. assume that E is a direct sum of stable vectodlbamwith the same slopéE, h) is
A-stable if and only if there is an integers 1 and a stable vector bundle F such thateg F "
and A is a unitaryK -subalgebra of the unitari-algebra M xr (K) of r x r matrices whose
action onK®" s irreducible.

THEOREM 3. Let (E, h) be an A-sheaf. Assume that E is semistable but not polystable
Then E is not A-stable.

DEeFINITION 1. Let(E, h) be an A-sheaf. For any A-subsheaf F of E IeAhF) be the im-
age of HA) into HO(X, End(F)). Set ¢h, F) := dimgh(A, F), Aa(F) := w(F)/c(h, F) and
ea(F) = uw(F)c(h, F). We will say that(E, h) (or just E) isA p-stable (respi p-semistable) if
for every proper A-subsheaf F of E we havg(F) < Aa(E) (resp.Aa(F) < Aa(E)). We will
say that(E, h) (or just E) ise a-stable (resp.e o-semistable) if for every proper A-subsheaf F
of E we have p(F) < ea(E) (resp.ea(F) < ea(E)).

For any subsheaF of the vector bundleE on X the saturatiorG of F in E is the only
subsheafs of E such thatF C G, rankG) = rank(F) andE/G has no torsion, i.eE/G is

TThe author was partially supported by MURST and GNSAGA of ANt(Italy).
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locally free if rankF) < rank(E), while G = E if rank(F) = rank(E).

REMARK 1. Let (E, h) be anA-sheaf,F an A-subsheaf ot and G the saturation of
in E. G is h(A)-invariant and hence it is aA-sheaf. Sincéh(A, F) = h(A, G), we have
AAF) < AA(G), ea(F) < ea(G), Aa(F) = Aa(G) ifand only if G = F andep(F) = €a(G)
ifandonly ifG = F

For any vector bundlé= and any line bundld. we haveEnd(F) = End(F ® L) and
w(F ® L) = w(F) + degL). This shows that in general the notions Jof-stability, A a-
semistability,e o-stability ande o-semistability are NOT invariant for the twist by a line bimd
(see Example 1). We believe that-stability is the correct notion for the Brill - Noether thgo
of non-simple vector bundles. In section 3 we will describbetee K -algebras arising for rank
two vector bundles.

2. Proofs of Theorems 1, 2 and 3

Let (E, h) be anA-sheaf onX. Since the saturation of aff-subsheaf of is an A-subsheaf of
E, the usual proof of the existence of an Harder - Narasimhaatfiin of any vector bundle on
X (see for instance [2], pp. 15-16) gives the following result

PrRoOPOSITIONL. Let (E, h) be an A-sheaf. There is an increasing filtratiof; }o<ij <
of E by saturated A-subsheaves such thgtE {0}, Er = E, E is saturated in fyq for
0 <i <rand E41/E is A -semistable, where |AC HO(X, End(Ej1/Ej)) is the image of
h(E)in HO(X, End(Ej;1/Ej)) andu(Ej1+1/Ej) > n(B) for every other A-subsheaf of EE;.

Proof of Theorem 1If E is semistable, then obviously it i&-semistable. Assume th& is
not semistable and Ik be the first step of the Harder - Narasimhan filtrationEof Thus
{0} # F andu(F) > w(E). By the uniqueness of the Harder - Narasimhan filtratiorEof
the subsheaF of E is invariant for the action of AGE). Since AutE) is a non-empty open
subset ofH9(X, End(E)), F is invariant for the action of th&-algebraHO(X, End(E)). Since
h(A) C HO(X, End(E)), F is anA-subsheaf oE. ThusE is not A-semistable.

a

Proof of Theorem 2The if part is easy (see Example 2). Here we will check theratheli-
cation. SinceE is polystable, there is an integer> 1, stable bundle, ..., Fs (uniquely
determined up to a permutation of their indices) With2 F; if i # | and positive integers

ri,...,rs such thate = ®1§i§sFi®ri- SinceE is polystable,u(Fj) = n(Fj) for alli, j.
SinceF; andF; are stable, with the same slope and not isomorpifleX, Hom(F;, Fin =0
ifi # j.HenceH 0(X, End(E)) = @1955 Mr; xr; (K). Since each factdFiEBIri is invariant for
the action of the group A(E), it is HO(X, End(E))-invariant and hencb(A)-invariant, i.e. it
is anA-sheaf. Sincgu(Fj) = u(Fj) for anyi, j, E is A-stable only ifs = 1. Obviously,A is
a unitaryK -subalgebra of the unitaty-algebraMr, «r, (K) of rq x r1 matrices and the induced

action of A is irreducible because no proper direct factoF@rl is A-invariant.
O

Proof of Theorem 3.SinceE is semistable but not polystable, the existence of a Jorttihder
filtration of E shows the existence of a maximal proper subsleaf E with 0 # F # E and
w(F) = w(E). Indeed,F contains all proper subsheaves Bfwith slopeu(E). ThusF is
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invariant for the action of the group AW). HenceF is HO(X, End(E))-invariant and hence an
A-sheaf. Thu€ is not A-stable.
a

ExAamMPLE 1. Take(E, h) with A # K, rankKE) = 2 and E non-split extension of a
line bundleM by a line bundleL. Seta = dimg (A). Assume thatL is A-invariant and
that E has noA-invariant line subbundle of degree degL); the last condition is always
satisfied if degL) > degM); both conditions are satisfied if ddg) > degM) and E 2
L & M. Hence, with the notation of Example 8, = A(V) for some vector subspadé of
HO(X, Hom(M, L)). Hence degM) > degL). We havera(L) = deglL) and Aa(E) =
degE)/2a = (degL) 4+ degM))/2a. Sinceh®(X, Hom(M, L)) > 0, E is not 1 o-stable if
degM) > 0. If degM) > 0, thenE is A a-semistable if and only it = M (i.e. equiva-
lently by the conditiorh® X, Hom(M, L)) > 0 if and only if degM) > degL)) anda = 2. If
2(deg L)) < a(degL) +degM)) (resp. 2degL)) < a(degL) +deg M)), thenE is e p-stable
(resp. ea-semistable). Hence if délyl) > O, E is alwayse a-semistable and it isp-stable if
and only if either degM) > O ora > 3.

REMARK 2. If (E, h) is A o-semistable (resp. a-stable) then it isA-semistable (respA-
stable) becausgh, F) < c(h, E) for every A-subsheaf of E.

PROPOSITION2. Fix integers a, r, d with a> 1andr > 2. Let X be a smooth and
connected projective curve. Lef(iRd, a) (resp. Sr,d, a), resp. T(r, d, a)) be the set of all
vector bundles E on X such that there exists a unitérgigebra A with dindA) = a and an
injective homomorphism tf-algebras h: A — HO9(X, End(E)) such that the pai(E, h) is A-
semistable (resp. po-semistable, respa-semistable). Then®R d, a), S(r,d, a) and T(r, d, a)
are bounded.

Proof. The boundedness &(r, d, a) follows from Theorem 1 and the boundedness of the set
of all isomorphism classes of semistable bundles with rankd degreel. The boundedness
of S(r, d, a) follows from the boundedness &r, d, a) and Remark 2. Now we will check the
boundedness of (r, d, @) proving that it is a finite union of bounded sets. The intetisecof
T (r, d, @) with the set of all semistable bundles is obviously boundéeince we may consider
only unstable bundles. L&t(r,d, a; cq, ..., cx) be the set of all bundleg € T(r, d, a) formed
by the vector bundles whose Harder - Narasimhan filtraticof ihe form {E;}o<j<x+1 With
Ep = {0}, rankEj) = ¢j for1 <i < x andEyx;1 = E. SinceE € T(r,d, a) and eaclE;
is an A-sheaf, we have d€g;)c(h, Ej)/c; < degE)a/r and hence deage/Ej) = degE) —
degEj) > degE)(1 — ag /rc(h, Ej)). The set of all vector bundles ox with rankr, degree
d and anx + 1 steps Harder - Narasimhan filtration satisfying theseequalities is bounded
([1]); in this particular case this may be checked in thedielhg way; for 0 < i < x the
set of all semistable bundles;1/E; is bounded; in particular the set of all possiltitg is
bounded; the set of all possiblg 1 is contained in the set of all extensions of members of
two bounded families, the one containiig, 1/E; and the one containing;, and hence it is
bounded; inductively, after at masisteps we obtain the result.

|

From now on in this section we consider the case in whiclis an integral projective
curve. Sef := pa(X). An A-sheaf is a pai(E, h) whereE is a torsion free sheaf oKX and
h: A — HOX, End(E)) is an injective homomorphism of unitak-algebras. A subshed®
of E is saturated irE if and only if eitherF = E or E/F is torsion free. Every subsheBf of



152 E. Ballico

E admits a unique saturation, i.e. it is contained in a unicuarated subsheaf & with rank
rank(F).

REMARK 3. Proposition 1 is true for a torsion free pék, h) on X; obviously in its state-
ment the sheaves;, 1 <i < r, are not necessarly locally free but each shgaf; / E; is torsion
free. The proofs of Theorems 1, 2, 3 and of Proposition 2 werbatim.

3. Nilpotent algebras

DEFINITION 2. We will say that A is pointwise nilpotent if for everyef A there isk € K
and an integer t> 0 such that(f — 1)t = 0. In this case is called the eigenvalue of f and
the minimal such integer t is called the nil-exponent of fe THill-exponent is a semicontinuos
function on the finite-dimensionKl-vector space A with respect to the Zariski topology. Hence
in the definition of pointwise-nilpotency we may take theesarteger t for all fe A.

REMARK 4. Fix f € h(A) such that there is € K andt > 2 such tha(f — Ald)t =0
and (f — ald)t=1 # 0. For any integeu > 0 setE(f,u) := Ker((f — Ald)Y). Since
Im((f —xld)Y) € E, Im((f — 2)Y) is torsion free and hendg( f, u) is saturated irE and in
E(f,u+ 1). Looking at the Jordan normal form of the endomorphism offther E|{P}, P
general inX, induced byf — Ald, we see that rarfE(f, u)) < rank(E(f, u + 1)) for every
integeru with 0 < u < t. In particulart < rank(E) and we have = rank(E) if and only if
E(f,1) is aline subbundle oE.

EXAMPLE 2. Fix an integer > 2 and letA be a unitaryK-subalgebra of the unitar-
algebraMy «r (K) of r x r matrices whose action da®" is irreducible. For any. e Pic(X) the
vector bundleE := L®" is an A-sheaf. E is semistable as an abstract vector bundle and every
ranks subbundleF of E with 1 (F) = w1 (E) is isomorphic toL ®S and obtained fronk fixing
ans-dimensional linear subspace 6. Thus we easily check thd is A-stable. Similarly,
for any stable vector bund® the vector bundl&®" is A-stable.

ExXAMPLE 3. AssumeA # Kld and take amA-paier (E, h) with rank(E) = 2. Hence
E is not simple but no proper saturated subsheadf E may have a faithful representation
A — HO(X, End(L)); more precisely, a saturated proper subsheaf E is an A-subsheaf of
E if and only if each element dfi(A) acts as a multiple of the identity dn. First assumee
indecomposable. Sinde is not simple but indecomposable, it is easy to check theends of
uniquely determined line bundlés M on X such thatE is a non-split extension dfl by L and
degL) > degM). we havehO(X, End(E)) = 1+ hO(X, Hom(M, L)) and there is a linear sur-
jective mapH9(X, End(E)) — HO(X, Hom(M, L)) with Ker(u) = K Id. For every linear sub-
spaceV of H O(X, Hom(M, L)) there is a unique unitatg-subalgebraA(V) of HO(X, End(E))
with u(A(V)) = V. We have dinfA(V)) = 1+ dim(V) and A(V) is pointwise-nilpotent with
nil-esponent two (except the cage= {0} becauseA({0}) = K1d). Each algebra(V) is com-
mutative. For every unitarl{ -subalgebraB of H O(X, End(E)) there is a unique linear subspace
V of HO(X, Hom(M, L)) such thatB = A(V). Now assume decomposable, sédy = L & M.
HO(X, End(E)) is not pointwise-nilpotent. We havé(X, End(E)) = 2+ h%(X, Hom(M, L)).
If L= M, thenHO(X, End(E)) = My, (K). Any commutative subalgebra 6fO(X, End(E))
has dimension at most two and it is isomorphickt@ K with componentwise multiplication.
Any pointwise-nilpotent subalgebra ®f9(X, End(E)) has dimension at most two and if it is
not trivial it has nil-exponent two. Now assurhe M. Hence eithehO(X, Hom(M, L)) =0
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or hO(X, Hom(L, M)). Just to fix the notation we assurh%(x, Hom(L, M)) = 0. Every non-
trivial pointwise nilpotent subalgebi of HO(X, End(E)) has nil-exponent two and dimension
at most 14 h9(X, Hom(M, L)). For any integew with 0 < v < h%(X, Hom(M, L)) and for
every linesr subspacé of HO(X, Hom(M, L)) with dim(V) = v there is a pointwise nilpotent
subalgebraB of H 0(X, End(E)) and the isomorphism class Bfas abstradk -algebra depends
only from v, not the choice oV and are isomorphic to the algebfgV) just described in the
indecomposable case. A byproduct of the discussion juehgthatE is A-stable if and only
if A= Moy o(K)andE =L @ L.

EXAMPLE 4. Fix an integer > 2 and two vector bundleB, D on X such thath9(X,
Hom(B, D)) > a— 1. Fix a linear subspacé of H%(X, Hom(B, D)) with dim(V) = a—1 and
let D(V) := KlId @ V be the unitarK -algebra obtained taking the trivial multiplication &h
i.e. such thatiw = 0 for allu, w € V. Notice thatD (V) is commutative. Consider an extension

1) 0->B—>E—>D—0

of D by B. There is a unique injection : D(V) — HO(X, End(E)) of unitary K-algebras
obtained sending the elemente V < D(V) into the endomorphisnf, : E — E obtained
as composition of the surjectidd — D given by (1), the map : D — B and the inclusion
B — E given by (1).

PrRoOPOSITION3. Assume chaK) # 2. Let A be a commutative pointwise-nilpotent al-
gebra with nil-exponent two an¢E, h) an A-sheaf. Set a= dim(A). Then there exist vector
bundles B, D and a linear subspace V of X, Hom(B, D)) with dim(V) = a — 1 such that,
with the notation of Example 4, E fits in an exact sequenceX %, D(V) and h is obtained as
in Example 4, up to the identification of A with(D).

Proof. Take a generat € h(A) and let) be its eigenvalue. Set= f — Ald, B’ = Ker(u) and
D’ = E/B’. Sincea > 2, f ¢ KId and hencai # 0. ThusD’ # {0}. Since In{u) € E, B/
is saturated irE. HenceD’ is a vector bundle. Sinag? = 0, B’ # {0}. There is a non-empty
Zariski open subsétV of A such that for everyn € W, calling Am the eigenvalue associated
to m, we have rankKer(m — Amld)) = rank(B’) and degKer(m — Amld)) = degB’). Set
w = m—Amld. Since(u — w)2 = 0 andu? = w2 = 0, we haveuw + wu = 0. Since
A is commutative and chéf) # 2 we obtainuw = wu = 0. Sinceu? = w2 = 0 we
obtain Im(u) € Ker(u) N Ker(w) and Imw) < Ker(u) N Ker(w). Vary min W and callB
the saturation of the uniom of all subsheaves ltwq) + --- + Im(wx), x > 1, andw; € W
and nilpotent for every. T is a coherent subsheaf of Kaj because the set of all such sums
Im(wq) + - - - + Im(wy) is directed and we may use [3], 0.12. $et= E/B. Thus we have an
exact sequence (1). We just proved tBas contained in Keiw) for all nilpotentw coming from
somef € W. SinceW is dense ih(A), we haveB C Ker(w) for every nilpotentv € h(A), i.e.
every f € h(A) is obtained composing the surjectith— D given by (1) with a maD < B
and then with the inclusion d in E given by (1). Hencd&(A) = D(V) for some V.

|
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GORENSTEIN POINTS IN P*

Abstract. After the structure theorem of Buchsbaum and Eisenbud [1boren-
stein ideals of codimension 3, much progress was made iraths from the al-
gebraic point of view; in particular some characterizaiar these ideals using
h—vectors (Stanley [9]) and minimal resolutions (Diesel [@Rre given. On the
other hand, the Liaison theory gives some tools to explait, &t the same time, it
requires one to find, from the geometric point of view, newépstein schemes.
The works of Geramita-Migliore [5] and Migliore-Nagel [6}gsent some con-
structions for Gorenstein schemes of codimension 3; iriquéatr they deal with
points inP3.

Starting from the work of Migliore and Nagel, we study thenstructions and we
give a new construction for points iPe: given a specific subset of a plane com-
plete intersection, we add a “suitable” set of points on a ot in the plane and
we obtain an aG zeroscheme that is not complete intersedferemphasize the
interesting fact that, by this method, we are able to “vigedlwhere these points
live.

1. Introduction

It is well known, by the structure theorem of Buchsbaum arst#tud [1] and by the results of
Diesel [3], what are all the possible sets of graded Betti lmens for Gorenstein artinian ideals
of height 3. Geramita and Migliore, in their paper [5], shdwttevery minimal free resolution
which occurs for a Gorenstein artinian ideal of codimengipalso occurs for some reduced set
of points inP3, a stick figure curve if?* and more generally a “generalized” stick figurefif,

On the other hand, Stanley [9] characterizedthectors of all the Artinian Gorenstein quotients
of k[xg, X1, X2], showing that theih-vectors are Sl-sequences and, viceversa, every Sl-sggjuen
(4, hq,...,hs_1,1), wherehy < 3, is theh-vector of some Artinian Gorenstein scheme of
codimension less than or equal to 3. In Section 2 we will seedagel and Migliore [6] found
reduced sets of points iP? which haveh-vector(1, 3, hy, ..., hg_», 3, 1).

In this case, the points iR3 solving the problems can be found as the intersection of two
nice curves (stick figures) which have good properties., Ih@vever, very hard to see where
these points live! We try to make the set of points found bgéheonstruction more visible.

In the last section we give some examples: we take a set afgpeihich come from Nagel-
Migliore’s construction (i.e. a reduced arithmetically i@ostein zeroscheme not a Complete
Intersection) and we study where this set lives. In pariculve have a nice description of
Gorenstein point sets whos$evector are of the forn(1,3,4,5,...,n— 1, n,n,....,n,n —
1,...,5431).

This allowed us to determine, in a way which is independerhefprevious constructions,
particular configurations of points which are reduced aritically Gorenstein zeroschemes not
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complete intersection.

2. Gorenstein points inP3 from the h-vector

In this section we will see how Nagel and Migliore find a rediiegithmetically Gorenstein
zeroscheme i3 (i.e. a reduced Gorenstein quotientidkg, X1, X2, x3] of Krull dimension 1)
with given h-vector.

We start with some basic definitions that we find in [6] and i [9

DEFINITION 1. Let H = (hg, hy, ..., hj,...) be a finite sequence of non-negative inte-
gers. Then H is called an O-sequencedfa 1and h;1 < hi<|> foralli.

By the Macaulay theorem we know that the O-sequences areilbertfunctions of stan-
dard gradedk-algebras.

DEFINITION 2. Leth= (1, h4, ..., hg_1, 1) be a sequence of non-negative integers. Then
h is an Sl-sequence if:
e hj =hg_jforalli =0,...,s,
e (hg,hy —hg,...,ht —ht_1,0,...) is an O-sequence, where t is the greatest integer
< $

Stanley [9] characterized threvectors of all graded Artinian Gorenstein quotients of
k[Xo, X1, X2], showing that these are Sl-sequence and any Sl-sequeitbehn= 3, is theh-
vector of some Artinian Gorenstein quotientkgkg, X1, Xo].

Now we can see how Nagel and Migliore [6] find a reduced aritically Gorenstein ze-
roscheme iP3 with givenh—vector. This set of points will result from the intersectiointwo
arithmetically Cohen-Macaulay curveslid, linked by a Complete Intersection curve which is
a stick figure.

DEFINITION 3. A generalized stick figureis a union of linear subvarieties @", of the
same dimension d, such that the intersection of any thregponemts has dimension at most
d — 2 (the empty set has dimension -1).

In particular, sets of reduced points are stick figure, antick figure of dimensiord = 1
is nothing more than a reduced union of lines having only s@esingularities.

So, let
h=(hg,h1,....,hs) = (1,3, hp,....,h{_1,ht,ht,....ht,h_1,...,h, 3, 1)
be a Sl-sequence, and consider the first difference
Ah=(1,2hp—hq,...,ht —h{_1,0,0,...,0,h{_1 —ht,...,—2,-1)
Define two sequences= (ap, ..., a) andg = (dp. - . . . Us+1) in the following way:

g =hj —hj_q forO<i <t
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and

i+1 forO<i <t
g=1t+1 fort<i<s—t+1
s—i+2 fors—t+1<i<s+1

We observe thaty = g1 = 2, ais a O-sequence sindeis a Sl-sequence arglis theh-
vector of a codimension two Complete Intersection. So, welavtike to find two curve<C and
X in P3 with h-vector respectivelp andg. In particular it is easy to see thagis theh-vector of
a Complete Intersectiorx, of two surfaces ifP3 of degreet + 1 ands — t + 2.

We can getX as a stick figure by taking as the equation of those surface$amns which
are the product, respectively, 8p, ..., At andBy, ..., Bs_t41, all generic linear forms. Nagel
and Migliore [6] proved that the stick figure (embeddedX)y determined by the union
consecutive lines iAj = 0 (always the first inBg = 0), is an aCM schem€ with h-vector
a. In this way, if we conside€’, the residual ofC in X, the intersection o€ andC’ is an aG
schemeY of codimension 3. This is also a reduced set of points beciyuszandC’ are stick
figures and it has the desirevector by the following theorem:

THEOREM1. LetC, C, X, Y be as above. Letg (1, ¢, gy, ..., Us, Os11) be the h-vector
of X, leta= (1,a;,...,a) and b= (1, by, ..., by) be the h-vectors of C and’Cthen

bi =0st1-j — sy1-i

fori > 0. Moreover the sequence & g + b; — g is the first difference of the h-vector of Y.

So we have to show that = h; — hj_1:
e ForO<i <twehavedi =a =h;j —hj_1
e Fort+1<i<s—twehavedj =bj —gi =0

e Fors—t+1<i<s+1lwehavedi =bj —g = —asy1-j = —(hsy1-j — hs—i) =
hi —hj_1

REMARK 1. Theorem 1 says, for example, that there exists no culbagfirthe 8 points of
a Complete Intersection of two cubics, but not through tine nin fact, if we consider a reduced
Complete Intersection zeroscheden P2 given by two forms of degrea andb, theh—vector
of X\ {P}is(1,2,3,....,a—1a,a,...,a,aa—1,...,3, 2), whatever pointP we cut off.

ExampPLE 1. Leth = (1, 3,4, 3,1) be a Sl-sequence. Consider the first differench,of
ie.Ah= (1,21, -1, -2 —-1).

So,g= (1, 2, 3,3, 2, 1) istheh-vector of X, stick figure which is the Complete Intersection
of F1 = ]_[i2:0 A andF, = Hi?’zo Bj, whereA; andB; are general linear forms.

Now, we callP, j the intersection betweefyy = 0 andBj = 0. ThenC = PgoU Py gU
Py 1 U P, g is the scheme which hdsvectora = (1, 2, 1).
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Bo B1 By B3

Ao 00 APo1  jRo2 Jjo,s
c= @
Ay 1.0 "1,1 P12 51,3
c= O
A 2,0 sz.l 52,2 152.3
Figure 1

So, it is clear that the residu@’ of C in X is the union of the lines oK which aren’t
components irC. Then the reduced set of pointswith h-vector (1, 3, 4, 3, 1) consists of 12
points which exactly are:

e 3 points onPy g, intersection betweeRy g and Py 1, Pg 2 and Py 3
e 2 points onPy g, intersection betweeR; g and Py 5, P1 3
¢ 4 points onPy 1, intersection betweeR; 1 and Py », Py 3, Pg.1 andPs 1

e 3 points onP, g, intersection betweeR, g andP, 1, Po o> andPo 3

ExAamMPLE 2. Leth = (1,3,5,3,1). With the previous notations, we have that the first
difference ofh is Ah = (1, 2,2, -2, -2, -1), sog = (1, 2,3, 3,2, 1). Hence, we can take a
stick figureX which is a Complete Intersection between a cubic and a guarti

Therefore, as above, we get a subschem¥ wfith h-vector(1, 2, 2).

Bo B1 B2 Bs

Figure 2

In this way, the intersection betwe@nand the residual’ gives the reduced set of 13 points
with the expectedh-vector.
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3. Gorenstein Sets of points not complete intersection

In this paragraph, we start visualizing some sets of poifigkvresult from the Migliore-Nagel
construction. This construction has given an idea of howuitdtparticular sets of points in
P3 which are arithmetically Gorenstein zeroschemes and noiplxte Intersections. For this
purpose, we start from a careful analysis of Examples 1 and 2.

ExamMPLE 3. In example 1 we can see that the ¥edf 12 points which realizes thie-
vectorh = (1, 3,4, 3, 1), has the following configuration: 3 points df o (the intersection
betweenPy g and Pg 1, Po,2, Po,3), 2 points onP g (the intersection betweeR; g and Py »,
Py 3), 3 points onP; g (the intersection betwee g and P, 1, P2 2 andP; 3), 4 points onPy 1
(intersection betweeRy 1 andPg 1, P21, P12, andPy 3). So, we denote these points by

k.|
Py =R NPk

We focus our attention on the plaBg, where we consider 9 points: the intersections of the
lines B g with the planesBy,By,B3.

So we have three triplets of points which are collinear, kag the triplets of the forn{lPii,’J! }
i = 1,2, 3 are collinear, because they live in the intersection betvig) andB;, i = 1,2, 3.
These points, exce® = Pll,’t}' are inY. Now, we consideiP; 1: this line is throughP and
is not in Bg. The remaining 4 points are the intersection betwBer and Ag, A, B, B3 and
they are different fronP. The union of all these points, except is our Gorenstein séf.

Figure 3

So, from that analysis we get a guess to construct a mordeviSitrenstein set of 12 points.
We start from a plan®8g with 9 points which satisfies some relation of collinear#g {n Figure
3), we cut off a point, and we choose a line= Py ; through this point and not in the plane.
Notice that this is equivalent to say that we choose the plageand B;. It is easy to see that
we can choose the points on this lineandomly. This is due to the fact that, at this point of the
Migliore-Nagel construction, each of the plandg, Ay, By, B3, are defined by three collinear

points (for exampleAg is the plane througtﬁ’g’&, P&g, and P&g’). In other words, if we start
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from Figure 3, the 9 points don't fix uniquely the plangg, Ay, B>, andBgs, but they define 4
pencils of planes in which we can choose the previous planes.

EXAMPLE 4. Now, let's analyze Example 2 (a set of 13 points) and tryisoalize this set
as before. Here we have:

e 3 points onPy g, intersection betweeRy g and Py 1, Pg 2 and Py 3

e 2 points onPy g, intersection betweeR; g and Py », P1 3

e 3 points onPy 1, intersection betweeR; 1 andPy 1, P1 2, P13

e 2 points onP, g, intersection betweeR, g and P, 5, P> 3

¢ 3 points onP; 1, intersection betweeR, 1 andPy 1 P22, Po3

As in the previous example,we consider the 9 points in thegiy, but this time we have
to cut off two points:P := Pll’ol andQ = Pzz’g. After we take the lines := P; 1 ands := P, ;

respectively throughP and Q, we have to fix three points on each IinBlo’ll, Plll2 P1113 and

0,1 2,2 52,3
PZ,l’ PZ,l’ I32,1'

This time, we cannot randomly choose all the six points: @t faese points are given by
the intersections of ands with the planesAg, B, and B3. So if we randomly choose three
points (for example im), then the planeg#, B> and B3 are fixed, and the points @itoo. The
result appears as in the figure below:

B1NB3
-
Pl 1 P < B1NBy
P2 1 , P -
, P P
-
% -
~ Ve
- Ve B]_
- -
-
Poa
~
N

BoNn Az

Figure 4

If we look carefully at the plan®g of the two examples, the 9 points are a Complete Inter-
section inP3 defined by three generatofsg, h where degf) = 1, deqg) = degh) = 3 and
both g andh are products of three linear forms.
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Obviously we can generalize this idea to bigger sets. We baibserve that, following
Nagel-Migliore, we can always “picture” a Gorenstein sepoints inP3, but we can do it with
more or less freedom. This freedom dependsYormr better, on itdh-vectorhy. In fact, we
can say that if our Sl-sequence is of the fonp = (1, 3,4, ...,t,t,t, t,.....4, 3, 1), with the
hypothesis that all the entries ah, excepthy —hg = 2, are equal to 0 or 1, then it is possible to
find a particular plane Complete Intersect¥rof points and, after taking a line through a point
P e X (and cut off this point) and a correct number of points défgrfrom P on the line, we
obtain a Gorenstein set of pointsc P3 with h-vectorh.

Now, suppose that the hypothesisidig are verified. The next question is the following: is
it possible to substitute the generatgrs by g, h’ not products of linear forms ?

So we tried to take a generic complete intersecioof the form(1, 3, 3); as before, we cut
off a point P and we choose a st of 4 points over a general line through not in the plane.
Working with theh-vectors of X, P andW, we are able to prove thadt = (X U W) \ {P} is
again a Gorenstein set of Points, not a Complete Interseatith h-vector(1, 3, 4, 3, 1).

Figure 5

This fact gave us the idea for another generalization: whppéns if we take a Complete
Intersection of the fornl, a, b) minus a point, and a set of points over a line through thist@oin
Do we obtain a Gorenstein set of points?

We notice that this time, however, we don't start fromtamector, but we search a new
method to construct Gorenstein set of points not Compl@&dactions.

The answer to the question is positive. To proof, we need kdviing result by Davis,
Geramita and Orecchia [2]:

THEOREM?2. Let | be the ideal of a set X of s distinct pointsBA and suppose that the
Hilbert function of X has the first difference which is synmmednd that every subset of X
having cardinality s— 1 has the same Hilbert function. Then the homogeneous cateliing
of X is a Gorenstein ring.
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THEOREM3. Let X ¢ P3 be a reduced Complete Intersections of the fgine, b) and
let P € X a point. Take a line L through P, not in the plane that cordaithand fix a set Y of
a -+ b — 1distinct points on L, containing P. Define

W= (XUY)\ (P}
Then W is an arithmetically Gorenstein zeroscheme.

Proof. Supposea < b. Let Ix = (F1, Fp, F3), where degF1) = 1, deqFp) = a and

deg F3) = b. Theh-vector of the Complete Intersectiofiis
hy =(1,23,...,.a—1aa,...,a,a,a—1,...,3,2,1),

where the two a — 1” entries correspond to the forms of degrees 2 andb. So the length
of hy isa+b— 1. LetY be the set o + b — 1 points onL; Iy will be (L1, Lo, L3), where
IL = (L1,Lo) and degL3) = a+ b — 1. SinceP = XNY, we havelx + Iy C Ip. But
Ix + Iy is (Fq, Fp, F3, L1, Lo, L3) and thelp = (Lq, Ly, F1), so we have thaty + ly is
the satured idedlp. Obviously, theh-vector ofly ishy = (1,1,..., 1, 1), because we have
a+b—1 points on aline. From the next exact sequence we can cadhkh-vector of XU Y:

0= lIxNly — I'x d ly —=lIx+ly—0

1 1 1
2 1 0
a—1 1 0
a 1 0
a 1 0
a 1 0
a 1 0
a—1 1 0
2 1 0
1 1 0

So, we obtairhxyy = (1,3,4,5,...,a,a+1a+1,...,a+1la+1a,...,5432).
If we considerX U Y \ {P} = W, it hash-vector

1,3,4,5,...,a,a+1,a+1...,a+1,a+1a,...,5431

which is symmetric. In fact, suppose that the/ector does not decrease at the last position.
Then there is a fornf of degree less thaa + b — 2 which is zero orW but not onP. So, if

we consider the curve given By = 0 in the planeF; = 0, we have a form of degree less than
a+b—2which is zero on all but one the points of a Complete Intdiseca, b), but this is not
possible by Remark 1.

Now, we use Theorem 2 to prove that this set of points is GoeensCut a point off this set
to obtain a seW’: it is sufficient to prove thahyy is the same for any point we cut off. There
are two possible cases:



Gorenstein points it?3 163

1) the point is on the linék; = 0, Lo = 0,
2) the point is on the planE; = 0.

Case 1.LetW = W\ {Q}, whereQ € L N W. The only possiblé-vector forw’ is
1,3,4,5,...,a,a+1,a+1...,a+1la+14a...,54273).

In fact, it cannot decrease in any other point, because $ncige there would be a forfn
of degree less than or equaldet b — 3 that is zero on all the points & and not onQ. So,
F = 0 onab — 1 points of the Complete Intersectiofy then, for Remark 1, we know th&t is
also zero on the other point o, that isP. Soa + b — 2 points ofL are zeros of, thenF is
zero onL and soF (Q) = 0. This is a contradiction.

Case 2.Let Q € X\ {P}, for the same reasons of the case 1, we cannot have a form of
degree less than or equalder b — 3 that is zero oW’ and not onQ. If F exists, it is zero on
a+b— 2 points ofL, soL is contained irfF = 0 and soF(P) = 0. ThenF iszerooma+b—1
points of X and, for Remark 1F(Q) = 0.

Then, the only possible-vector forW’ is
1,3,4,5,...,a,a+1a+1...,a+1,a+1a,...,5423).
O

REMARK 2. If a # 1 andb # 1, the Gorenstein set of points which we foultd, is not
a Complete Intersection. In fact, in this caskis not contained in any hyperplane, but we have
two independent forms of degree two which are zerd\brwith the above notation, those forms
areF,Lq, andF1Lo. Moreover, every form of degree two iIfy must containF as factor by
Bezout's Theorem. So, in every set of minimal generatordsypfve have two forms of degree 2
which are not a regular sequence.

4. Conclusion

In the previous section we showed a new method to construzeagslimensional schemes not
complete intersection. By this way, we can easily visuali'eposition of these points and obtain
more informations about the “geometry” of the scheme, aniéix¢ example shows.

ExamMPLE 5. We know that the coordinate ring of a set of five general {3oin P3 is
Gorenstein, where general means that not four are on a pMfewant give a proof using
Theorem 3.

In fact let Py, Py, P3, P4, Ps be five general points iB3. Let L1 = 0 be the plane contain-
ing P1, P>, P3andLy = 0, L3 = 0 the line throughP4 and Ps. So we have a new poirig,
i.e. the intersection between this plane and this line. e points in the plane are complete
intersection ofL 1 and two forms of degree two, because no three of them areeatli In fact,
if Pg and two points on the plane are collinear, tH&n Ps and those points are on a plane, and
this is a contradiction. So, by Theorem By, P>, P3 and 2+ 2 — 2 points on a line through
Pg but not in the plane form an arithmetically Gorenstein zehesne. If we choosé the line
throughPg and P4 and P5 the points orlL, we have the conclusion.
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REMARK 3. Unfortunately in this way we can obtain very particulahemes: all these
schemes have-vector

1,3,4,5,...,a,a+1la+1...,a+1,a+1a4a...,5431);

so, we cannot build the scheme of the Example 2. But, thisnsehteo, can be obtained from
the union of a residual scheme and a “suitable” completesattion.

Recently, in a joint work with R. Notari and M.L. Spreafico, generalized this construction
obtaining a bigger family of Gorenstein schemes of codirimenthree.
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ON LINKED SURFACES IN P*

Abstract. We give an elementary proof of a result of Katz relating irauats of
linked surfaces i®4. A similar result is proved for volumes if°. Then we try

to connect the geometry of the curize= SN S to the properties of the linked
surfaces, for example we show thatifis a complete intersection, then one of the
surfaces is a complete intersection too.

1. Introduction

Let us suppose th&andS are smooth surfaces if, linked by a complete intersection of type
(f, g). The problem is to compute the numerical invariantSofsupposing that those &are
known. We restrict the study to a particular type of liaisahjch is callednice linkage but it
would be possible to work under wider hypotheses.
In general ifSandS' are linked by a complete intersection, it is clear that= SN S’ is a curve,
since a complete intersection is connected. It is natueal tb wonder whether this curve can
tell us something about the surfaces involved in the linkage
The problem of determining invariants of linked surfaceBfralso leads to think about the well
known conjecture concerning the irregularity of theseaue$.
Conjecture. There exists an integdvl such that ifS ¢ P4 is a smooth surface, ther(S) < M.
Indeed if it were possible to compute exactly the irregtyaof a surface linked to another
whose invariants are all known, this would give a tool to fyethe validity of the conjecture
above.
The following section concerns numerical invariants, irtipalar we give an elementary proof
of a result by S. Katz (see Lemma 2), which states a relatibndsn invariants of linked sur-
faces. The main result in the third section is Prop. 2, whigksl the cohomology of and
S with that of D. Then we try to see how particular propertiestranslate in terms of the
surfaces. We wonder what it would mean in terms of the susféc® is, respectively, a. C
.M., complete intersection of three hypersurfaces or degea (see 1, 3, 4). We conclude with
some considerations about the case of linked subvarietig3 andP°. In particular we stress
the result in Proposition 5 (and Remark 4), in which it becsrear how the Rao module of a
curveC c P2 could limit the degrees of the surfaces producing a linkagelving C.
| really would like to thank Ph. Ellia for his useful help andpport during the preparation of
this work.

2. Invariants of nicely linked surfaces
DEFINITION 1. Let S and Sbe smooth surfaces Pf* of degrees respectively d’.dVe say

that S and Sare nicely linkedif:
1. Su S is a complete intersection G F, where F, G are hypersurfaces of degrees f, g
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respectively;
2. SN S is a smooth curve D;
3. G may be chosen to be smooth away from D, with finitely maggson D.

The following result is useful in order to grant the existeraf hypersurfaces of certain
degrees nicely linkingto S'.

PROPOSITIONL. Let S be a smooth surfacet, if Zg(k) is globally generated, then for
every fg > k we can find hypersurfaces & nicely linking S to a smooth surfacé. S

For a proof, see [1], Prop. 4.1. From now on, we assumeStaatd S’ are nicely linked.
The next lemma provides a formula for the degree and the gafrithe curveD, in terms of the
degrees of the hypersurfacEsandG and of the sectional genera of the surfaesdS'.

LEMMA 1. Let SS < P* be smooth surfaces nicely linked by a complete intersection
F NG of type(f, g), D = SN S, with sectional genera, =’ respectively, then:

@) dqu)=2+%(f+g—4)—rr—n’
D)(f +g—
(D) = 1+ 384 )(2+g 5

and D is a subcanonical curve withp = Op(f +g—5).

Proof. Let H be a general hyperplane, we €t= SN H, C’ = S N H. ThusC andC’ are
two curves inP3, linked by the complete intersectid@dU C’' = (H N F) N (H N G). We have
Mayer-Vietoris sequence:

0— Ocucr > Oc®O¢cr - Or -0
wherel' = C N C’/, from which we infer:pa(C UC’) = 7 + n/ — 1 + card(I"). Obviously
card(I'’) = deg D) and sinceC U C’ is a complete intersection, its arithmetical genus can
be computed easily aga(CUC’) = 1+ f—zg(f + g — 4), so we get the desired formula:
degD) =2+ 3(f+g-4H—7 -’
In order to compute the genus, we consider the exact seqoétiasson:

0—->7Zy >Zs—> wg(b—-f—-0g) —0
whereU = SUS. Clearlywg (5— f —g) = Zs u, the sheaf of functions dd which vanish on
S. Observing thafs y has suppor§, we getZsy = Zp g = Og(—D), sinceD is a divisor
onS. Thuswg = Og(—D+ f +g—5) and by adjunctiomp = Op (f +g—5), in particular
D is a subcanonical curve. Looking at the degrees we obtgitD2— 2 = degD)(f +g—5).

|

LEMMA 2. Let S S c P* be smooth surfaces nicely linked by the complete intersecti
U=SUS =FNG, D=SNSY, then:

@) pg(U) = pg(S) + pg(S) — q(S) — q(S) + g(D)

Proof. We consider Mayer-Vietoris sequence:
0—- 0y »>0sd0Og—0Op—0
and taking cohomology we have?(Oy) = h2(0g)+h2(Og)+h1(Op)+h1(Oy)+h%(Og)+
h%0g) — ht(0g) — ht(Og) — h%Op) — hP(Oy).
As U is a complete intersectiaff, g), its minimal free resolution is:
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0> 0O0-f-9—>0-HoO(-g)>Zy —> 0
sohl(Zy) = h2(Zy) = 0, which yieldsh®(Oy ) = 1 andh1(Oy) = 0. Furthermoré®(Og) =
h%(Og) = h%Op) = 1, then we conclude.
|

REMARK 1. (i) This lemma was proven by S. Katz in [2], Cor. 2.4
(ii) The preceeding formula holds even if we are not in a s$ituraof nice linkage, it is enough
to haveS, S’ smooth andD equidimensional.
(iif) This lemma provides a relation between invariantsiokéd surfaces, however it does not
allow us to determine such invariants completely. In fadhim general situation we are able to
compute only the difference betweguS’) and pg(S). This impediment was to be expected
if we think about the conjecture mentioned formerly. In sguaeticular cases it is possible to
determineg(S) or pg(S) using different techniques and, thanks to formula (2), tmpate the
remaining one. For example if one of the surfaces is arittualgt Cohen-Macaulay, sa$, then
also the other one is a. C. M.. This implies tiggB) = q(S) = 0 and in such a situation all
invariants ofS’ are determined by knowing those 8f There are also examples of non a. C. M.
surfaces whose properties allow anyway to comppaed pg for a surface linked to them.

3. ThecurveD

PrRoOPOSITION2. With the previous notations:
® h'(Zp (M) = ht(Zs(m) + h'(Zg(m)

for every me Z.

Proof. Let us consider the exact sequence:
0— Zy(m) - Zg(m) & Zg(m) — Zp(m) — 0
taking cohomology we get:.. — H1(Zy (m)) - H1Zsm)) & H1Zg (M) - H1(Zpm))
— H2@Zym)) — ...
SinceU is a complete intersectiorhl(IU (m)) = hZ(IU (m)) = 0 and we get the desired
formula.
|

COROLLARY 1. 1. If S and Sare a. C. M., then D is a. C. M. too;
2. if Disa. C. M., then S and’ @re projectively normal and @) = q(S) = 0;
3. h@p(f +9-5)=a(S9 +a(S).

Proof. 1. If SandS are a. C. M., theml(Zg(m)) = h1(Zg(m)) = 0 for everym € Z and by
Prop. 3.1 this implies that!(Zp (m)) = 0.
2. If Dis a. C. M. we havén}(Zp(m)) = O for everym, thenhl(Zgm)) = h1(Zg(m)) =0
too.
3. We recall that ifS, S c P# are surfaces linked by a complete intersectidng) we have
hZ(IS/(m)) = hl(IS(f + g — 5—m)). Considering formula (3) in Proposition 2 we obtain:
h1(Zp(f +g—5) = h2(Zg) + h2(Zg) = q(S) + q(S) using Serre duality.

Od

REMARK 2. This result (part 3.) is of some interest if we consider ¢bejecture about
bounding the irregularity. Again it is not possible to corteg(S) but it becomes clear that the
curve D carries informations about the cohomology of the surfa¥és.have already observed



168 C. Folegatti

that D is a subcanonical curve. We could hope to start from a sulmiealccurveD on a surface

S, such thahl(Zp (f + g — 5)) — q(S) is greater than one, and try to obtdinlinking Sto a
smooth surfaces’, which would haveg > 1. However this is probably an hopeless program.
Furthermore we have to deal with the following problem: gigesmooth surfacs, is it possible

to find surfacesS, linked to S, such that every subcanonical curecC S can be obtained as
SN S? The answer to this question is negative, let us considdptioaving counterexample.

EXAMPLE 1. LetSbe Del Pezzo surface i, thenSis a rational surface of degree d=4,
with sectional genug = 1, complete intersection of two hyperquadrics. One can deinate
(see for instance [3], Theorem 10) that a divi€bon Sis a smooth subcanonical curve if and
only if C is one of the following:

(a) Cisaline andwc = Oc(—2);
(b) Cis asmooth plane conic angt = Oc(—1);
() C~ (¢ +1HH andwc = Oc (), « > 0, whereH is an hyperplane divisor 08;

(d) C~ (@¢+DH + Z'j‘:l(oz +1)Lj andoc = Oc(a), « > 0, whereL g, ..., Lg are
k > 1 mutually skew lines.

We recall that ifC = SN S, whereSandS' are nicely linked by a complete intersectiof g),
we havewc = Oc(f +g—5).

It is easy to see that the first two types of subcanonical suomeS mentioned above cannot be
realized in such a way. In fact we would hafie- g < 4, sod’ = degS) < 1, which is absurd.
For what concerns the third class of curves, as to say mestipl hyperplane divisors, we have
better hopes to find a couple of hypersurfaces producing theses as explained before. Indeed
if C € ImH|, Cis a. C. M. for everym > 1. Now if we consider a complete intersection
(2, m+2), we obtain that the intersection 8fwith the residual surfacg' is a curveD of degree
4m (using the formula (1) in Lemma 1), which is the degre€of ImH|.

Now we come to the last type of subcanonical divisors$Sohet us conside€ ~ H + L, where

L is aline,oc = Oc andC is a non degenerate elliptic quintic, thénis a. C. M.. If we
suppose that could be realized aSN S, whereSandS' are linked by a complete intersection
(f, ), we obtain thatleg[C) = 4(f + g — 4). Itis clear that the quantity(4 + g — 4) could
never be equal to five, for anf; g > 1, soC ~ H + L is not one of the curves we are looking
for.

We have shown with several counterexamples that not evérgasnical curve on a certain
surfaceS is given bySN S, with Sand S’ linked by a complete intersection, not even if we
restrict to a. C. M. curves.

Now we examinate the case in whi€his a complete intersection of three hypersurfaces
Fa, Fp, Fc of degrees respectively, b, c. Supposea < b < c¢. For each hypersurfadg, we
have to deal with the following question: doEg contain one of the surface&; S'?

Let us consider: 0> HO(Zs(k)) - HOZp (k) 5> HOZp sk) — ...
Supposerk does not contairs, thenFy provides a non zero element
Fv = 7(Fi) € HO(Tp s(k)).

We also have the exact sequence:

0— HOTy (k) > HOTg (k) B HOTp s(k) — O
Sincep is surjective, there existsy € HO(Ig(k)) such thatp(lfk) = Flé. Observe thaFy and
Fi coincide overS, thenGy = Fy — Fy belongs toH9(Zg(k)).
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SinceFy and Fy coincide overS, we could replacé with F and consideD as the complete
intersectionFa N Fp N Fe. We could always manage to hale= Ea N Ep, N Ec, where the
hypersurface€y are such that eithe, containsS or it containsS'. In other words we can say
that fork = a, b, ¢, Ex € HO(Zg(k)) or Ex € HO(Zg (k).

PrRopPoOsSITION3. With the notations above, let D be a complete intersectighreg hyper-
surfaces of non decreasing degrees & < ¢, i.e. D= F3 N Fy N Fc, then one of the surfaces
S, Sis a complete intersection too.

Proof. It is clear from what said before that one of the surfaBe§’ is contained in two of the
three hypersurfacesy, sayS C Fa N Fp. In general we will have a residual surfaesuch that
SU S = Fa N Fp. However, this would imply thab = Fc N (SUS) = (Fe NS U (Fe N S),
but we recall thaD is irreducible, then necessari§= ¢ andS = Fq N Fy,.

|

REMARK 3. The preceeding result has this consequenc® i§ a complete intersection
then just one of the surfaces is a complete intersectionampyway both are a. C. M. and this
implies thatq(S) = q(S) = 0.

If we supposeD is a degenerate curve, we have the following result, whiaigsrback to
the case in whictD is a complete intersection and allows us to apply Propas8io

PrRopPosITION4. If D is degenerate, then D is a complete intersection.

Proof. If D is degenerate, there exists an hyperpléheontainingD, and from the previous
discussion, it follows that contains one of the surfac& S'. A degenerate surfacgin P4
is a. C. M., to see it just consider the cokeover Sin P4, S turns out to be the complete
intersection oK andH. ThenSandS' are a. C. M. and consequently alBas so. Moreover it
is clear that if a degenerate curve is a. C. MPfh itis a. C. M. inH ~ P3 too. We recall that,
by Gherardelli's theorem, iD ¢ P3 is a subcanonical, a. C. M. curve, thenis a complete
intersection.

|

4. Liaison in P3 and P°
In this section we consider liaison between subvarieti@3iand inP®.

PROPOSITIONS. LetC, C c P3 be curves geometrically linked by a complete intersection
of type(a, b), and let D be the zerodimensional scheme C’, then:

hZcm) + ht@Ze/m) < hr@pm))
for every me Z.

Proof. The proof is the same as in Proposition 2, but this thﬂezcuc/(m)) is not necessarily
zero, so only the inequality holds.
|

REMARK 4. The preceeding result is interesting even if it looks veedkan the one for
surfaces.
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We recall that for linked curves A3 we have:hl(IC/(m)) = hl(Ic (a+b—4—m)). Moreover
h1Zp(m)) < deqD), if D has dimension zero, thus we obtain the bouhd(Zc(m)) +
hl(Ic(a +b—4—-m)) < degD). Itis possible to expresdeg D) as a function of the
invariantsa, b, d, g, whered, g are the degree and the genus@fand we get:deg D) =
2—2g+d@+hb-—4.

In the end we can write the formulafl(Ic(m))+h1(Ic (a+b—4—m)) < 2—-2g+d(a+b—4).
Note that just the fact of being able to make a linkage prositicis bound on the cohomology
of C; conversely the knowledge of the Rao function®§ives necessary conditions in order to
link C.

For what concerns the liaison of threefoldsFi?, we have the following result.

PROPOSITIONG. Let S, $C PP° be two threefolds, nicely linked by a complete intersection
(a, b), and let D be the smooth surface"S, then:

hl(Zsm)) + hl@Zg(m)) = h1(@Zpm)

h2(Zs(m) + h?(Zg(m)) = h*(Zp (M)
for every me Z and D is a subcanonical surface withy = Op(a+ b — 6).

Proof. As in the proof of Proposition 2, we obtain the two equalitessidering cohomology
of the exact sequence:-8 Zy (m) — Zs(m) & Zg (M) — Zp(m) — 0. IndeedU a complete
intersection and sb(Zy (m)) = h2(Zy (m)) = h3(Zy (M) = 0.
Then we look at liaison exact sequences0Zy — Zs — wg (6 —a—b) — 0, by adjunction
we have again thabtp = Op(a+ b — 6), soD is a subcanonical surface .

|

LEmMMA 3. With the notations above:
@) h?(Og) — h3(Og) = pg(D) — q(D) — h3(Oy) — h%(Og) + h3(Os)

Proof. The proof is exactly the same as in Lemma 2.3, recalling thptBarth’s theorem,
h1(Og) = 0 for a threefold irP°.
O

REMARK 5. Clearly the formula (4) above still holds&and S’ are not nicely linked, it is
enough for example to hav@and S’ smooth andD equidimensional. To hav® subcanonical
we only need to be a Cartier divisor on one of the threefoller S'. Indeed, if so, at least one
of the threefolds is smooth and we can proceed as in the pfédtoposition 6.
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